

Metallic Glasses For High Performance Mechanism : Applications on Long Term Missions Meeting-02/11/2021

DED Process (LMD)

Direct Energy Deposition

Entreprendre

Prepared by : <u>laurie.despax@optalm.fr</u> <u>alain.toufine@optalm.fr</u>

PT_OAM18_64_31_Final_pres_ed00

OPT'ALM manufactures and repairs mechanical metallic parts

Operational expert team of 6 peoples in :

- > Mechanical / Thermal engineering and Architectures, Material, Process analyses,
- > Environmental test follow's up, Project management.

Industrial means of production : MODULO 400

- Secure ESH environments;
- ➢ 5 continuous axis & 2 nozzles deposition systems, laser power source 2 x 1 kW;
- Atmosphere controlled;
- Deposition area : 650 mm x 500 mm x 500 mm under 5 continuous axis and near 1 m length by using positioning devices;
- > Optical microscope, polishing machine, cutting machine;
- + Post-processing CNC machines possibility.

Process

Materials employed at OPT'ALM

- TA6V Titanium alloy
- Nickel alloys (625, 718) & other Hight Performances
- Stainless steel 316L,
- Martensitic, Austenitic steels (AISI420, 17-4Ph, Maraging 300)
- Cobalt alloy (Stellite 21)

➔ Advantage of DED for manufacturing of metallic glass parts Fast cooling rate allowed & Huge flexibility on design of parts

PT_OAM18_64_31_Final_pres_ed00

- 3D direct fabrications
- Design and function additions

Repairs

Diameter 80 mm & 150 x 200 mm

Diameter 450 mm height 470 mm

Diameter 850 mm

First contact with RHP : Autumn 2018

Work packages where OPT'ALM was involved

\triangleright	WP 1.3	Literature Review of metallic glasses – PROCESSES				
\succ	WP 1.4	Trade off and application selection				
\succ	WP 2.3	Metallic Glass development plan/manufacturing document				
\succ	WP 3.1	Material manufacturing				
\succ	WP 4.1	Production of samples				
\succ	WP 4.3	Lessons learned				
\triangleright	WP 5.1	Local management	•			

For DED, two materials chosen :

- C1 : ZrCu(23-25)Al(3-5)Nb(1-3) → AMZ4
- C3 : FeCrMoBWCMnSi

Objective : define parameters for each powder (C1 + C3)

- Parameters optimized : Laser Power,
 - Deposition speed, Powder flow rate, Increment Z.

Geometries tested :

Validation of parameters :

- > **OPT'ALM : Geometric observation (**length + height + thickness + grip of DED deposition on the substrate)
- > **RHP : SEM and XRD analyses** to validate the best conditions.

- Loop 1 results -

- Good geometrical results obtained with C1 and C3 patches →
- → Cracks appeared on most of the samples with the C3 powder
- ➔ C1 powder very sensitive to the energy input

Improvements : *heat the substrate* (TA6V) to decrease temperature gap and prevent cracks = Increase the grip at the substrate/DED interface PT OAM18 64 31 Final pres ed00

7

Objective : optimisation of deposition parameters

- Less energy input on a deposition volume (reduction of laser power, increase of the powder flow rate and deposition speed)
- > Substrate heated up to 200°C by conduction (ceramic plate)

View of the assembly used to heat the substrate

Test of two different substrates :

- TA6V and Aluminium : C3 powder
- TA6V : C1 powder

- Loop 2 results -

→ TA6V substrate : Better results than 1st loop (less cracks, larger range of useable parameters)

Heating the substrate helps to improve the link between substrate/DED

→ Al substrate with C3 powder : unsuccessful

- Not enough laser power
- Compatibility between substrate/powder

However, microstructure mostly crystalline = need to improve the cooling rate (laser trajectory)

Objective : improvement of the laser trajectory

> Increase the time between each layer = optimize the crystallin structure

		Leve		Lev	Vel Z Level 3		ers
		C1	C3	C1	C3	C1	C3
Taguchi experimental plan	Flow rate (g/min)	4	3	5	4	6.5	5.5
	Deposition speed (mm/min)	200	00	2200		2500	
	Laser power (W)	15	50	180		200	
	Strategy	1			2		3

- Loop 3 results -

→ Better results than for the 2nd loop

- > The trajectory "choice 2" increase time between each layer = higher cooling rate
- → Porosity observed on C3 powder samples
- → OPT'ALM can produce metallic glasses patches (1 or 2 layers) with C1 powder

- Loop 4 development plan -

Objective : evaluate the capacity to produce new shapes (higher and bigger)

➤ Heated substrates : TA6V → C1 powder and 17-4PH → C3 powder

Loop 3 parameters

	Zig zag P1	Ext int P2	Zig zag P2	Zig zag
Powder	C1	C1	C1	C3
Flow rate (g/min)	5	5	5	3
Deposition speed (mm/min)	2200	2500	2500	2500
Laser power (W)	150	200	200	180
Interlayer distance (mm)	0.1	0.1	0.1	0.1
Strategy	1	2	3	3

- Loop 4 results -

- → Good results obtained only with patches (1, 2 or 5 layers)
- → Three trajectories work with the C1 powder
- → For **cubes** and **walls** :
 - Powder granulometries are thinner than the usually used in DED process
 - **Tests** with **bigger granulometry (45-90 μm)** could be done

Objective : evaluate the capacity to produce amorphous patches (C1 powder)

<u>Improvement</u> : *flowability of the C1 powder*

Objective : evaluate the capacity to produce amorphous springs (C1 powder)

→ Good shape and grip but crystalline microstructure

Improvement : increase the cooling rate (deposition strategy)

Powder granulometry

> powder is thinner than required and usually used by OPT'ALM, causing issues on buildings

Optimization : Having a granulometry between [45-90] μm

Geometry

Best realizations with patches (C1 and C3) and cubes (only C3)

Substrates

- TA6V : substrate heating (lower residual stresses, no cracking at interface)
- Aluminium : not successful
- 17-4PH with C3 powder : successful with cube and patches

HDRM application

Successful

Spring application

- Change the deposition trajectory = improve cooling rate to obtain an amorphous microstructure
- Use a tube instead of a rod = improve cooling rate and decrease substrate thermal expansion
- Printing trajectory suggested by OPT'ALM

Warning : post-processing machining parameters of the springs need deeper special studies

DGA

Occitanie

aerospace

Entreprendre⁸

valley

bpifrance

Thank you for your attention

laurie.despax@optalm.fr alain.toufine@optalm.fr

www.optalm.fr

UNION EUROPEENNI

