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1. Introduction

1.1. Purpose
This document is the executive summary for a study carried out under ESTEC contract number
4000104986/11/NL/CBi “Feasibility of using nanotechnology to improve TIR satellite imagers.

The original objectives of the activity were:

l. To assess the current state-of-the-art in space detector equipment miniaturisation (including
nano-technologies e.g. QDIP, QWIP) for thermal infrared applications.
II. To assess the feasibility of using, and potential performance of quantum dot infrared
photodetectors (QDIP) for space applications.
lll.  To identify potential technology developments in order to implement space-borne QDIPs.
V. Establish a roadmap for space application and qualification of QDIPs.

By the time of the mid-term review, it had been established that type-Il superlattice (T2SL) detector
technology held as much, if not more potential as QDIP technology. The remainder of the study was
carried out with a focus on T2SL technology, in addition to the planned QDIP study.

This document presents the key findings and recommendations of this study. For more details, the
reader is referred to the study final report [RD-5]

1.2. Scope
This document is a formal deliverable of the above-mentioned feasibility study. It is a public
document.

1.3. Applicable and reference documents

1.3.1. Applicable documents

[AD-1] ESA statement of work “Feasibility of using nanotechnology to improve TIR satellite
imagers”. Appendix to AO/1-6813/11/NL/AF. Document reference TEC-MXX/2011/158. Issue
1, revision 1. 24/05/2011

1.3.2. Reference documents
[RD-1] TIR technology review report (D1) — ESA contract 4000104986/11/NL/CBi “Feasibility of using
nanotechnology to improve TIR satellite imagers”.

[RD-2] TIR FPA requirements analysis report (D2) — ESA contract 4000104986/11/NL/Cbi “Feasibility
of using nanotechnology to improve TIR satellite imagers”.

[RD-3] QDIP and T2SL performance assessment report (D3) — ESA contract 4000104986/11/NL/Cbi
“Feasibility of using nanotechnology to improve TIR satellite imagers”.

[RD-4] TIR FPA roadmap report (D4) — ESA contract 4000104986/11/NL/Cbi “Feasibility of using
nanotechnology to improve TIR satellite imagers”.

[RD-5] Final report — ESA contract 4000104986/11/NL/Cbi “Feasibility of using nanotechnology to
improve TIR satellite imagers”.
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1.4. Acronyms

BLIP Background Limited Performance
DWELL Dots in a well

FPA Focal Plane Array

FPN Fixed Pattern Noise

IR Infrared

LWIR Long Wave Infrared

MPC Metal Photonic Crystal

MWIR Medium Wave Infrared

Qb Quantum Dot

QDIP Quantum Dot Infrared Photodetector
QE Quantum Efficiency

Qw Quantun Well

QWIP Quantum Well Infrared Photodetector
ROIC Readout Integrated Circuit

SLS Strained Layer Superlattice

SWIR Short Wave Infrared

T2SL Type-Il superlattice

TIR Thermal Infrared

VLWIR Very Long Wave Infrared
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2. Summary of Quantum Dot Infrared Photodetector technology

2.1. Current performance and future potential

A thorough review of QDIP FPA performance has been conducted, and a summary of state-of-the-art
performance figures is presented in Table 1. QDIP FPAs show modest performance at present which
does not exceed other TIR technologies such as QWIPs and HgCdTe FPAs. It has been predicted that
QDIP FPAs have the potential to exceed QWIP performance and rival HgCdTe performance [1, 2] if
significant QD growth challenges can be overcome. These challenges include growing QDIPs with QDs
which are uniform in size and shape and with optimised doping. These growth improvements would
increase the carrier lifetime and could lead to improved device performance as a result. However, it
should be stressed that the projected performance figures quoted in these papers can only be used
as a guide until the lifetime parameters used are confirmed experimentally.

Looking at array size, we note that 2048x2048 InSb and HgCdTe arrays exist [3, 4] and HgCdTe array
sizes up to 4096x4096 (16 megapixels) are under development [4]. These arrays are fabricated using
processes similar to those that would be used for large QDIP FPAs so there will be no fundamental
barriers to expanding QDIP array size to several megapixels. Importantly, QDIPs benefit from mature
I1I-V growth with established GaAs substrates currently available up to 8 inches in diameter [5]. The
growth of large-area wafers for megapixel FPAs will not be problematic.

An interesting feature of QDIP arrays is the possibility of exploiting the bias tuneability of the spectral
response, which would present an advantage over HgCdTe detectors and QWIPs. It has been possible
to use multi band voltage tuneable QDIPs combined with a post processing algorithm for
multispectral detection and spectroscopy [6, 7]. Figure 1 has been reproduced from reference [7] and
shows a reasonable reconstruction of a polyethylene sheet throughout the MWIR and LWIR ranges
indicating spectral features as narrow as 0.3um. If this system can be integrated with an FPA, two
dimensional chemical classification and spectroscopy should be possible without optical filters. If a
greater control over QDIP growth can be attained it will be possible to improve the resolution and
wavelength range of this system.
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Figure 1. (Left) Synthesised spectral filters generated from the intrinsic spectral responses of a multi band QDIP
combined with a post processing algorithm. (Right) Reconstruction of a polyethylene sheet spectrum (black solid line)
using these filters. Reproduced from reference [7].
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Table 1. Comparison of key distinguishing features and performance metrics for QDIP FPAs found in the general scientific literature

Paper and Group Structure details Array dimensions and | Temp.(K) Wavelength D* (cmHzm/W) NETD (mK) NEP
operability range (W.HZ*?)
Krishna et al., 2005. [8] |15 period InAs-InGaAs-GaAs DWELL structure 320x256 pixels 78K MWIR 7.1x10" <100mK f/1 4.2x10™*
University of New Mexico, |GaAs substrate 30um pitch LWIR 2.6x10" <100mK f/2 1.1x10°3
USA >99% operability (single pixel)
Gunapala et al., 2007. [9] |30 period InAs-Ing 1,Ga, gsAs- GaAs DWELL 640x512 pixels 60K LWIR ~1x10" 40mK 2.3x10"
Jet Propulsion Laboratory, |[structure 25um pitch 8.1um peak /2 optics
USA GaAs substrate 23x23um devices t=20ms
>99%operability
Tsao et al., 2007. [10] 25 period InAs-InGaAs-AlinAs DWELL structure 320x256 pixels 120-200K | MWIR <1x10" single 344mK at 120K [2.5x10°
Northwestern University, (InP substrate 30um pitch Peak at 4um pixel at 120K at >- | f/2 optics
USA 25x25um devices 2V t<30ms
99% operability
Vaillancourt et al., 2009. 10 period InAs QD-Ing ,Gag sAs barrier structure 320x256 pixels 67K MWIR 1.8x10° single 172mK 1.6x10™"
[11] followed by 10 period InAs QD-GaAs barrier 30um pitch LWIR pixel /2.2
UMass + QmagiQ, USA structure. GaAs substrate 28x28um devices t=16.7ms
Nagashima et al., 2009 [12] (10 period InAs QD-Alg 15Gag gsAs barrier structure | 256x256 pixels 80K LWIR 87mK t=8ms,
Ministry of Defence, Japan |GaAs substrate 40pm pitch 10.3um peak /2.5 optics
+ Fujitsu, Japan >99.5% operability
Andrews et al., 2011 [13] |30 period InAs-Ing 15Gag gsAs-GaAs-Aly ;Gag oAs 320x256 pixels 60K LWIR 106mK f/2 optics
Naval Research Laboratory, [intermediate double DWELL structure, GaAs 99.9% operability
USA + University of New substrate
Mexico + QmagiQ, USA
Lu et al., 2008 [14] 10 period InAs QD-Ing,Gay gAs barrier structure | 320x256 pixels LWIR 2.3x10" 1.2x10%
UMass + Raytheon, USA followed by 10 period InAs QD-GaAs barrier 30um pitch Single pixel
structure. GaAs substrate 27x27um devices
>90% operability
Tang et al., 2006 [15] 30 period InAs QD- GaAs barrier structure 256x256 pixels 80K MWIR 1.5x10" Not given
Chung-Shan Institute of GaAs substrate >98% operability LWIR Single pixel
Science and Technology,
Taiwan
Barve et al., 2011 [16] 30 period InAs-Ing 15Gag gsAs- Alg gsGag o;As DWELL | 320x256 pixels 80K 6.1um peak ~4x10" 40mK f/2 optics
University of New Mexico, [structure Single pixel
USA GaAs substrate
Gunapala et al., 2011. [17] |Sub-ML InAs QD, GaAs QWs and AlGaAs barriers. | 1024x1024 pixels 50K 8.5um peak 22mK at 50K
Jet Propulsion Laboratory, |GaAs substrate 19.5um pitch 60K 28mK at 60K
USA 70K 33mK at 70K
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3. Summary of Type-II superlattice detector technology

3.1. Current performance and future potential
The historical and recent advances of single-pixel T2SL detectors and FPAs operating in the MWIR,
LWIR and VLWIR windows have been reviewed. In Table 3 we present a summary of recent
performance data for T2SL arrays (see RD-5 for full information).

Table 2 summarises the state-of-the-art performance figures of T2SL single-pixel and FPA detectors.

Table 2. Present state-of-the-art performance figures of T2SL detectors (at 77-80K).

Detector Type Window | R,A or R A (Q cm’) D (Jones)
MWIR | >3x107 [18] 8x10" [18]
LWIR ~1x10" [19] = NIP >1x10" [21]
Single-pixel devices 1.4x10" [20] - CBIRD
VLWIR | 0.55[22] —NIP 4.5x10" [21]
837 [23][68] — InAs/GalnSbN T2SL
MWIR | 2.3x10” [24] >1x10" [25, 26]
Focal plane array T =
LWIR > 1x10* [27] ~1x10"* [28, 29]

Large-format T2SL FPAs (up to 1024x1024 pixels) capable of operating on sub-millisecond time scales
have been achieved. Further increase in array dimensions is presently limited by the commercial
availability of larger-sized GaSb substrates. This can be circumvented by lattice mismatched epitaxial
growth of T2SL on GaAs or even Si substrates, although the large lattice mismatch between T2SL and
GaAs or Si makes eliminating dislocations in the T2SL active region challenging. T2SL FPAs are now
commercially available (AIM-Infrarot), and several groups have developed nearly commercial-ready
prototypes. The Fraunhofer IAF, Jet Propulsion Laboratory and Northwestern University groups have
consistently demonstrated state-of-the-art T2SL FPA performance through high-quality fabrication
processes and innovative device designs.

The electrical performance of liquid-N, cooled T2SL detectors is approaching that of HgCdTe,
especially at LWIR wavelengths. Although the T2SL material system has the potential for realising
high-operating-temperature (HOT) MWIR T2SL detectors, they are more difficult to achieve due to
the effect of defects on the leakage current and minority carrier lifetime. Optimising the material
quality for HOT applications should typically enhance the device performance at low temperatures.
At present, the lack of progress in improving bulk T2SL material quality raises concern about the
prospects for continued advancement in T2SL detector performance. Much of the advancement so
far can be attributed to design workarounds, where the goal is to block the dark current using barrier
structures while allowing the flow of photocurrent, rather than eliminating defect-originated leakage
currents from the bulk T2SL material itself.
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Table 3. Recent results for T2SL arrays available from the open literature.

Date, Affiliation, Device T (K) Bias A QE R/ (Q Jyarc (Afem?) D (Jones) NETD (mK) | NEP Array Dimensions and
Reference Structure (mV) (um) cm?) (W.HZ*?) Operability
Jul. 2012 - InAs/GaSh 78, 65 128 8.8 | 54% (max) | N/A 2.2e-4 @ 78K | 1.3x10" @ 18.6 @ 78K | 2.1x10™*° - 320%256 pixels
Jet Propulsion T2SL (50%) | @ 5.7 um 78K - Pixel size: 27um
Laboratory - n-type 1.1e-4 @ 65K 12 @ 65K 1.7x10™° - Pitch: 30pm
[30] CBIRD 1.6x10" @ - Fill factor: 81%
Rafol-JQE structure. 65K - QE operability: 97%
- Int. time: 0.37ms
- 298K background, f/2 optics
May 2012 - InAs/GaSb 77 -25 ~9.5 | 50% (mean) | N/A ~2e-4 N/A 30 - 1024x1024 pixels
QmagiQ (US) T2SL - Pixel size: 16um
[31] - Pitch: 18um
Sundaram-SPIE - Pixel operability: 96%
- /4 optics
May 2012 - InAs/GaSh 77 50 10 R:2A/W N/A <le-5 N/A 26 @ 80K - 320%x256 pixels
Jet Propulsion T2SL - Pixel operability: 98%
Laboratory - n-type - 300K background
[32] CBIRD
Soibel-SPIE structure.
Jan. & Feb. 2012 - InAs/GaSh 68,81 | 20 (81K) 7.9 81% (w/o 76 @ 81K 1.09e-3 (81K) | N/A 27 @ 81K - 1024x1024 pixels
Northwestern T2SL 35 (68K) AR coating, | 309 @ 68K | 2.78e-4 (68K) - Pitch: 18um
University - M-structure 81K) 19 @ 68K - Fill factor: 71.3%
[33, 34] - QE operability: 95.8% (81K),
Haddadi-JQE, SPIE 97.4% (68K)
- Weak low-f noise.
- Frame rate: 15Hz
- Dynamic range: 37dB (81K),
39dB (68K)
- Int. time: 0.13ms
- 300K background, f/2 optics
- ICP etched, SiO, passivated.
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Several preliminary studies have concluded that the T2SL material appears to have good radiation tolerance,
making this material attractive for space applications. The radiation tests have so far been performed on single-
pixel T2SL devices. No studies have yet been reported on the effects of radiation on the performance and
uniformity of T2SL FPAs. Very little is known about the degradation of device structure and electrical properties
with exposure to ionising radiation over a prolonged period of time.

In short, the inherent flexibility, uniformity, stability, and robustness of the T2SL material system are its major
advantages over HgCdTe. Rapid advances have led to the demonstration of 1-megapixel FPA cameras from single-
pixel devices in just over a decade. This progress has been significantly more rapid than that for QDIP
development. Results to date indicate a promising potential for T2SL detectors to operate in space environments,
especially in the LWIR and VLWIR windows.

4. Comparison of TIR detector technologies

In Table 4 we present a summary of indicative current state-of-the-art performance figures for infrared arrays
based on different technologies. Among the alternative detector technologies, the InAs/GaSb (and related alloy)
type-Il superlattice has emerged as the most promising material system to achieve large-format FPAs with
performance potentially surpassing that of HgCdTe, especially at extended wavelengths in the VLWIR region.

4.1. Cost
HgCdTe photodetectors are grown on CdZnTe substrates, which are much more expensive than the GaSb
substrates typically used for T2SL. GaSb substrates are also available in larger sizes than CdZnTe, making it
possible to realise lower cost megapixel T2SL FPAs. GaSb wafers with diameters up to 6” (152 mm) are
commercially available, while the maximum size of CdZnTe substrate is 70 mmx70 mm.

Large-format FPAs are necessary to provide high resolution imaging over a large field of view. To produce large-
format FPAs at the lowest cost, HgCdTe infrared detectors have been grown on alternative substrates such as Si
and sapphire (Al,03). In 2000, the world’s first 2048x2048 HgCdTe FPA, for use in astronomical applications, was
grown on a 3” sapphire substrate [35]. Around the same time, Raytheon demonstrated a 640x480 HgCdTe FPA on
a 4" Si substrate [36]. The biggest advantage of HgCdTe/Si is that it resolves the thermal mismatch between the
substrate and the Si read-out integrated circuit (ROIC). However, the 19% lattice mismatch between HgCdTe and
Si results in a threading dislocation density that is still at least an order of magnitude higher than that in HgCdTe
grown on CdZnTe. In recent developments, Selex Galileo is now able to produce state-of-the-art arrays for both
MWIR and LWIR wavebands using MCT growth on a GaAs substrate.

4.2, Uniformity
Uniformity still remains an issue with HgCdTe. Compositional non-uniformity, in particular, results in a variation of
cut-off wavelengths and hence non-uniform detector response between individual pixels. Excellent temperature
stability is required to minimise the bandgap variation between the centre and edge of a wafer for HgCdTe. In
contrast, T2SL has a weaker bandgap dependence on composition, and hence less stringent requirements on
growth temperature stability. Given the high performance specifications required for space applications, such
pixel non-uniformity will lead to poorer wafer yields for HgCdTe.

It is obvious that achieving a highly uniform, large-area ternary substrate suitable for lattice matched growth,
based on the CdggesZngosTe alloy is still a difficult challenge. T2SL structures, on the other hand, can be grown
precisely lattice matched to GaSb substrates, since the two constituent layers are designed to be strain balanced.
In the LWIR and VLWIR regions, HgCdTe FPAs are limited to small format due to the above mentioned uniformity
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Table 4. Comparison of TIR technologies

Technology Array size Pitch [ Operating Noise Integration Optics Wavelength Dark Current | Quantum
(um) Temp. (K) Performance Time Efficiency

VLWIR HgCdTe | 640x512 24 70 Mode NETD of 20 ps f/2 7.5-14.8um Not quoted 61% median

35mK
MWIR HgCdTe | 2048x2048 15 78 23.1mK Not quoted Not 3.5-6.0um <10° A/cm? 60%
[37] quoted
Qwip 1024x1024 30 68 MWIR NETD: Not quoted f/2 MWIR: 4.4- Not quoted 4.6%
[38] 27mK 5.1um

LWIR NETD: LWIR: 7.8-

40mK 8.8um
VLWIR QWIP | 640x512 25 35 NETD of 48mK 1ms f/2 10.5-16um Not quoted 9.5%
[39] Peak at 13.5

um
T2 SL 1024x1024 18 81 NETD of 23.6 0.13ms f/4 11pum cut-off 3.3x10™ A/cm2 45% at 10
[34] mK pum
Micro 1024x768 17 293 NETD of 40mK ~10ms f/1 Optimised for Not quoted Not quoted
Bolometer 8-14um
[40]
QDIP 1024x1024 19.5 70 NETD of 33mK Not quoted /2 8.5um peak Not quoted Not quoted
InSb 2048x2048 25 30 Read noise of Not 0.6-5.2um 0.01 e-/pixel/s | 90%
Not quoted

[3] de- guoted
Extrinsic Si 1024x1024 25 7.1 Read noise of Not quoted Not 5-26um 0.1 e-/pixel/s | 50-70%
(BIB) 10e- quoted 30% above
[41] 24um
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issues. Additionally, for VLWIR operation at about 40 K, HgCdTe FPAs are subject to additional stress
due to mismatch of the thermal expansion coefficient between the CdZnTe substrate and the ROIC
chip. The challenges associated with extending large-format HgCdTe FPAs on CdZnTe substrate into
the VLWIR region have driven efforts to develop alternative infrared materials, such as the T2SL, that
have the potential for low-background VLWIR operation in space.

4.3. Dark current

It has been predicted that HgCdTe ideal diodes with a cut-off wavelength of 5 um give nearly two
orders of magnitude reduction of dark current compared with InSb [42]. However, a theoretical
prediction by Klipstein et al. [43], concluded that for ideal diodes at a given bandgap, HgCdTe and
InAsSb have no fundamental advantages over each other. The magnitude of the dark currents is
mainly dictated by the material quality and uniformity. In practice, InAs/Sb materials, and related
T2SL material combinations, have relatively weaker dependence of bandgap on composition and a
high degree of structural uniformity, which give them a competitive edge over HgCdTe.

The zero-bias differential resistance-area product, RyA, of various forms of HgCdTe, T2SL and InSb
single-pixel devices as a function of the cut-off wavelength at 77K, has been compared, along with
diffusion-limited theoretical prediction [43-45]. It is evident that the dark currents of T2SL devices
approach those of HgCdTe, especially at longer wavelengths (> 8 um). Considering the relatively short
history of T2SL infrared detectors development, these results suggest that the performance of T2SL
detectors may potentially exceed that of HgCdTe in future as a result of the reduction in dark
current.

Currently, the dark current performance in T2SL detectors is primarily limited by technological issues.
Although some studies have reported diffusion-limited dark currents at temperatures from room
temperature down to 77 K [21, 46, 47], the mesa sidewalls are still a major contributor to excess
currents especially at low temperatures, which affect the pixel uniformity and operability. Various
potential passivation techniques have been studied for T2SL detectors [47-49], but the improvement
demonstrated was often marginal and inconsistent, and there is not as yet an optimal passivation
method that works irrespective of the T2SL structure and cut-off wavelength. An alternative
workaround to eliminate surface leakage is to eliminate or reduce the exposed sidewall surface itself.
The device structure can be designed with the bandgap graded to a larger value in the region with
exposed sidewalls, to reduce the leakage current due to surface states [50], although this adds some
complexity and therefore ultimately cost to the growth process.

4.4. Detectivity
The Johnson-noise limited detectivity, D*, for a detector is a function of the Ry)A and the quantum
efficiency. The Johnson-noise limited D" of T2SL is predicted to be up to an order of magnitude higher
than that of HgCdTe [51]. However, the experimental D" values of T2SL detectors reported so far are,
at best, about an order of magnitude lower than the theoretically predicted and experimentally
measured D* for HgCdTe detectors. There is at least a two orders of magnitude room for
improvement for the D" of T2SL detectors at 77 K.

As the current detectivity performance of HgCdTe detectors has approached the theoretical
prediction, the HgCdTe FPA development efforts are now primarily focused on improving the
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uniformity and operability of the pixel array. For T2SL detectors, the detectivity performance has
considerable room for improvement, and appears to be limited by two factors, namely high
background carrier concentration and short minority carrier lifetimes [52]. The typical background
concentration in T2SL LWIR devices is of the order of mid 10" to low 10" cm?™. The lowest
background concentration reported to date is 5x10' cm™ [53]. The T2SL material is known to suffer
from short minority carrier lifetimes, which are typically in the tens of nanoseconds range. Recently,
a breakthrough in minority carrier lifetime of close to half a microsecond has been reported for LWIR
InAs/InAsg.7,Sbg s T2SL [54]. This attests to the importance of continuous efforts in the optimisation
of epitaxial growth to eliminate defects, especially at the superlattice interfaces.

5. Feasibility of using QDIP or T2SL arrays for satellite-based TIR focal

plane arrays
An analysis of space instrument types which could benefit from QDIP or T2SL technology was
presented. The sensitivity of these arrays is such that they find key utility for Earth observation or
planetary science missions. They do not have the required sensitivity for general astronomy missions
or exoplanet missions.

Using QDIP or T2SL arrays for scanning imaging multispectral radiometers as a direct replacement for
existing HgCdTe devices could lead to a small number of advantages including greater FPA uniformity
and stability as well as a longer system lifetime. In addition to this, there is potential for higher
temperature operation if the growth and material challenges mentioned above can be overcome.

Pushbroom imaging multispectral radiometers would also benefit from QDIP or T2SL technology.
Both technologies have the sensitivity to be used for these instruments, particularly T2SL, with NEPs
in the region of 2x10™® WHz? being reported. There is potential for a novel compact non scanning
hyperspectral imager if a QDIP FPA can be biased at different voltages, therefore exploiting QDIP’s
bias absorption edge tuneability. This could lead to a very compact multi-spectral pushbroom
instrument. Further improvements in spectral resolution could be achieved using strip filters or a
post processing algorithm.

The intrinsically narrow spectral response of QDIP FPA’s at any single bias makes them unsuitable for
Fourier transform spectrometers, scanning grating spectrometers and earth radiation budget
radiometers.

Little space qualification work has been reported for QDIPs or T2SL. However due to extensive
similarities with QWIPs - which are to be used in the forthcoming Landsat Data Continuity Mission —
it is highly likely that QDIP FPAs will withstand the space environment and launch conditions.

T2SL devices are expected to have a certain tolerance to radiation as they contain Sh, which has a
large atomic mass making Sb-based semiconductors less susceptible to displacement damage [55]. In
the study by Weaver and Aifer from the Naval Research Laboratory (NRL), 88-period 13ML
GaSb/0.5ML InSb/13ML InAs p- and n-type T2SL structures were irradiated with 1-MeV protons at
room temperature [55]. It was found that the T2SL devices showed little degradation in QE, leakage
current and activation energy at proton fluences below 5x10™ 1-MeV H*/cm? (equivalent to a dose of
~1 Mrad(Si)). Above 1 Mrad(Si), degradation occurred in the form of reduced minority carrier lifetime
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and increased surface leakage currents. Using 150 krad(Si) as the typical benchmark for radiation
hardness, it can be concluded that the T2SL devices exhibit high radiation tolerance, making them
attractive for space applications.

6. Technology roadmap

This section details a roadmap strategy for the realisation of full infrared camera systems based on
focal plane detector arrays (FPA), for space applications. It considers FPAs based on both quantum
dot infrared photodetectors (QDIP) and type two superlattices (T2SL). This roadmapping exercise is
subtly different to other similar activities in other technology applications, in that the timeline for a
viable technology normally sees a decrease in technology readiness level (TRL) as time extends out to
the end goal, with increasingly uncertain or unexplored aspects to a full technology. However, both
QDIP and T2SL technology are similar in interfacing and engineering to standard QWIP technology,
where investment has been significant over the last 20 years, and also inherits substantial
engineering benefit from existing IR detector programmes. The later technology incorporation is
considered to be at a much greater TRL than the more immature fundamental device optimisation
stages. These remain realistically at the low TRL 1-3 mark for fundamental materials aspects of
research, even though reports of full FPA detectors are in the open literature. These are early
demonstrators and significant optimisation is still possible.

For detectors based on these technologies to be realised and to be competitive, the potential for
significant improvement in the FPA performance needs to be in evidence to justify diluting the
limited production capability within the EU to invest and commit. Due to the evolutionary nature (a
detector material change, but not a fundamental paradigm change in detection technique or in
platform and supporting electronics), this is feasible for capabilities that have already successfully
handled QWIP detectors. As such this is a relatively low risk engineering challenge so long as
sufficient progress has been made with individual devices.

There are no ‘showstoppers’ to either of these technologies maturing into a viable IR detector
technology, but considerable refinement may be necessary, particularly to individual layer and device
design.

6.1. High-level pictorial roadmaps

Presented here (Figure 2, Figure 3) are simple high level roadmaps that are based on the standard
ESA technology readiness level (TRL) status, coupled with a broad non-specific timeline. They are
subdivided for convenience into separate areas of engineering and/or related physics challenges that
could be addressed by leading research groupings. These can be considered as effective
workpackages of a larger project to bring QDIP and T2SL technology to full camera status. The
majority of consideration is based around a limited detector programme of say 50 detector arrays
over a three year period, with associated basic research underpinning device progression.

An explanation of the “traffic light” indicators follows:

indicates that considerable work is needed if performance limits are to be reached within the
section, and broadly this corresponds to TRL 1-3 in maturity. It should be stated that this does not
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mean that rapid progress could not be made with targeted investment; however it may be

considered to be a stumbling block, with no certainty of progress. Targeted work is needed.

AMBER indicates a higher readiness level (TRL4-6), very often through a large body of related work
(eg. modelling for quantum dot laser structures and high efficiency LEDs), which gives considerable

confidence that challenges can be overcome and progress can be made on a rapid timescale when

necessary.

GREEN indicates a high TRL (7+), and indicates where there is minimal significant work necessary
beyond what exists commercially, or exists as part of an existing national detector programmes.

There are no foreseen barriers to delivery of a complete camera system from these GREEN

highlighted activities.
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Figure 2. High level pictorial roadmap for QDIP detector array bespoke production (Limited run — 50 detector programme level). The timeline advances from left to right and has been left intentionally
undefined as it is, to an extent, dependent on the intensity of future funding. A conservative estimate is that bespoke production (end of timeline), for space based application, is feasible within a 2-4 year
time-frame.
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Figure 3. High level pictorial roadmap for T2SL detector array bespoke production (Limited run — 50 detector programme level). The timeline advances from left to right and has been left intentionally

undefined as it is, to an extent, dependent on the intensity of future funding. A conservative estimate is that bespoke production (end of timeline), for space based application, is feasible within a 2-4 year
time-frame.
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6.2. Roadmapping summary
Compiled below are the main suggestions for focused study to realise high performance QDIP and
T2SL detector arrays. These can be used in conjunction with the high level pictorial maps detailed in
Figure 2 and Figure 3.

QDIPs

3.1 | Material ‘@®®

1. Defect reduction research and understanding of non-radiative centres within the
holding matrix, in particular time resolved luminescence measurements to study
carrier relaxation mechanisms.

2. Demonstration of saturated dot layers where the recapture length is less than
the total device active layer thickness.

3. Heterostructure engineering for resonant carrier escape mechanisms.

4. Possible investigation into other growth modes that are better suited to
uniformity

3.2 | Growth Transition ®O®
1. Assessment of requirement for commercial quantity.

3.3 | Single Element Devices @9.@

1. Novel geometries to enhance in plane absorption, similar to grating structures in
QWIPs.

2. Integration and investigation of Novel Plasmonic and Photonic Bandgap
enhancement to absorption mechanisms (including the interaction of IR
metamaterials with detector structures).

3. Comprehensive examination of dark current mechanisms, origins and physical
control.

3.4 | Theoretical Study and Device Modelling ®9®

1. Tailored modelling for strain compensation to increase dot absorption layers,
specifically for IR absorption.

2. Specific modelling for plasmonic or metamaterial enhancement to detection
process

3.5 | Focal Plane Arrays ®9®
1. Cross talk studies of closely spaced (down to 15um pitch) test arrays.
2. Quantitative study of Pixel Uniformity for large arrays (=1024x768)

3.6 | Space Qualification ®@®
1. Confirming radiation hardness of these devices.

2. Initiate vibration study — expected to be the same as QWIPs

3.7 | Hybridisation ®®"
No Significant Issues with current COTS technology

3.8 Camera Electronics and Platform Housing ®00:

No Significant Issues with current COTS technology
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T2SLs

3.1 | Material 9®®

1. The effect of dislocations on pixel operability and dark current

2. Defect reduction research and understanding of non-radiative centres, in
particular time resolved luminescence measurements to study minority carrier
relaxation mechanisms.

3. New strain relieving studies using IMF layers

4. New material combinations to reduce surface conduction states

3.2 | Growth Transition ®9®
1. Assessment of requirement for commercial quantity.

3.3 | Single Element Devices @9.@

1. Reliable device passivation to eliminate/minimise surface leakage currents (dark
currents)

2. Develop novel mesa structures to minimise dark current/ sidewall leakage

3. Investigate and progress novel gated structures to minimise dark current/
sidewall leakage

4. Systematic study of 1/f noise in T2SL diodes

3.4 | Theoretical Study and Device Modelling ®9.®

1. Use band structure engineering developed for complex cascade laser designs to
gain better predictive control of subband energies for complex T2 designs (such
as W and M structures)

3.5 | Focal Plane Arrays ®9®
1. Growth onto large format GaAs material to enable IlI-V foundry processing to be
utilised routinely

3.6 | Space Qualification ‘®®®
1. Confirming radiation hardness of these devices.
2. Initiate vibration study — expected to be the same as QWIPs

3.7 | Hybridisation ®®%F
No Significant Issues with current COTS technology

3.8 Camera Electronics and Platform Housing ®00:

No Significant Issues with current COTS technology
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