

Bulk Metallic Glass Alloys for Space Mechanism Applications: an Experimental Investigation

Contract No.: 4000127199/19/NL/AR/zk

Andrew G. Murphy^{1,4}, Andrew Norman², Philip Meagher¹, Tom Worsley³, **David J. Browne¹**

Project Review, ESTEC, Noordwijk, NL, 5 October 2022

· eesa

Talk Outline:

- Project Introduction and Scope
- Mechanism, BMG, Processing Selection
- BMG Material Testing
- Conclusions & Future Work
- Acknowledgements/Questions & Comments

Talk Outline:

- Project Introduction and Scope
- Mechanism, BMG, Processing Selection
- BMG Material Testing
- Conclusions & Future Work
- Acknowledgements/Questions & Comments

Project Introduction and Scope: Space Mechanism Applications

- Mechanisms and components for space applications must exhibit **exceptional performance in extreme environments**, while being virtually maintenance and failure free.
- **Materials selection** vital to achieve maximum performance and quality while reducing mass and costs.
- Key materials selection criteria include, specific stiffness, specific strength, corrosion resistance, fracture and fatigue resistance, thermal expansion coefficient and thermal conductivity for the temperature range $4 \text{ K} \le T \le 675 \text{ K}$, as well as ease of manufacture.
- Other factors that need to be considered included, **lubricant** compatibility/requirement, cold welding, galvanic compatibility, geometric accuracy, and surface finish.
- Eliminate mass, complexity, and reduce maintenance by reducing mechanism part count.

Compliant flexure-based mechanisms can be used to replace hinges, linkages and potentially pyrotechnic actuators, increasing accuracy and performance, while reducing mass and manufacturing costs.

·eesa

What are Glasses?

Crystal

Solid composed of atoms arranged in an ordered way

Naturally occurring Ceramic Polymeric Metallic

Project Review, ESTEC, Noordwijk, NL, 5 October 2022

What are Bulk Metallic Glasses?

Crystalline metal (First use: 6,000 BC)

Everyday metals are cast into shape by cooling the molten metal into a solid

The atoms order in a regular crystalline fashion.

The metal melts when heated above its melting point $\mathrm{T}_{\mathrm{melt}}$

Bulk Metallic Glass (First use: 1990 AD)

If section thickness > 1mm: Bulk Metallic Glass (BMG)

A metallic glass is made by cooling the liquid state of special alloys relatively rapidly.

Because of the cooling rate and alloy composition, atoms do not get time to 're-order' themselves into a crystalline state.

Between T_g and T_x is known as the supercooled liquid state, where material softens considerably (viscosity 10⁴-10⁷ Pa.s)

On re-heat, above a specific temperature T_x the material will crystallize.

Increasing the temperature above T_{melt} will melt the material.

BMG properties

- Hard
- Strong
- Wear resistant
- Corrosion resistant
- Biocompatible (alloy-dependent)
- High precision replication sharpness
- Tough in micro-parts
- Mouldable in Super-Cooled Liquid Range (SCLR)

7

TTT diagram

time-temperature transformation

path (1) shows critical cooling rate needed to form a metallic glass.

Perfume bottle made by blow moulding – thermoplastic forming – following path (2) in TTT

Source: Jan Schroers Lab, Yale University

8

Project Introduction and Scope: Bulk Metallic Glasses

- ✓ High strength (5 GPa ≥ σ_v ≥ 1 GPa)
- ✓ High elastic strain ($\varepsilon_y \approx 2\%$)
- ✓ Low Young's modulus ($E \approx 100$ GPa)
- ✓ High hardness ($HV \approx 500 \pm 100$)
- ✓ Corrosion resistance
- ✓ Thermoplastic formability (SCLR, T_{g})
- ✓ High resilience, energy storage (σ_v^2/E)
- ✓ Low mechanical damping (Loss coefficient, η)
- ✓ Low wear loss
- ✓ Excellent soft magnetic properties
- ✓ Large range of BMG composition families (Zr, Ti, Cu, Fe, Pd, Pt)
- Limited solidification shrinkage giving excellent mould filling

- Can be macroscopically brittle. Shear localisation into thin bands leading to catastrophic failure
- × Limited-to-no tensile ductility (ε_p)
- × Low fatigue strengths ($\sigma_e = 0.15\sigma_y$)
- Difficult to maintain amorphous structure during processing
- Expensive, high purity, atomic elements (Pt, Pd, Au)
- **×** Toxic elements (Be)
- Difficult to manufacture in large volumes
- Trial and error approach to BMG synthesis (no GFA predictability)
- Lab-to-lab performance variation for the same composition

· eesa

Project Introduction and Scope: Bulk Metallic Glasses

- ✓ High strength (5 GPa ≥ σ_y ≥ 1 GPa)
- ✓ High elastic strain ($\varepsilon_y \approx 2\%$)
- ✓ Low Young's modulus (*E* ≈ 100 GPa)
- ✓ High hardness ($HV \approx 500 \pm 100$)
- ✓ Corrosion resistance
- ✓ Thermoplastic formability (SCLR, T_g)
- ✓ High resilience, energy storage (σ_v^2/E)
- ✓ Low mechanical damping (Loss coefficient, η)
- ✓ Low wear loss
- ✓ Excellent soft magnetic properties
- ✓ Large range of BMG composition families (Zr, Ti, Cu, Fe, Pd, Pt)
- Limited solidification shrinkage giving excellent mould filling

- Can be macroscopically brittle. Shear localisation into thin bands leading to catastrophic failure
- × Limited-to-no tensile ductility (ε_p)
- × Low fatigue strengths ($\sigma_e = 0.15\sigma_y$)
- Difficult to maintain amorphous structure during processing
- Expensive, high purity, atomic elements (Pt, Pd, Au)
- **×** Toxic elements (Be)
- Difficult to manufacture in large volumes
- Trial and error approach to BMG synthesis (limited GFA predictability)
- Lab-to-lab performance variation for the same composition

· eesa

Project Introduction and Scope:

Identify and characterize specific **Bulk Metallic Glass** (BMG) alloys suitable for **space mechanism** applications, providing significant **performance improvements** over current state-of-the-art metals as well as possible **alternative manufacturing routes**.

Technology Readiness Level 3 (TRL3): Analytical and experimental critical function and/or characteristic proof-of-concept.

Talk Outline:

- Project Introduction and Scope
- Mechanism, BMG, Processing Selection
- BMG Material Testing
- Conclusions & Future Work
- Acknowledgements/Questions & Comments

Mechanism Selection:

Anti-backlash Gear (multi-component)

Large Angle Cross-axis Flexure

BMG Alloy Selection:

47	41	40	39	29	28	27	22	13	
Ag	Nb	Zr	Y	Cu	Ni	Co	Ti	AI	
silver 107.9	niobium 92.91	zirconium 91.22	yttrium 88.91	copper 63.55	nickel 58.69	cobalt 58.93	titanium 47.87	aluminium 26.98	

• $Zr_{53}Al_{16}Co_{23.25}Ag_{7.75}$

N. Hua, S. Pang, Y. Li, J. Wang, R. Li, K. Georgarakis, A. R. Yavari, G. Vaughan, and <u>T. Zhang</u>, '**Ni- and Cu-free Zr–Al–Co–Ag Bulk** Metallic Glasses with Superior Glass-forming Ability', Journal of Materials Research, vol. 26, no. 4, pp. 539–546, 2011.

• $Zr_{49}Ti_{1.96}Cu_{37.24}Al_{9.8}Y_2$

K. Zhou, Y. Liu, S. Pang, and <u>T. Zhang</u>, 'Formation and Properties of Centimeter-Size Zr–Ti–Cu–Al–Y Bulk metallic Glasses as Potential Biomaterials', Journal of Alloys and Compounds, vol. 656, pp. 389–394, 2016.

• Zr₆₀Ti₂Nb₂Al_{7.5}Ni₁₀Cu_{18.5}

Inoue, Q. S. Zhang, W. Zhang, K. Yubuta, K. S. Son, and X. M. Wang, 'Formation, Thermal Stability and Mechanical Properties of Bulk Glassy Alloys with a Diameter of 20 mm in Zr-(Ti,Nb)-Al-Ni-Cu System', Materials Transactions, vol. 50, no. 2, pp. 388–394, 2009.

• $Cu_{47}Zr_{46}Al_5Y_2$

D. C. Hofmann, L. M. Andersen, J. Kolodziejska, S. N. Roberts, J.-P. Borgonia, W. L. Johnson, K. S. Vecchio, and A. Kennett, '**Optimizing Bulk Metallic Glasses for Robust, Highly Wear-Resistant Gears**', Advanced Engineering Materials, vol. 19, no. 1, p. 1600541, 2017.

Bulk Metallic Glasses for Space Mechanism Applications

BMG Testing Regime: Key Material Properties

Processing Route: Arc Melting/Suction Casting

- Edmund Bühler AM 200 Arc Melter system
- Vario Hybrid 400 DC HF generator
- Argon Atmosphere (99.98%)
- Suction Casting into Cylindrical Copper Moulds

Talk Outline:

- Project Introduction and Scope
- Mechanism, BMG, Processing Selection
- BMG Material Testing
- Conclusions & Future Work
- Acknowledgements

Test Specimen & Testing Equipment: Eye protection must be worn 00 BOD ΗV EDX DSC 4PBT CT ΗV Ε ε, ΗV $T_{\rm x}(t)$ σ_e $\sigma_y \sigma_f \varepsilon_e$ l_g $T_{\rm x}$ $T_{\rm m\prime}$ $T_{\rm L}$ K_{A} 30 mm × 3 mm × 3 mm ΗV Ø 3 mm × 28 mg Ø 4 mm × 4 mm 10 mm × 10 mm × 3 mm eesa

Project Review, ESTEC, Noordwijk, NL, 5 October 2022

- Density Measurements
- XRD Analysis (Amorphous Verification)
- EDX Analysis
- DSC Analysis
- Compression Testing
- Hardness Testing (HV)
- Fatigue Testing
- Ball-on-Disc (BOD) Wear Testing

- Density Measurements (QA and porosity check V)
- XRD Analysis
- EDX Analysis
- DSC Analysis
- Compression Testing
- Hardness Testing (HV)
- Fatigue Testing
- Ball-on-Disc (BOD) Wear Testing

- Density Measurements
- XRD Analysis (amorphous verification √)
- EDX Analysis
- DSC Analysis
- Compression Testing
- Hardness Testing (HV)
- Fatigue Testing
- Ball-on-Disc (BOD) Wear Testing

- Density Measurements
- XRD Analysis (Amorphous Verification)
- EDX Analysis (confirm apportioned chemistry V)
- DSC Analysis
- Compression Testing
- Hardness Testing (HV)
- Fatigue Testing
- Ball-on-Disc (BOD) Wear Testing

- Density Measurements
- XRD Analysis (Amorphous Verification)
- EDX Analysis
- DSC Analysis
- Compression Testing
- Hardness Testing (HV)
- Fatigue Testing
- Ball-on-Disc (BOD) Wear Testing

Differential Scanning Calorimetry (DSC): increasing T

Differential Scanning Calorimetry (DSC): isothermal holds at T

Schematic TTT Diagram

Experimentally determined time-temperature-transformation for each of the project compositions. (a) C12. (b) C16. (c) C18. (d) C35. The dot-markers indicate time to crystallisation at fixed T. The ×-marker indicates the crystallisation peak time recorded during the previous constant heating experiment. Alloy specific T_g and T_x temperature transitions shown in blue and red, respectively.

Results – Differential Scanning Calorimetry (DSC):

- Transition temperature values determined for all four project composition alloys
- Measured values in agreement with published values

С	Composition (at.%)	T _g (°C) Onset	T _g (°C) End	<i>T</i> _x (°C)	$\Delta T (^{\circ}C)$ $(T_x - T_g(End))$	<i>T</i> _m (°C)	<i>T</i> _L (°C)
C12	$Zr_{53}Al_{16}Co_{23.25}Ag_{7.75}$	485	503	516	13	875	954
C16	Zr ₄₉ Ti _{1.96} Cu _{37.24} Al _{9.8} Y ₂	399	429	472	43	787	858
C18	$Zr_{60}Ti_2Nb_2Al_{7.5}Ni_{10}Cu_{18.5}$	376	404	448	44	780	870
C35	$Cu_{47}Zr_{46}Al_5Y_2$	409	428	470	42	704	889

Experimentally determined temperature transitions for each of the project compositions. T_g : glass transition temperature; T_m : melting temperature; T_L : liquidus temperature.

 ΔT is the width of the supercooled liquid region (SCLR)

- Density Measurements
- XRD Analysis (Amorphous Verification)
- EDX Analysis
- DSC Analysis
- Compression Testing
- Hardness Testing (HV)
- Fatigue Testing
- Ball-on-Disc (BOD) Wear Testing

Compression Testing:

• Hounsfield H50KS Universal Testing Machine

Results – Compression Testing:

- Elastic modulus (*E*), yield strength (σ_y), fracture strength (σ_f), elastic strain limit (ε_e), and plastic strain limit (ε_p) determined for all four project composition alloys
- Average values in agreement with published values (except C35).
- Significant performance variation from specimen to specimen indicates properties highly influenced by processing conditions
- "Best in class" performance misleading when compared to average

С	Composition (at.%)	E (GPa)	σ_y (GPa)	σ_f (GPa)	ε _e (%)	$\boldsymbol{\varepsilon}_{p}$ (%)
C12	Zr ₅₃ Al ₁₆ Co _{23.25} Ag _{7.75}	94 ± 3	1.9 ± 0.0	1.9 ± 0.1	2.0 ± 0.1	0.7 ± 0.9
C16	$Zr_{49}Ti_{1.96}Cu_{37.24}Al_{9.8}Y_2$	87 ± 3	1.6 ± 0.1	1.7 ± 0.1	1.9 ± 0.1	0.4 ± 0.5
C18	$Zr_{60}Ti_2Nb_2Al_{7.5}Ni_{10}Cu_{18.5}$	80 ± 3	1.5 ± 0.1	1.6 ± 0.1	1.8 ± 0.1	1.1 ± 0.6
C35	$Cu_{47}Zr_{46}Al_5Y_2$	87 ± 2	1.6 ± 0.1	1.8 ± 0.1	1.9 ± 0.1	0.8 ± 0.2

cesa

- Density Measurements
- XRD Analysis (Amorphous Verification)
- EDX Analysis
- DSC Analysis
- Compression Testing
- Hardness Testing (HV)
- Fatigue Testing
- Ball-on-Disc (BOD) Wear Testing

Vickers Hardness Testing:

- Mitutoyo AVK-C2 Hardness Tester
- Indent Loadings: 1 kgf, 2 kgf, 10 kgf (5 at each loading)
- Dwell Time: 10 s
- Test Specimen Surface Finish: Ra < 1 um

Results – Vickers Hardness Testing:

- Vickers Hardness values determined for all four project composition alloys
- Average values in agreement with published values
- Significant performance variation from stock material to stock material indicating properties highly influenced by processing conditions

С	Composition (at.%)	HV (kgf/mm²)
C12	Zr ₅₃ Al ₁₆ Co _{23.25} Ag _{7.75}	577 ± 36
C16	$Zr_{49}Ti_{1.96}Cu_{37.24}Al_{9.8}Y_2$	527 ± 51
C18	$Zr_{60}Ti_2Nb_2Al_{7.5}Ni_{10}Cu_{18.5}$	462 ± 11
C35	$Cu_{47}Zr_{46}Al_5Y_2$	478 ± 32

- Density Measurements
- XRD Analysis (Amorphous Verification)
- EDX Analysis
- DSC Analysis
- Compression Testing
- Hardness Testing (HV)
- Fatigue Testing
- Ball-on-Disc (BOD) Wear Testing

Fatigue Testing:

- Dyna-Mess TE 7 HCF 4-Column Testing Machine
- 4-Point Bend Test Setup (20 mm outer span, 10 mm inner span)
- Test Specimen dimensions: 30 mm x 3 mm x 3 mm
- Frequency: 25 Hz
- Stress Ratio: 0.1
- Stress Ranges: 1000 MPa, 600 MPa, 400 MPa, and 200 MPa

Fatigue Testing: Results

time, t (s)

Results – Fatigue Testing:

S-N plots of fatigue test results listed in . (a) Composition C12. (b) Composition C16. (c) Composition C18. (d) Composition C35. Arrows indicated test specimens that did not fail before reaching N_{max} . Horizontal dashed lines at σ_{target} . All other markers represent run-to-fail test specimens.

Project Review, ESTEC, Noordwijk, NL, 5 October 2022

- Density Measurements
- XRD Analysis (Amorphous Verification)
- EDX Analysis
- DSC Analysis
- Compression Testing
- Hardness Testing (HV)
- Fatigue Testing
- Ball-on-Disc (BOD) Wear Testing

Bulk Metallic Glasses for Space Mechanism Applications

Wear Testing (BOD):

- Neo-Tribo MFW120 POD Wear Test System
- Load/Speed Ranges: 2 N/60 mm/s, 5 N/20 mm/s
- Ball Material: WC-Co (1585 HV), ZrO₂ (1200 HV)
- Wear Track Diameter: ~6 mm
- Total Distance: ~180 m, ~60 m

Bulk Metallic Glasses for Space Mechanism Applications

Wear Testing (BOD): Results

PTRG

Results – BOD Wear Testing:

 K_A :Archard wear coefficient

V: volume wear loss H: hardness F: normal force S: sliding distance

 \rightarrow Low K_A indicates good wear resistance

С	Composition (at.%)	ΚΑ (μ)	ΚΑ (σ)
C12	Zr53Al16C023.25Ag7.75	0.0019	0.0009
C16	Zr49Ti1.96Cu37.24Al9.8Y2	0.0015	0.0009
C18	Zr60Ti2Nb2Al7.5Ni10Cu18.5	0.0036	0.0018
C35	Cu47Zr46Al5Y2	0.0008	0.0005

Calculated average Archard's wear coefficient, K_A grouped by project compositions. Error bars represent one standard deviation from the calculated mean.

Murphy, A.G., Norman, A., Meagher, P., Browne, D.J., "Wear of Bulk Metallic Glass alloys for space mechanism applications", ASME Journal of Tribology, 144, 2022, 091706

BMG Property Results – Overall Summary:

- All required thermophysical properties determined for all four project compositions
- Average values in agreement with published values
- Significant performance variation from stock material to stock material indicating properties highly influenced by processing conditions

С	Composition (at.%)	ρ (g/cm³)	<i>E</i> (GPa)	ε _e (%)	ε _p (%)	σ _y (GPa)	σ _f (GPa)	HV (kgf/mm²)	Т _g (°С)	Т _х (°С)	<i>T</i> _m (°C)	Т _L (°С)	K _A	*σ _e (MPa)
12	Zr ₅₃ Al ₁₆ Co _{23.25} Ag _{7.75}	6.75±0.02	94±3	2.0±0.1	0.7±0.9	1.9±0.0	1.9±0.1	577±36	485	503	875	954	0.0019±0.0009	<200
16	Zr ₄₉ Ti _{1.96} Cu _{37.24} Al _{9.8} Y ₂	6.76±0.03	87±3	1.9±0.1	0.5±0.5	1.6±0.1	1.7±0.1	527±51	399	429	787	858	0.0015±0.0009	<400
18	Zr ₆₀ Ti ₂ Nb ₂ Al _{7.5} Ni ₁₀ Cu _{18.5}	6.77±0.01	80±3	1.8±0.1	1.1±0.6	1.5±0.1	1.6±0.1	426±11	376	404	780	870	0.0036±0.0018	<400
35	$Cu_{47}Zr_{46}Al_5Y_2$	7.14±002	87±2	1.9±0.1	0.8±0.2	1.6±0.1	1.8±0.1	478±32	409	428	704	889	0.0008±0.0005	<400

Experimental determined thermophysical properties of each of the four project compositions investigated in this work, where ρ is the alloy density, E is the Young's modulus, ε_e is the elastic strain limit, ε_p is the plastic strain limit, σ_y is the yield stress, σ_f is the failure stress, HV is the Vickers hardness, T_g is the glass transition temperature, T_x is the crystallisation temperature, T_m is the melting temperature, T_L is the liquidus temperature, K_A is the Archard's wear coefficient, and σ_e is the fatigue endurance stress limit. Note, * indicates values estimated based on experimental results.

Murphy, A.G., Meagher, P., Norman, A., Browne, D.J., "Mechanical and thermal stability of Bulk Metallic Glass alloys selected for space mechanism applications", *Materials and Design*, under review.

These are conventional crystalline alloys:

- Ti-6%Al-4%V
- Cold-worked stainless steels: grades 303 and 304

Hardness and Wear

Fatigue

Murphy, A.G., Meagher, P., Norman, A., Browne, D.J., "Mechanical and thermal stability of Bulk Metallic Glass alloys selected for space mechanism applications", *Materials and Design*, under review.

reesa

Hardness comparisons

Murphy, A.G., Norman, A., Meagher, P., Browne, D.J., "Wear of Bulk Metallic Glass alloys for space mechanism applications", ASME Journal of Tribology, 144, 2022, 091706

Hardness comparisons

Murphy, A.G., Norman, A., Meagher, P., Browne, D.J., "Wear of Bulk Metallic Glass alloys for space mechanism applications", ASME Journal of Tribology, 144, 2022, 091706

Wear comparisons

Murphy, A.G., Norman, A., Meagher, P., Browne, D.J., "Wear of Bulk Metallic Glass alloys for space mechanism applications", ASME Journal of Tribology, 144, 2022, 091706

Connventional alloy fatigue behaviour

S-N plots of fatigue test results. Arrows indicated test specimens that did not fail before reaching N_{max}. All other markers represent run-to-fail test specimens.

BMG Fatigue Behaviour

Conventional alloys have superior low cycle fatigue behaviour, and higher fatigue strength.

BMGs may have adequate fatigue life

More testing is required.

Murphy, A.G., Meagher, P., Norman, A., Browne, D.J., "Mechanical and thermal stability of Bulk Metallic Glass alloys selected for space mechanism applications", Materials and Design, under review.

leesa

BMGs selected for applications (Give summary reasons)

• Gears: alloy C16: **Zr**₄₉**Ti**_{1.96}**Cu**_{37.24}**Al**_{9.8}**Y**₂

<u>Reasons</u>: high hardness, wear resistance, high strength, easily processed, $T_g \sim 400 \circ C$, reasonable fatigue strength, machinable (see below).

• Flexures: alloy C18: $Zr_{60}Ti_2Nb_2Al_{7.5}Ni_{10}Cu_{18.5}$

<u>Reasons</u>: high elasticity, high strength, highest plastic strain to failure, best fatigue properties.

<u>Drawback</u>: low T_g (376 °C) **but** good thermal stability in supercooled liquid region, just above T_g (hint – thermoplastic formability).

· eesa

Bulk Metallic Glasses for Space Mechanism Applications

Machining Trials on BMG selected for gear applications

C16 alloy: machined from BMG rods ϕ 6.35 mm

• Rack

• Pinion

• Worm gear

 $Zr_{49}Ti_{1.96}Cu_{37.24}Al_{9.8}Y_2$

Bulk Metallic Glasses for Space Mechanism Applications

Project Review, ESTEC, Noordwijk, NL, 5 October 2022

Conclusions

- This work presents the initial finding from materials testing performed on four BMG alloy compositions selected for potential replacement for traditional space-mechanism metals.
- Based on preliminary results, BMG alloys selected exhibit favourable properties for the mechanisms of interest.
- Processing conditions play significant role in the as-finished performance of each of the alloys. Casting conditions within the arc melter subject to significant operator influence.
- The BMG alloy C16 can be machined into gear shapes with existing tools, following parameter optimisation.
- The BMG alloy C18 is likely suitable for flexural space mechanisms, based on the measured properties.
- The BMG properties compare favourably with traditional alloys stainless steels and Ti-6%Al-4%V.
- Further testing and analysis, under simulated space conditions, is required.

·eesa

Future Work

We propose expanding and extending the scope of the research to a higher TRL, enabling the design and production of working prototype mechanisms in BMGs. This would take the developed technology to a TRL6 demonstrator, at the cusp of industry take-up and commercialisation activities.

The advances foreseen include:

- Larger metallic glass test ingots.
- Extension to investigation of other promising alloy compositions (to include lower boiling point components).
- Moving from material testing to design and development of larger (sub-) systems for space mechanisms.
- Production of near net shapes from the melt (casting, squeeze casting) or supercooled liquid (thermoplastic forming).
- Possibility of BMG inserts (e.g. gear teeth) to a hub of conventional alloy, such as steel, which would be cheaper and tough, albeit with lower wear resistance.
- Mechanism testing under simulated service conditions, including dry (or no) lubrication.
- Technology demonstration
- Plan for industrial implementation for space missions
- Novel mechanisms can be designed for manufacture in bulk metallic glass.

<u>leesa</u>

Talk Outline:

- Project Introduction and Scope
- Mechanism, BMG, Processing Selection
- BMG Material Testing
- Conclusions & Future Work
- Acknowledgements/Questions & Comments

Acknowledgements:

Ms. Dhritica Bora, Ms. Laura Clarke, Mr. Gang Shen, Dr. Ian Reid, School of Mechanical and Materials Engineering, University College Dublin, for contributions to materials testing and data analysis.

Tadg Collins, Graham Beamish, James McGettrick at Reliance Precision Manufacturing Limited, Bandon, Ireland for machining trials on BMGs.

Martin Humphries of SpaceMech, UK, for advice on selection of space mechanisms for this study.

Funding for this work is provided by the European Space Agency under the Technology Development Element program, contract no. 4000127199/19/NL/AR/zk.

· eesa

Bulk Metallic Glasses for Space Mechanism Applications

Thank you for your kind attention

