Contract No 4000128359/19/NL/AR Feeder-Link Demonstration Using Technology Demonstration Payload on Alphasat

Final Presentation

ESTEC / Teams March 22nd, 2023

General Atomics Synopta GmbH Proprietary Information

- Project Overview
- Breadboard Design & Development
- On-Site Test Campaign
- Link Data Analysis
- Summary & Conclusion

Project Overview

- Feeder-Link Demonstration Using Technology Demonstration Payload on Alphasat ("Alpha-Up")
- Duration: October 2019 March 2023
- Objectives
 - Development of an optical feeder-link breadboard
 - Uplink wave front pre-compensation (tip/tilt)
 - CCN: With adaptive optics (AO)
 - Demonstration of optical feeder-link technology between Alphasat TDP1 and ESA OGS (Tenerife)

Alphasat

Breadboard Design & Development

- Background
- Preliminary Measurements
- Design Overview
- Link Budget Analysis
- Factory Testing

Background

• Goal:

- Bi-directional link, with transmission and reception in a common aperture on ground
- Make use of the downlink wavefront measurement, to precompensate the uplink beam

Boundary conditions:

- LCT was originally designed for bi-directional coherent communication with Nd:YAG lasers (Tx & Rx only separated by 30 GHz / 0.1 nm)
- Ground transceiver (adaptive optics) has incoherent wavefront sensor

Background

- To avoid self-blinding due to back-reflection on ground, de-tune the uplink to the extent possible
- LCT features an incoherent Fine Acquisition Sensor (FAS), with tracking & recording capability → make use of it

• Methodology:

- Start with preliminary measurements, to explore the detuning capability
- Decide on the spectral filtering, to avoid self-blinding

Preliminary Measurements

- Bistatic configuration
- Downlink: Cassegrain Adaptive Receive Optics (CARO)
- Uplink: Guider Telescope

Preliminary Measurements

Tuneable Laser, Modulator, Amplifier

\rightarrow Detuning of ~10 nm possible

Alpha-Up Breadboard Design

- Acquisition sensor detects initial blips and corrects telescope pointing
- Uplink beam is injected via point ahead mirror and diplexer
- Both beams are corrected by fine steering mirror & deformable mirror
- Wavefront sensor equipped with ultra-narrow bandpass
- Additional filtering in the Tx path
- Self-test facility allows Tx/Rx alignment

Link Budget Analysis

- Multiple phase-screen propagation model was used to predict scintillation of uplink irradiance at the satellite
 - Perfect phase conjugator on ground
 - 4 atmospheric conditions
 - 3 aperture diameters
- Full pre-comp. is good at correcting boundary-layer turbulence
- At good seeing (r₀ ~ 10 cm), little difference between tip/tilt & full pre-comp.
- For the breadboard, 22 cm aperture diameter were chosen
- Less than 1 W (ex aperture) should be sufficient

Link Budget Analysis

Normalized irradiance (tip/tilt pre-comp.)

Normalized irradiance (full pre-comp.)

Factory Testing

Alpha-Up Breadboard at the Factory

Factory Test Results

• Adaptive Optics performance:

- Static Strehl ratio (far-field irradiance) ~ 88%
- Closed-loop rejection cut-off frequency ~ 200 Hz
- Dynamic Strehl ratio (full pre-comp.) ~ 57% ... 93%
 - Worst case: $r_0 = 5.6$ cm, v = 15 m/s
- Tx/Rx alignment stability $\sim \pm 2 \mu rad$ in 3 hours
- Internal back-reflection: Ok
 - Tested at low power, with spectral filtering removed
 - Extrapolated to the final setup → System can handle tens of Watts

On-Site Test Campaign

- "Live" telemetry: Max. of individual FAS quadrants
- After 2 days: Sum of 4 quadrants @ 1 kHz \rightarrow irradiance

Alpha-Up Breadboard at the OGS

Coudé room

Telescope pointing to Alphasat

On-Site Test Campaign: History

- Nov. 23-27: Setup, alignment
- 92 links scheduled (8-10 per day)
- Nov. 28/29: First light, OPA failure at the 2nd uplink trial, LCT FDIR
- Nov. 30/Dec. 1: OPA replacement, LCT investigations
- Dec. 2: Four uplinks, but weak signal at LCT
- Dec. 3: LCT malfunction, correction of polarization / pilot tone frequency
- Dec. 5: Six successful uplinks (bad seeing)
- Dec. 6-9: ~2 successful links per day, otherwise bad weather

Optical Power Amplifier Replacement

Amplifier specified up to 1070 nm, but operated at ~1075 nm

Coudé Path Transmission ~50%

Adaptive Optics Example (Dec. 5th, 8:00)

"Live" Telemetry Examples (I4S, ~15s delay)

Link Data Analysis

- Uplink Irradiance Examples
- Overview of Analysed Links
- Channel Transmission
 - Mean, Variance
 - Fading Statistics
 - Temporal Spectra
- Analysis Summary

Dec. 5th: ~3W ex telescope, circular PAA scan

AlphaUp 2022-12-05 15:53:00

Dec. 6th (good seeing): Spiral scan, var. power

Overview of Analysed Links

- In total, FAS data from 13 links was analysed
- 6 links: plausible FAS data
- 7 links: Point-ahead angle chosen incorrectly
 - Significant decrease of average power / increase of scintillation index, w.r.t. optimum setting during PAM scan
 - Optimisation with "live" telemetry was difficult
 - Possible reasons for variable PAM optimum:
 - OPA pointing stability, especially after "high-power enable"
 - Residual error in the Tx/Rx alignment procedure / thermal drift

Channel Transmission: Mean, Variance

Date	Start	Link ID	Est. r ₀	T-AOGS	Measurements	Est. Tx power	Colour in figures
Dec. 5 th	14:53	#50	<5 cm	Y	2 measurements	3.0 W	red
Dec. 5 th	15:53	#51	<5 cm	Y/N	4 measurements	3.0 W	red
Dec. 6 th	05:13	#56	7-14 cm	Y/N	5 measurements	2.6 1.4 W	blue
Dec. 7 th	05:13	#65	6-14 cm	Ν	4 measurements	4.2 2.3 W	green
Dec. 7 th	20:33	#73	6-14 cm	N	2 measurements	4.2 1.7 W	green
Dec. 9 th	18:23	#91	6-12 cm	Ν	4 measurements	3.0 W	black

Channel Transmission: Fading Statistics

- Solid lines: Strong boundary layer (Dec. 5th)
- Dashed lines: Weak boundary layer (Dec. 6th-9th)

SVNODTA

Channel Transmission: Temporal Spectra

with T-AOGS support (LCT: coherent tracking)

without T-AOGS support (LCT: tracking on FAS)

Analysis Summary

• Full pre-comp., strong turbulence (Dec. 5th)

- Average power increased (factor 1.4...1.7), scintillation index decreased (factor 2); at 99% confidence: +10 dB
- Weak turbulence (Dec. 6th-9th)
 - Good uplink performance in both modes (as expected)
- Alpha-Up can be used stand-alone (without T-AOGS support) in future campaigns
 - Temporal modulation of the sum signal, caused by TDP1 tracking on the FAS, can be safely neglected
- Down-sampling to 1kHz is a valid operation
 - Relevant frequency range of uplink scintillation: up to 300Hz

Summary & Conclusion

- Optical feeder-link technology has been successfully demonstrated between Alphasat TDP1 and ESA OGS
 - Common 22-cm receive/transmit aperture
 - Tip/tilt pre-compensation
 - Full pre-compensation
- Full pre-compensation, using adaptive optics, allows larger Tx aperture (antenna gain), and can compensate for strong boundary-layer turbulence
 - Tx aperture size is limited by an-isoplanatism / point ahead
 - The system is more sensitive to residual pointing error / drift
- Alpha-Up & Alphasat TDP1 are well suited as testbed for further investigations

Acknowledgements

Thanks to ESA

- for funding the activity
- for providing access to / support for the ESA OGS and its equipment
- Thanks to Tesat-Spacecom GmbH
 - for operating the Alphasat Laser Communication Terminal and the Transportable Adaptive Optics Ground Station
 - for providing the pre-processed sensor data

Thank You!

