

# Feasibility of using nanotechnology to improve TIR satellite imagers

Final review  
ESTEC 23<sup>rd</sup> November 2012

## Study Overview

# Objectives of activity

The objectives of this study are:

1. To assess the current state-of-the-art in space detector equipment miniaturisation (including nano-technologies e.g. QDIP, QWIP) for thermal infrared applications.
2. To assess the feasibility of using, and potential performance of quantum dot infrared photodetectors for space applications.
3. To identify potential technology developments in order to implement space-borne QDIPs.
4. Establish a roadmap for space application and qualification of QDIPs.

# Task 1 – Literature review

- Review of TIR detector technologies employed or proposed for imaging & spectroscopy in space
  - Technology
  - Performance
  - Processes
  - Applications
  - ROM costs
  - Availability
  - Manufacturers/developers
  - Technology comparison

# Task 2 – Requirements analysis

- Review & analysis of detection & focal plane requirements necessary for a space instrument measuring in the TIR
  - Current & future mission types
  - Spectral & spatial resolution
  - SNR
  - Radiometric performance
  - Spacecraft & instrument resources
  - Qualification & reliability

# Mid-term review

- Passed, with revisions of D1 and D2 accepted
- T<sub>2</sub>SL identified as promising technology
- Agreement to include review of T<sub>2</sub>SL as well as QDIP technology in tasks 3 and 4 at zero cost to agency
- CCN issued for zero-cost extension (staff availability issues)

# Task 3 – Performance assessment

- Investigation of QDIP state-of-the-art performance
- Feasibility of using QDIP technology for TIR space instruments against requirements derived in D<sub>2</sub>
- Performance comparison between QDIPs and other technologies
- TRL assessment
- Identification of research groups, organisations & industrial entities involved in QDIP development
- *All of the above was also implemented for T<sub>2</sub>SL technology and incorporated in D<sub>3</sub>*

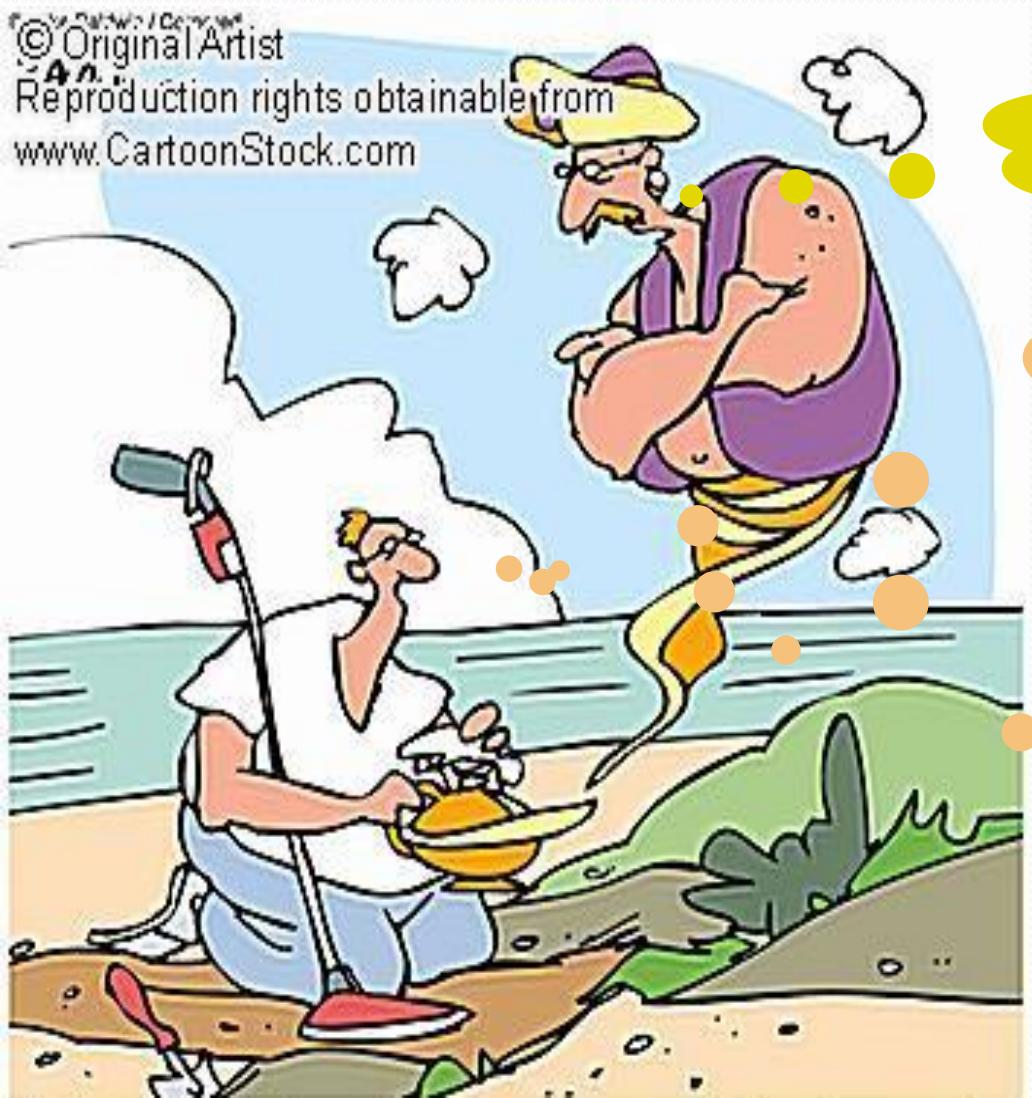
# Task 4 – Roadmap establishment

- QDIP roadmap from current status to implementation as a focal plane in a space instrument (TRL 8)
  - Application & potential gains – covered in D3
  - FPA requirements, architectures, resources
  - Technology development areas, critical elements, technology status & alternatives - D3 and D4
  - Space qualification issues – D3 and D4
  - Development strategy, schedule, investment requirements, risk assessment
  - Commercial evaluation
- *All of the above was also implemented for T2SL technology and incorporated in D4*

# Final review

- Today!
- D5 – Final report in preparation – required to formally close review
- Executive summary to be issued post-review

# Feasibility of using nanotechnology to improve TIR satellite imagers


Final review

ESTEC 23<sup>rd</sup> November 2012

# Outline

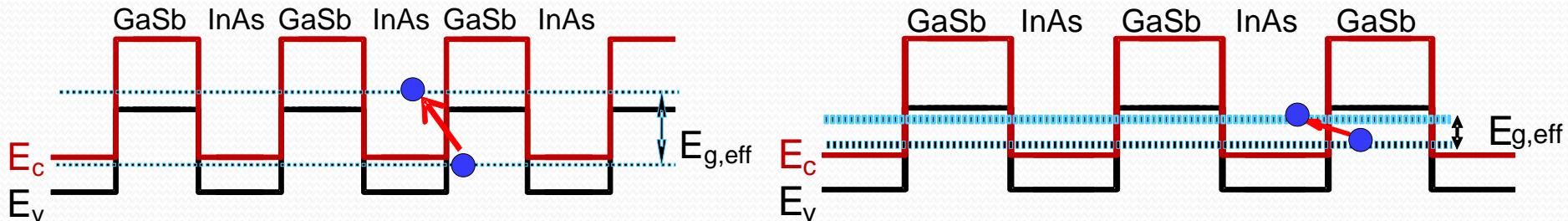
- Introduction of Type II Superlattice (T<sub>2</sub>SL)
- Dark current and detectivity
- High operating temperature (HOT)
- Device configurations
- FPA review
- Space applications
- Conclusions

# 3 wishes for IR FPA



© Original Artist

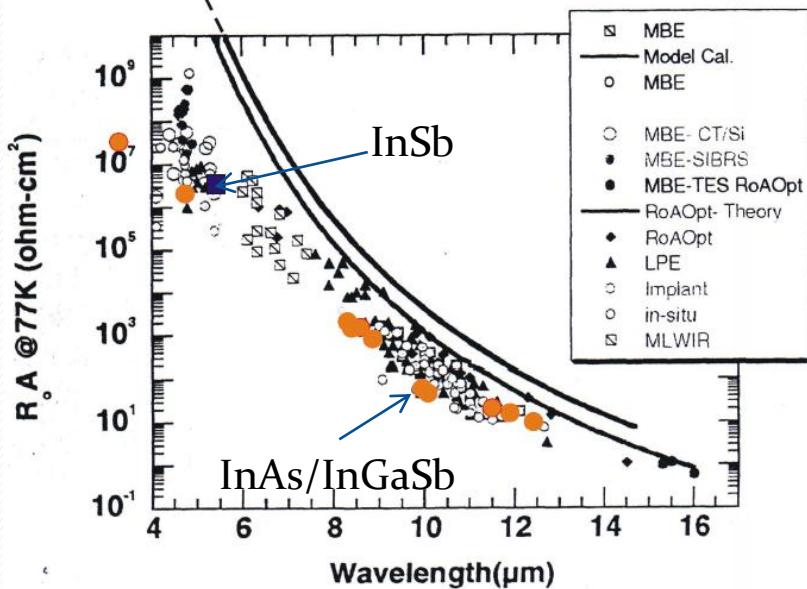
Reproduction rights obtainable from  
www.CartoonStock.com


3 wishes?

HIGH TEMPERATURE  
OPERATION

SMALL PIXEL, HIGH  
UNIFORMITY LARGE ARRAY

LOW COST


# Type II superlattice



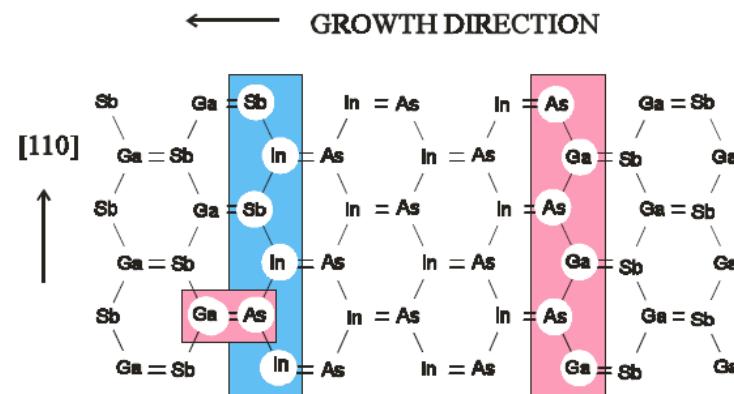
- High effective mass to reduce Auger recombination, leading to lower dark current and higher operating temperature
- Effective bandgap controlled by layer thicknesses, not alloy composition leading to high wafer uniformity
- Fabrication using III-V tools, so that small pixel for high format FPA can be achieved
- Availability of 4" (6" being developed) leads to lower cost.
- Growth of GaAs/Si could further lower the cost

| Material     | Si*         | GaAs* | GaSb | InAs | InSb | CdTe      | CdZnTe   |
|--------------|-------------|-------|------|------|------|-----------|----------|
| Size         | 2" diameter |       |      |      |      | 10mm×10mm |          |
| Doping       | undoped     |       |      |      |      |           | Zn-doped |
| Orientation  | (100)       |       |      |      |      | (110)     |          |
| Price (US\$) | 39.95       | 59    | 450  | 475  | 495  | 399       | 459      |

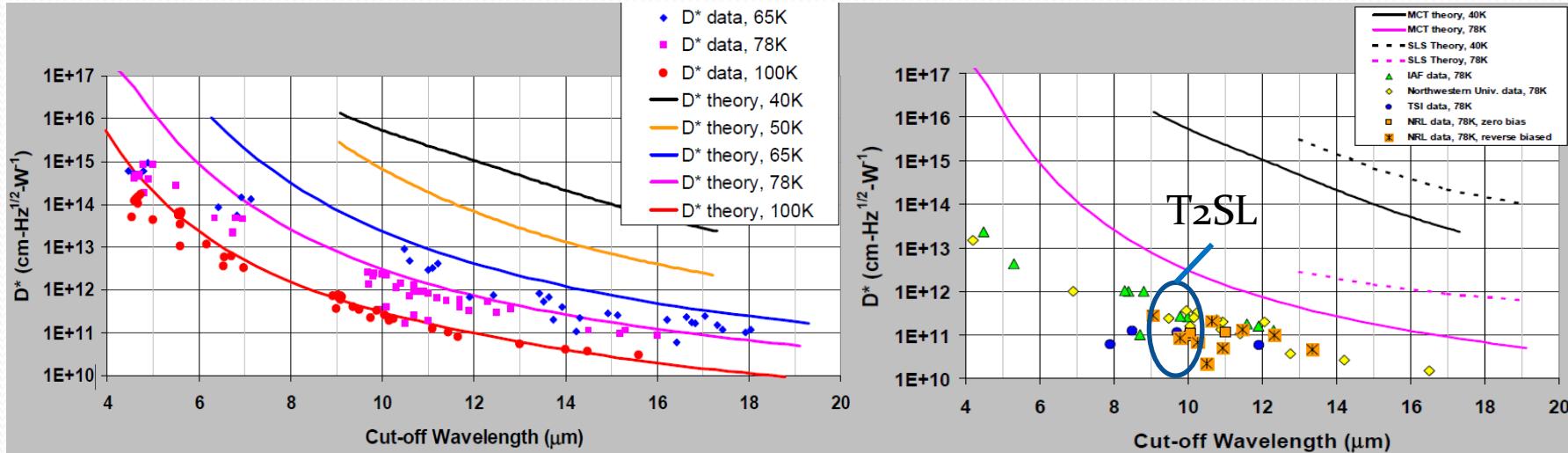
# Dark current comparison



From [1]


[1] P. Klipstein et al., "Antimonide-based materials for infrared detection," *Proc. SPIE*, vol. 4820, pp. 653–662, Jan. 2003.

[2] A. Hood et. al., "On the performance and surface passivation of type II InAs/GaSb superlattice photodiodes for the very-long-wavelength infrared," *Appl. Phys. Lett.*, vol. 87, p. 151113, Oct. 2005.


- Dark current performance of T<sub>2</sub>SL approaches those from HgCdTe (MCT), Rule 07

- Dark current comparable to InSb in MWIR

- Dark current in T<sub>2</sub>SL mostly limited by surface leakage current although predominantly bulk current has been reported by some [2]

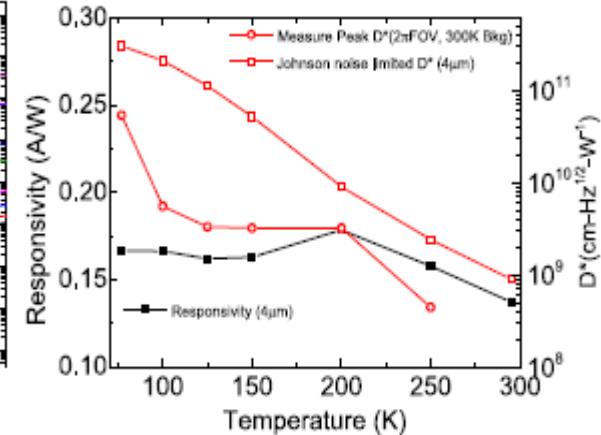
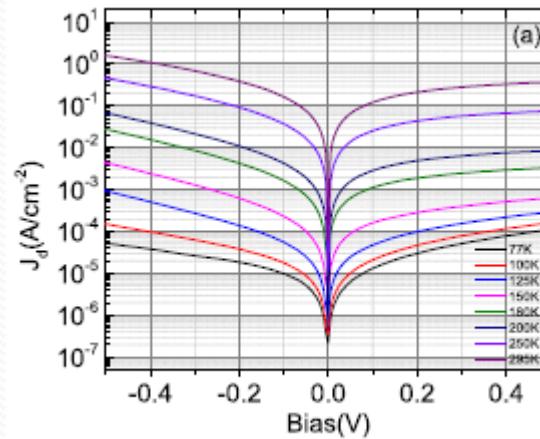
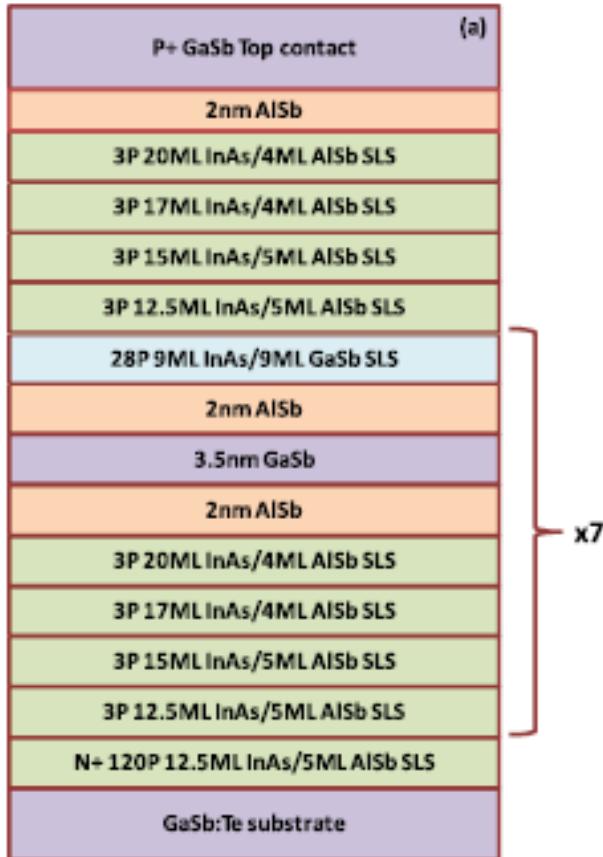


# Detectivity



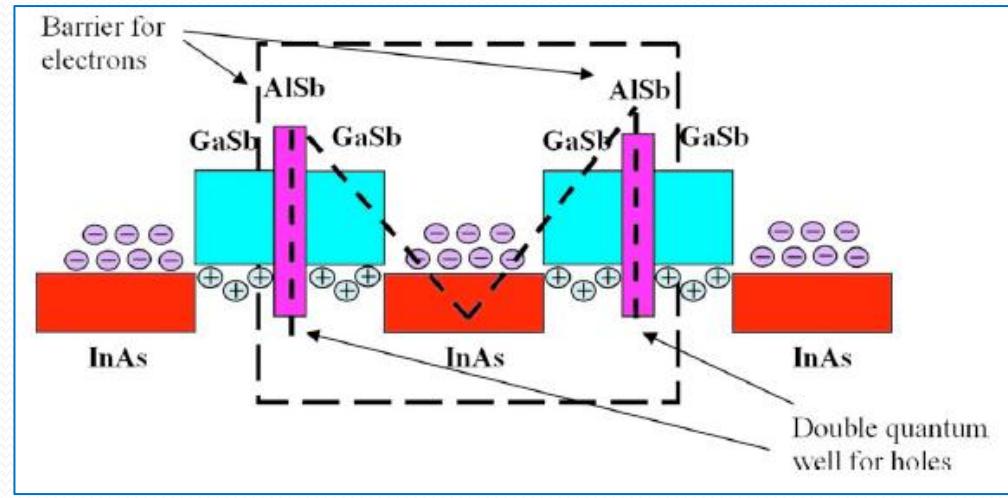
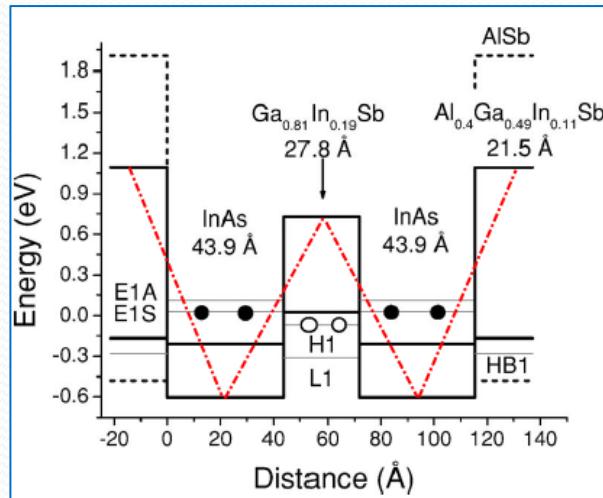
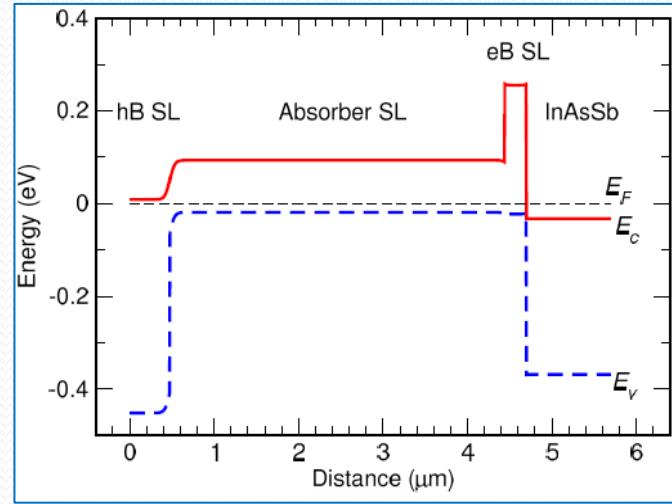
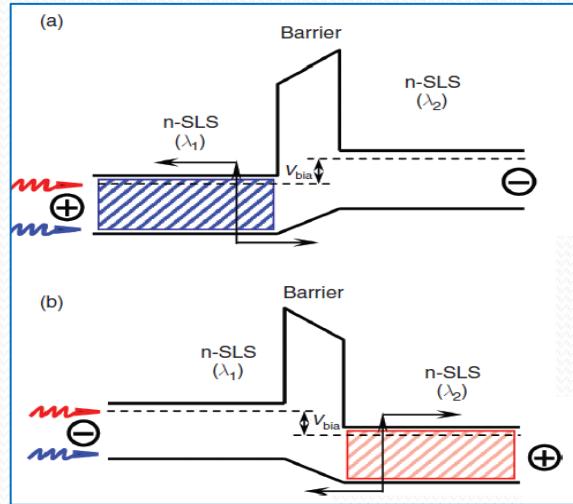
Measured and theory for thermally limited D\* in MCT [3]

- At 77 K, D\* approaches MCT at LWIR, but still lower at MWIR
- T2SL appears to be limited by high background doping (limited depletion width) and short carrier lifetime ( $>10$  ns). InAs/InAsSb reported to have  $\mu$ s lifetime[4].




[3] J. Bajaj, G. Sullivan, D. Lee, E. Aifer, and M. Razeghi, "Comparison of type-II superlattice and HgCdTe infrared detector technologies," *Proc. SPIE*, vol. 6542, p. 65420B, May 2007.

[4] E. H. Steenbergen et al., "Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb," *Appl. Phys. Lett.*, vol. 99, p. 251110, Dec. 2011.

# High Operating Temperature (HOT)





| Date,<br>Affiliation,<br>Reference        | Device Structure                                                                                                                                                                                                                                                                                                                  | T (K)          | $\lambda_{cutoff}$<br>( $\mu\text{m}$ )                | QE                                  | $R_o A$ ( $\Omega$<br>$\text{cm}^2$ )  | $J_{\text{dark}}$<br>( $\text{A}/\text{cm}^2$ ) | $D^*$<br>(Jones)                                                                                                                              |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--------------------------------------------------------|-------------------------------------|----------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Mar. 2005<br>Universite<br>Montpellier II | <ul style="list-style-type: none"> <li>- NIP</li> <li>- <math>N^+</math>: GaSb, 120nm</li> <li>- <math>i</math>: 10ML InAs/1ML InSb/10ML GaSb, 150x</li> <li>- <math>P^+</math>: GaSb, 120nm</li> <li>- T2SL intrinsic doping is <math>n</math>-type and <math>6e16 \text{ cm}^{-3}</math> at <math>300\text{K}</math></li> </ul> | 293            | MWIR<br>5.9                                            | R:<br>0.7mA/W<br>@ $3.5\mu\text{m}$ | 3e-2 @ 0V,<br>293K<br>0.5 @ 0V,<br>80K | N/A                                             | N/A                                                                                                                                           |
| Jul. 2012<br>University of<br>New Mexico  | <ul style="list-style-type: none"> <li>- <math>i</math>-region: 7-stage cascade region with absorber, relaxation and interband tunneling regions per stage.</li> <li>- Absorber stage: 9ML InAs/9ML GaSb</li> </ul>                                                                                                               | 77- <b>420</b> | MWIR<br>5.2<br>(77K,<br>100%),<br>7<br>(420K,<br>100%) | 36.2% @<br>$4\mu\text{m}$ , 77K     | N/A                                    | 3.6e-7<br>(77K),<br>7.3e-3<br>(295K)<br>@ -5mV  | 5.3e10 (77K,<br>300K<br>background, $2\pi$<br>FOV),<br>3e11 (77K,<br>Johnson-noise<br>limited),<br>8.9e8 (300K,<br>Johnson-noise<br>limited). |
| Jul. 1999<br>Northwestern<br>University   | <ul style="list-style-type: none"> <li>- Photoconductive device</li> <li>- InAs/GaSb T2SL on <b>SI-GaAs</b>, LWIR.</li> </ul>                                                                                                                                                                                                     | RT             | <b>12</b><br><b>(80%)</b>                              | 6.02%                               | N/A                                    | N/A                                             | 1.3e8 @ $11\mu\text{m}$                                                                                                                       |

# High Operating Temperature (HOT)



[5] N. Gautam et al., "High operating temperature interband cascade midwave infrared detector based on type-II InAs/GaSb strained layer superlattice," *Appl. Phys. Lett.*, vol. 101, no. 2, p. 021106, Jul. 2012.

# More design options



# MWIR FPA

| Date, Affiliation, Reference                                       | Device Structure                                                                                    | T (K) | Bias (mV) | $\lambda$ (μm)                    | QE        | $R_dA$ (Ω cm <sup>2</sup> ) | $J_{dark}$ (A/cm <sup>2</sup> )              | $D^*$ (Jones)                    | NETD (mK)                                                                                                                                                                                                                   | Array Dimensions and Operability                                                                                                                                                          |
|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------|-----------|-----------------------------------|-----------|-----------------------------|----------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Jun. 2012<br>Northwestern University [74]<br>Huang-OL              | - InAs/GaSb T2SL<br>- M-structure, PN heterojunction.                                               | 81    | N/A       | 4.6 @ 77K (50%)                   | 70%       | N/A                         | N/A                                          | N/A                              | 9-30                                                                                                                                                                                                                        | - 320×256 pixels<br>- Pixel size: 27μm<br>- <b>Pixel operability: 99%</b><br>- Int. time: 2-13.5ms<br>- Low-light conditions<br>- photon flux 5e12 ph.cm <sup>-2</sup> .s <sup>-1</sup> . |
| May 2012<br>IRnova AB (Sweden) [75]<br>Malm-SPIE                   | - InAs/GaSb T2SL<br>- homojunction PIN                                                              | 110   | -150      | 5.3 (~5%)                         | 40% (max) | N/A                         | ~1e-5 @ 0V<br>~1.6e-4 @ -150mV (G-R limited) | N/A                              | 34                                                                                                                                                                                                                          | - 320×256 pixels<br>- Pitch: 30μm<br>- <b>Fill factor: 89.6%</b><br>- Int. time: 1.25ms                                                                                                   |
| Aug. 2011<br>Fraunhofer IAF & AIM Infrarot-Module [76]<br>Rehm-JEM | - InAs/GaSb T2SL on 3" GaSb<br>- NIPIN structure with a common ground <i>p</i> -type contact layer. | ~77   | N/A       | 4, blue channel<br>5, red channel | N/A       | N/A                         | N/A                                          | 17.9 (blue ch.)<br>9.9 (red ch.) | - 288×384 pixels<br>- Pitch: 40μm<br>- <b>High wafer throughput and reproducibility</b><br>achieved by careful characterisation of full-wafer surface morphology and defects.<br>- For missile warning systems application. |                                                                                                                                                                                           |
| Apr. 2011<br>Northwestern University [77]<br>Pour-APL              | - InAs/GaSb T2SL<br>- NIMP, M-structure.                                                            | 150   | 0         | 4.2 (50%)                         | 50%       | 5100 @ 0V                   | N/A                                          | 1.05e12                          | 11 @ ≤120K                                                                                                                                                                                                                  | - 320×256 pixels<br>- Int. time: 10.02ms<br>- 300K background, f/2.3 optics, 2π FOV.<br>- <b>BLIP @≤180K</b>                                                                              |

# LWIR FPA

| Date, Affiliation, Reference                                                         | Device Structure                                      | T (K)  | Bias (mV)                          | $\lambda$ (μm) | QE                               | $R_dA$ ( $\Omega$ cm $^2$ ) | $J_{\text{dark}}$ (A/cm $^2$ ) | $D^*$ (Jones)                              | NETD (mK)                            | Array Dimensions and Operability                                                                                                                                                                                                                                                                                                           |
|--------------------------------------------------------------------------------------|-------------------------------------------------------|--------|------------------------------------|----------------|----------------------------------|-----------------------------|--------------------------------|--------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Jul. 2012<br>Jet Propulsion Laboratory [87]<br>Rafol-JQE                             | - InAs/GaSb T2SL<br>- <i>n</i> -type CBIRD structure. | 78, 65 | 128                                | 8.8 (50%)      | <b>54% (max) @ 5.7 μm</b>        | N/A                         | 2.2e-4 @ 78K<br>1.1e-4 @ 65K   | <b>1.3e11 @ 78K</b><br><b>1.6e11 @ 65K</b> | <b>18.6 @ 78K</b><br><b>12 @ 65K</b> | - 320×256 pixels<br>- Pixel size: 27μm<br>- Pitch: 30μm<br>- Fill factor: 81%<br>- <b>QE operability: 97%</b><br>- Int. time: 0.37ms<br>- 298K background, f/2 optics                                                                                                                                                                      |
| May 2012<br>QmagiQ (US) [8]<br>Sundaram-SPIE                                         | - InAs/GaSb T2SL                                      | 77     | <b>-25</b>                         | ~9.5           | <b>50% (mean)</b>                | N/A                         | ~2e-4                          | N/A                                        | 30                                   | - <b>1024×1024 pixels</b><br>- Pixel size: 16μm<br>- Pitch: 18μm<br>- Pixel operability: 96%<br>- f/4 optics                                                                                                                                                                                                                               |
| May 2012<br>Jet Propulsion Laboratory [88]<br>Soibel-SPIE                            | - InAs/GaSb T2SL<br>- <i>n</i> -type CBIRD structure. | 77     | <b>50</b>                          | 10             | <b>R: 2 A/W</b>                  | N/A                         | <b>&lt;1e-5</b>                | N/A                                        | <b>26 @ 80K</b>                      | - 320×256 pixels<br>- <b>Pixel operability: 98%</b><br>- 300K background                                                                                                                                                                                                                                                                   |
| Jan. & Feb. 2012<br>Northwestern University [89]<br>Haddadi-JQE [90]<br>Haddadi-SPIE | - InAs/GaSb T2SL<br>- M-structure                     | 68, 81 | <b>20 (81K)</b><br><b>35 (68K)</b> | 7.9            | <b>81% (w/o AR coating, 81K)</b> | 76 @ 81K<br>309 @ 68K       | 1.09e-3 (81K)<br>2.78e-4 (68K) | N/A                                        | <b>27 @ 81K</b><br><b>19 @ 68K</b>   | - <b>1024×1024 pixels</b><br>- Pitch: 18μm<br>- Fill factor: 71.3%<br>- <b>QE operability: 95.8% (81K), 97.4% (68K)</b><br>- <b>Weak low-<i>f</i> noise.</b><br>- Frame rate: 15Hz<br>- Dynamic range: 37dB (81K), 39dB (68K)<br>- <b>Int. time: 0.13ms</b><br>- 300K background, f/2 optics<br>- ICP etched, SiO <sub>2</sub> passivated. |

# Present leading performance in T2SL

| Detector Type        | Window | $R_o A$ or $R_d A$ ( $\Omega \text{ cm}^2$ )                            | $D^*$ (Jones)                |
|----------------------|--------|-------------------------------------------------------------------------|------------------------------|
| Single-pixel devices | MWIR   | $>3 \times 10^7$ [43]                                                   | $8 \times 10^{13}$ [43]      |
|                      | LWIR   | $\sim 1 \times 10^4$ [10] –<br>NIP<br>$1.4 \times 10^4$ [63] –<br>CBIRD | $>1 \times 10^{12}$ [6]      |
|                      | VLWIR  | 0.55 [37] – NIP<br>$837$ [68] –<br>InAs/GaInSbN<br>T2SL                 | $4.5 \times 10^{10}$ [6]     |
| FPA                  | MWIR   | $2.3 \times 10^7$ [83]                                                  | $>1 \times 10^{13}$ [85][86] |
|                      | LWIR   | $>1 \times 10^4$ [64]                                                   | $>1 \times 10^{12}$ [91][92] |

[6] F. Fuchs, U. Weimer, W. Pletschen, J. Schmitz, E. Ahlschwedel, J. Fleißner, J. Wagner, and P. Koidl, "High performance InAs/GaSb superlattice infrared photodiodes," *Appl. Phys. Lett.*, vol. 71, no. 22, pp. 3251–3253, Dec. 1997.

[10] Y. Wei, A. Hood, H. Yao, V. Yazdanpanah, M. Razeghi, M. Z. Tidrow, and V. Nathan, "High-performance Type-II InAs/GaSb superlattice photodiodes with cutoff wavelength around 7  $\mu\text{m}$ ," *Appl. Phys. Lett.*, vol. 86, p. 091109, 2005

[43] C. J. Hill, J. V. Li, J. M. Mumolo, and S. D. Gunapala, "MBE grown type-II MWIR and LWIR superlattice photodiodes," *Infrared Phys. Technol.*, vol. 50, no. 2–3, pp. 187–190, Apr. 2007.

[63] D. Z.-Y. Ting, C. J. Hill, A. Soibel, S. A. Keo, J. M. Mumolo, J. Nguyen, and S. D. Gunapala, "A high-performance long wavelength superlattice complementary barrier infrared detector," *Appl. Phys. Lett.*, vol. 95, no. 2, p. 023508, Jul. 2009.

[64] D. R. Rhiger, R. E. Kvaas, S. F. Harris, B. P. Kolasa, C. J. Hill, and D. Z. Ting, "Characterization of barrier effects in superlattice LWIR detectors," *Proc. SPIE*, vol. 7660, p. 7660iN, May 2010.

[68] L. Aina, H. Hier, A. Fathimulla, M. Lecates, J. Kolodzey, K. Goossen, M. Copinger, and N. Bhargava, "High detectivity dilute nitride strained layer superlattice detectors for LWIR and VLWIR applications," *Infrared Phys. Technol.*, vol. 52, no. 6, pp. 310–316, Nov. 2009.

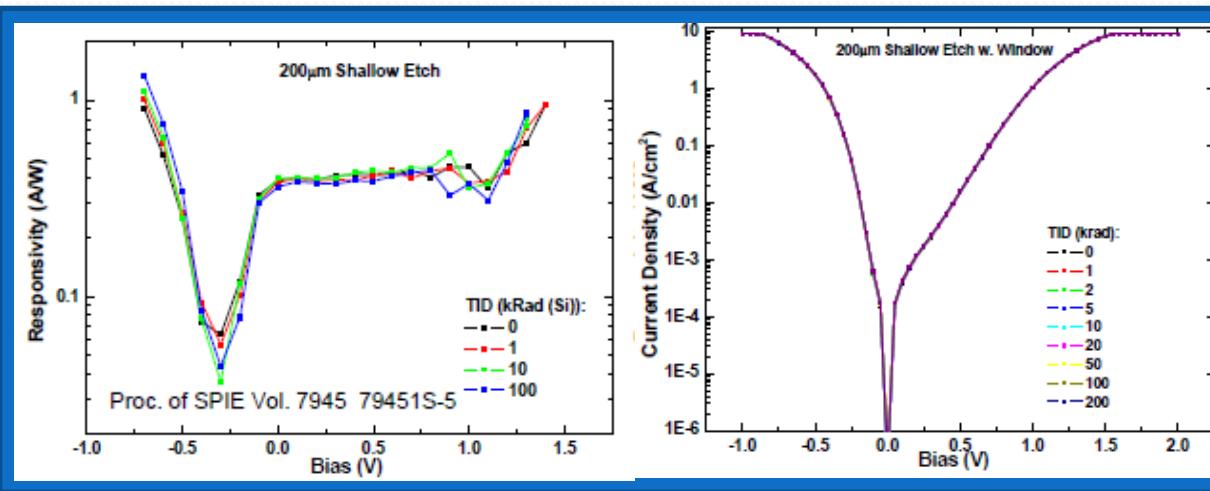
[83] R. Rehm, M. Walther, J. Schmitz, J. Fleissner, J. Ziegler, W. Cabanski, and R. Breiter, "Dual-colour thermal imaging with InAs/GaSb superlattices in mid-wavelength infrared spectral range," *Electron. Lett.*, vol. 42, no. 10, pp. 577 – 578, May 2006.

[85] M. Walther, R. Rehm, F. Fuchs, J. Schmitz, J. Fleißner, W. Cabanski, D. Eich, M. Finck, W. Rode, J. Wendler, R. Wollrab, and J. Ziegler, "256×256 focal plane array midwavelength infrared camera based on InAs/GaSb short-period superlattices," *J. Electron. Mater.*, vol. 34, no. 6, pp. 722–725, 2005.

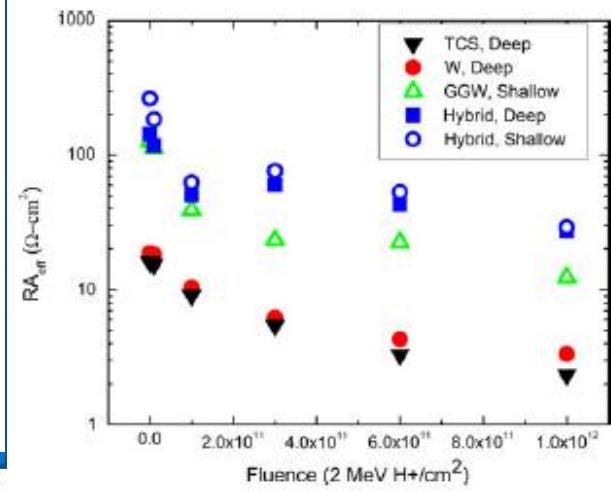
[86] M. Walther, J. Schmitz, R. Rehm, S. Kopta, F. Fuchs, J. Fleißner, W. Cabanski, and J. Ziegler, "Growth of InAs/GaSb short-period superlattices for high-resolution mid-wavelength infrared focal plane array detectors," *J. Cryst. Growth*, vol. 278, no. 1–4, pp. 156–161, Apr. 2005.

[92] E. K. Huang and M. Razeghi, "World's first demonstration of type-II superlattice dual band 640x512 LWIR focal plane array," *Proc. SPIE*, vol. 8268, p. 82680Z, Jan. 2012.

# Space applications: Scanning imaging multispectral


| Instrument          | Detector format                                                                                                                     | Bands ( $\mu\text{m}$ )             | Array temp. (K) | NEP (W/Hz $^{1/2}$ )     | D* (cm.Hz $^{1/2}$ W $^{-1}$ ) |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------|--------------------------|--------------------------------|
| AATSR (Envisat)     | Single pixel per TIR channel, 190 $\mu\text{m}$ square                                                                              | 10.85, 12.0                         | 80              | $\sim 5 \times 10^{-13}$ | $3.8 \times 10^{10}$           |
| ASTER (TERRA)       | Ten pixels (offset linear) for each of the five TIR bands. 50 $\mu\text{m}$ square pixels.                                          | 8.125-8.475                         | 80              | $0.4 \times 10^{-13}$    | $1.3 \times 10^{11}$           |
|                     |                                                                                                                                     | 8.475-8.825                         |                 | $0.4 \times 10^{-13}$    | $1.3 \times 10^{11}$           |
|                     |                                                                                                                                     | 8.925-9.275                         |                 | $0.5 \times 10^{-13}$    | $1.0 \times 10^{11}$           |
|                     |                                                                                                                                     | 10.25-10.95                         |                 | $1.1 \times 10^{-13}$    | $4.5 \times 10^{10}$           |
|                     |                                                                                                                                     | 10.95-11.65                         |                 | $1.1 \times 10^{-13}$    | $4.5 \times 10^{10}$           |
| JAMI (MTSAT-1R)     | 84 x 2 pixels – second column for redundancy. Pixels offset. 50 $\mu\text{m}$ square pixels, 50 $\mu\text{m}$ pixel column spacing. | 3.5-4.0                             |                 | $6.9 \times 10^{-13}$    | $7.3 \times 10^9$              |
|                     |                                                                                                                                     | 6.5-7.0                             |                 | $3.9 \times 10^{-12}$    | $1.3 \times 10^9$              |
|                     |                                                                                                                                     | 10.3-11.3                           |                 | $6.9 \times 10^{-12}$    | $7.3 \times 10^8$              |
|                     |                                                                                                                                     | 11.5-12.5                           |                 | $1.7 \times 10^{-11}$    | $2.9 \times 10^8$              |
| SLSTR (Sentinel-3)  | Two detectors per channel. Each pixel is 200 $\mu\text{m}$ square.                                                                  | 3.74 ( $\Delta\lambda=0.38$ )       | 80              | $3.0 \times 10^{-14}$    | $6.7 \times 10^{11}$           |
|                     |                                                                                                                                     | 10.85 ( $\Delta\lambda=0.9$ )       |                 | $6.3 \times 10^{-13}$    | $3.7 \times 10^{10}$           |
|                     |                                                                                                                                     | 12.0 ( $\Delta\lambda=1.0$ )        |                 | $4.4 \times 10^{-13}$    | $4.6 \times 10^{10}$           |
| MODIS (Terra, Aqua) | Each band has a ten-element linear array. Pixels are 540 $\mu\text{m}$ square.                                                      | 6.7 ( $\Delta\lambda=0.5$ ) assumed | 85              | $1.4 \times 10^{-12}$    | $3.9 \times 10^{10}$           |
|                     |                                                                                                                                     | 8.5 ( $\Delta\lambda=1$ ) assumed   |                 | $2.4 \times 10^{-12}$    | $2.3 \times 10^{10}$           |
|                     |                                                                                                                                     | 14.2 ( $\Delta\lambda=1$ ) assumed  |                 | $4.2 \times 10^{-12}$    | $1.3 \times 10^{10}$           |

**T2SL is a feasible technology based on D\***


# Space applications: Pushbroom imaging multispectral

| Instrument             | Detector format                                                                                                                                     | Bands (μm)                                                                                  | Array temp. (K)   | NEP (W/Hz <sup>1/2</sup> )                                                                                | Comments                                                                                                         | T2SL Feasibility                                 |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|
| TIRS (LandSat-DCM)     | Requirement is 1x1850 pixels. Implemented as three 640x512 pixel arrays. Each pixel is 25 μm square. Bands defined by filters directly above array. | 10.8<br>12.0                                                                                | 43                | 6.7x10 <sup>-13</sup><br>5.6x10 <sup>-13</sup>                                                            | Calculated. Assumptions made on throughput & optical efficiency. Bandpasses assumed to be 1 μm.                  | Yes                                              |
| MSI (EarthCARE)        | Requirement is 1x300 pixels per band. Implemented as a 384x288 pixel array. Each pixel on a 35 μm pitch.                                            | 8.8 ( $\Delta\lambda=0.9$ )<br>10.8 ( $\Delta\lambda=0.9$ )<br>12.0 ( $\Delta\lambda=0.9$ ) |                   | 2.2x10 <sup>-12</sup><br>↳ 2.26x10 <sup>-12</sup><br>↳ 1.89x10 <sup>-12</sup><br>↳ 1.60x10 <sup>-12</sup> | ↳ Calculated from quoted NETD<br>↳ Calculated required NEP. Assumptions made on throughput & optical efficiency. | Yes, if cooling is used.                         |
| IIR (CALIPSO)          | 320x240 pixel array. Only 64x64 pixels required. Each pixel is 51 μm square.                                                                        | 8.7 ( $\Delta\lambda=0.8$ )<br>10.5 ( $\Delta\lambda=0.8$ )<br>12.0 ( $\Delta\lambda=0.8$ ) | Integrated cooler | 8.5x10 <sup>-12</sup><br>5.6x10 <sup>-12</sup><br>4.6x10 <sup>-12</sup>                                   | Calculated from quoted manufacturers NETD (f/1 optics, 30Hz frame). Actual image space f/# is 0.75.              | Unknown as reported results are at ~80K for LWIR |
| NIRST (SAC-D/Aquarius) | Two linear arrays, each 512x3 pixels                                                                                                                | 3.8<br>10.85<br>11.85                                                                       | Uncooled          | 4.6x10 <sup>-12</sup><br>6.5x10 <sup>-13</sup><br>5.4x10 <sup>-13</sup>                                   | Calculated from quoted NETD and indications of bandwidth.                                                        | Appears not at present.                          |

# Space applications: Radiation



Gamma ray radiation



2MeV proton

TCS:Two constituent SL

GGW: graded bandgap in space charge region

Hybrid: TCS absorber + graded gap W

# Conclusion

- Performance has improved rapidly over since 1990\*.
- Dark current approaches HgCdTe Rule 07 and predicted to be lower.
- Detectivity at 77K competitive to HgCdTe, **NEDT 10-30mK,  $t_{int} > 100\mu s$** .
- Uncooled detection at MWIR and LWIR demonstrated.
- Focal plane array up to Megapixel has been demonstrated.
- High design freedom based on a range of alloys.

**Serious competitor to HgCdTe**

**Lower Cost ?(depends on substrates and manufacturers)**  
**Good radiation hardness, potential in LWIR, VLWIR.**

\* R. H. Miles, D. H. Chow, J. N. Schulman, and T. C. McGill, "Infrared optical characterization of InAs/Ga<sub>1-x</sub>In<sub>x</sub>Sb superlattices," *Appl. Phys. Lett.*, vol. 57, no. 8, pp. 801-803, Aug. 1990

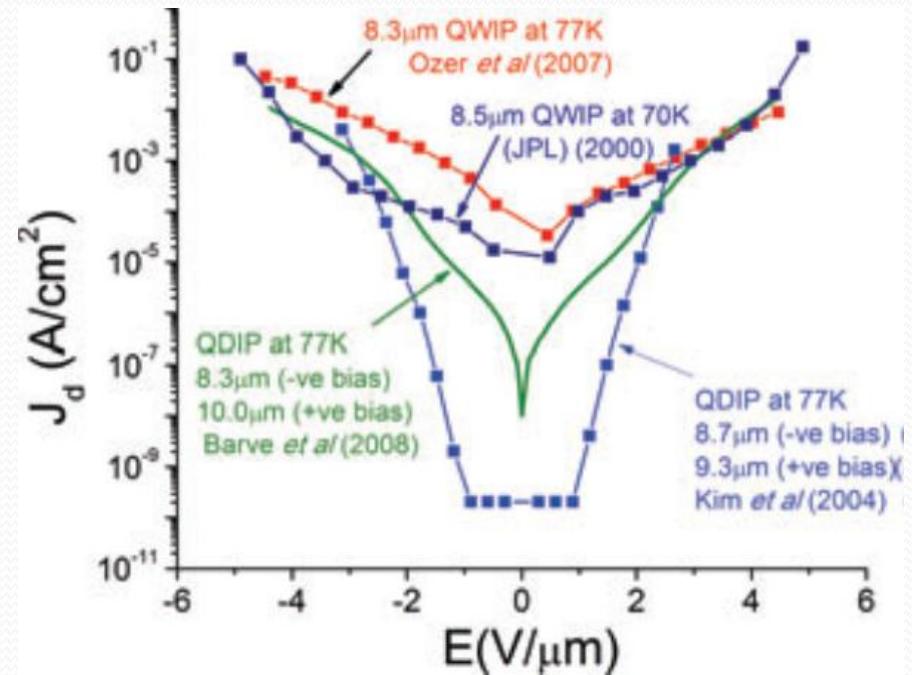
# Feasibility of using nanotechnology to improve TIR satellite imagers

Final review

ESTEC 23<sup>rd</sup> November 2012

# Outline

- Current QDIP performance
- Future QDIP performance
- Feasibility of using QDIP technology for TIR space instruments
- Space Qualification
- Conclusions


# Current QDIP Performance

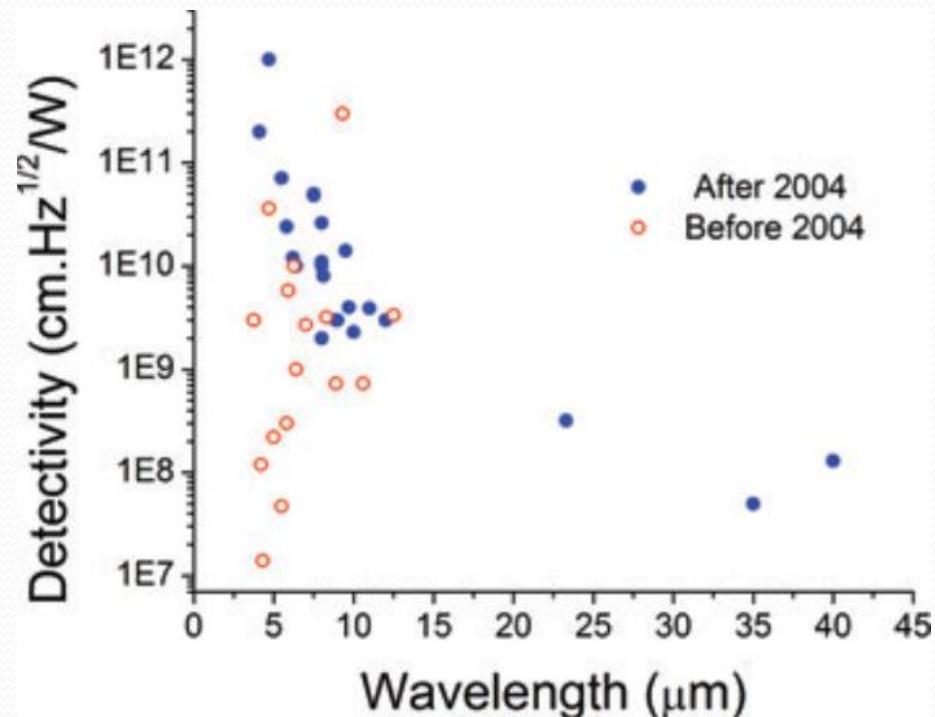
# QDIP FPA Performance

| Paper and Group                                                                                    | Structure details                                                                                                                                       | Array dimensions and operability                                                | Temp.(K)          | Wavelength range          | Bias                    | D* (cmHz <sup>1/2</sup> /W)                                    | NETD (mK)                                            | QE                         | Id (A/cm <sup>2</sup> )                                   |
|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-------------------|---------------------------|-------------------------|----------------------------------------------------------------|------------------------------------------------------|----------------------------|-----------------------------------------------------------|
| Krishna et al., 2005. [1]<br>University of New Mexico, USA                                         | 15 period InAs-InGaAs-GaAs DWELL structure<br>GaAs substrate                                                                                            | 320x256 pixels<br>30 $\mu$ m pitch<br>>99% operability                          | 78K               | MWIR<br>LWIR              | +1.0V<br>+2.6V          | 7.1x10 <sup>10</sup><br>2.6x10 <sup>10</sup><br>(single pixel) | <100mK f/1<br><100mK f/2                             |                            |                                                           |
| Gunapala et al., 2007. [2]<br>Jet Propulsion Laboratory, USA                                       | 30 period InAs-In <sub>0.12</sub> Ga <sub>0.88</sub> As- GaAs DWELL structure<br>GaAs substrate                                                         | 640x512 pixels<br>25 $\mu$ m pitch<br>23x23 $\mu$ m devices<br>>99%operability  | 60K               | LWIR<br>8.1 $\mu$ m peak  | -0.35mV                 | $\sim$ 1x10 <sup>10</sup>                                      | 40mK<br>f/2 optics<br>t=20ms                         | 5% mean                    | 3x10 <sup>-6</sup>                                        |
| Tsao et al., 2007. [3]<br>Northwestern University, USA                                             | 25 period InAs-InGaAs-AlInAs DWELL structure<br>InP substrate                                                                                           | 320x256 pixels<br>30um pitch<br>25x25 $\mu$ m devices<br>99% operability        | 120-200K          | MWIR<br>Peak at 4 $\mu$ m | ROIC<br>biases up to 3V | <1x10 <sup>10</sup><br>single pixel<br>at 120K at >-2V         | 344mK at 120K f/2 optics<br>t<30ms                   | 1.1% conversion efficiency |                                                           |
| Vaillancourt et al., 2009. [4]<br>University of Massachusetts + QmagiQ, USA                        | 10 period InAs QD-In <sub>0.2</sub> Ga <sub>0.8</sub> As barrier structure followed by 10 period InAs QD-GaAs barrier structure. GaAs substrate         | 320x256 pixels<br>30 $\mu$ m pitch<br>28x28um devices                           | 67K               | MWIR<br>LWIR              | -0.7V                   | 1.8x10 <sup>9</sup><br>single pixel                            | 172mK<br>f/2.2<br>t=16.7ms                           |                            |                                                           |
| Nagashima et al., 2009 [5]<br>Ministry of Defence, Japan + Fujitsu, Japan                          | 10 period InAs QD-Al <sub>0.15</sub> Ga <sub>0.85</sub> As barrier structure<br>GaAs substrate                                                          | 256x256 pixels<br>40 $\mu$ m pitch<br>>99.5% operability                        | 80K               | LWIR<br>10.3 $\mu$ m peak |                         |                                                                | 87mK<br>t=8ms, f/2.5 optics                          |                            |                                                           |
| Andrews et al., 2011[6]<br>Naval Research Laboratory, USA + University of New Mexico + QmagiQ, USA | 30 period InAs-In <sub>0.15</sub> Ga <sub>0.85</sub> As-GaAs-Al <sub>0.1</sub> Ga <sub>0.9</sub> As intermediate double DWELL structure, GaAs substrate | 320x256 pixels<br>99.9% operability                                             | 60K               | LWIR                      |                         |                                                                | 106mK f/2 optics                                     |                            |                                                           |
| Lu et al., 2008 [7]<br>University of Massachusetts + Raytheon, USA                                 | 10 period InAs QD-In <sub>0.2</sub> Ga <sub>0.8</sub> As barrier structure followed by 10 period InAs QD-GaAs barrier structure. GaAs substrate         | 320x256 pixels<br>30 $\mu$ m pitch<br>27x27 $\mu$ m devices<br>>90% operability |                   | LWIR                      |                         | 2.3x10 <sup>10</sup><br>Single pixel                           |                                                      |                            |                                                           |
| Tang et al., 2006 [8]<br>Chung-Shan Institute of Science and Technology, Taiwan                    | 30 period InAs QD- GaAs barrier structure<br>GaAs substrate                                                                                             | 256x256 pixels<br>>98% operability                                              | 80K               | MWIR<br>LWIR              | 0.3V                    | 1.5x10 <sup>10</sup><br>Single pixel                           | Not given                                            |                            | $\sim$ 10 <sup>-5</sup> A/cm <sup>2</sup><br>Single pixel |
| Barve et al., 2011 [9]<br>University of New Mexico, USA                                            | 30 period InAs-In <sub>0.15</sub> Ga <sub>0.85</sub> As-Al <sub>0.08</sub> Ga <sub>0.92</sub> As DWELL structure<br>GaAs substrate                      | 320x256 pixels                                                                  | 80K               | 6.1 $\mu$ m peak          |                         | $\sim$ 4x10 <sup>11</sup><br>Single pixel                      | 40mK f/2 optics                                      |                            |                                                           |
| Gunapala et al., 2011. [33]<br>Jet Propulsion Laboratory, USA                                      | Sub-ML InAs QD, GaAs QWs and AlGaAs barriers.<br>GaAs substrate                                                                                         | 1024x1024 pixels<br>19.5 $\mu$ m pitch                                          | 50K<br>60K<br>70K | 8.5 $\mu$ m peak          |                         |                                                                | 22mK at 50K<br>28mK at 60K<br>33mK at 70K f/2 optics |                            |                                                           |

# Dark Current comparison with QWIPs

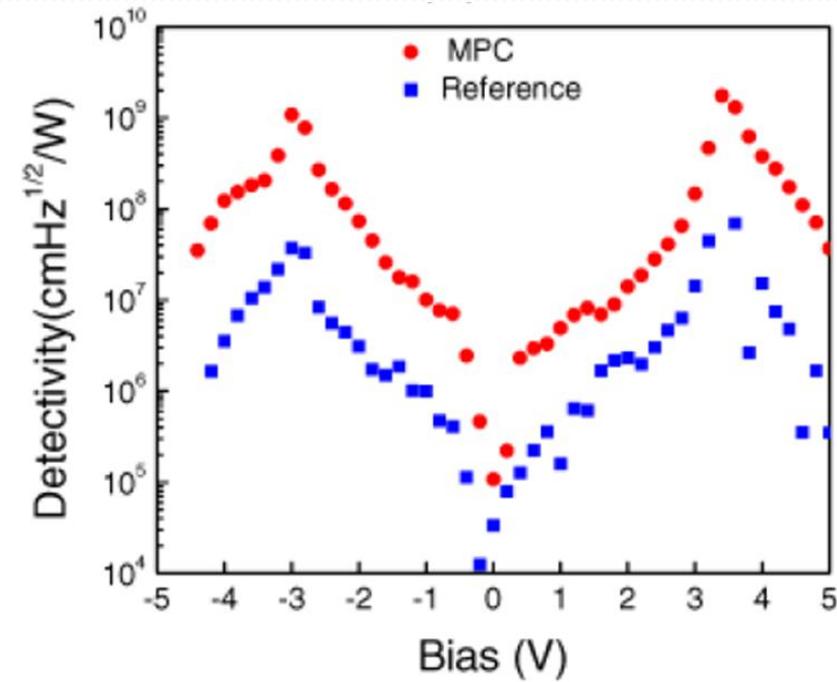
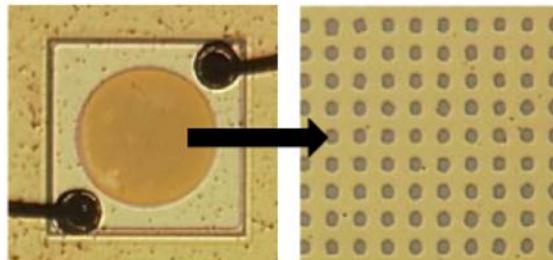
- QDIPs compared to QWIPs detecting at similar wavelengths.
- QDIP dark current density lower than QWIPs for most of the electric field range




# Future QDIP Performance

# Future array dimensions

- 2048x2048 TIR FPAs reported as well as development of 4096x4096 HgCdTe FPAs.
- No fundamental problems to prevent similar sized QDIP FPAs.
- Mature III-V processing and low surface leakage should allow pixel sizes  $<20\mu\text{m}$  to be easily achieved.
- Operability already generally greater than 99%.



# $D^*$ improvement

- Reported 77-80K QDIP  $D^*$  values compared as function of wavelength
- Trend shows general  $D^*$  improvement over past 15 years.



# Metal Photonic Crystals

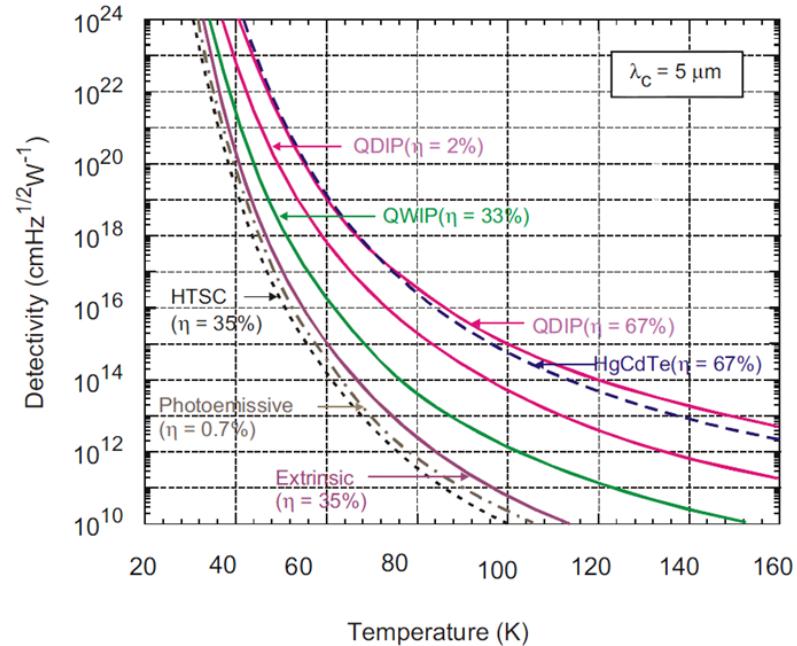
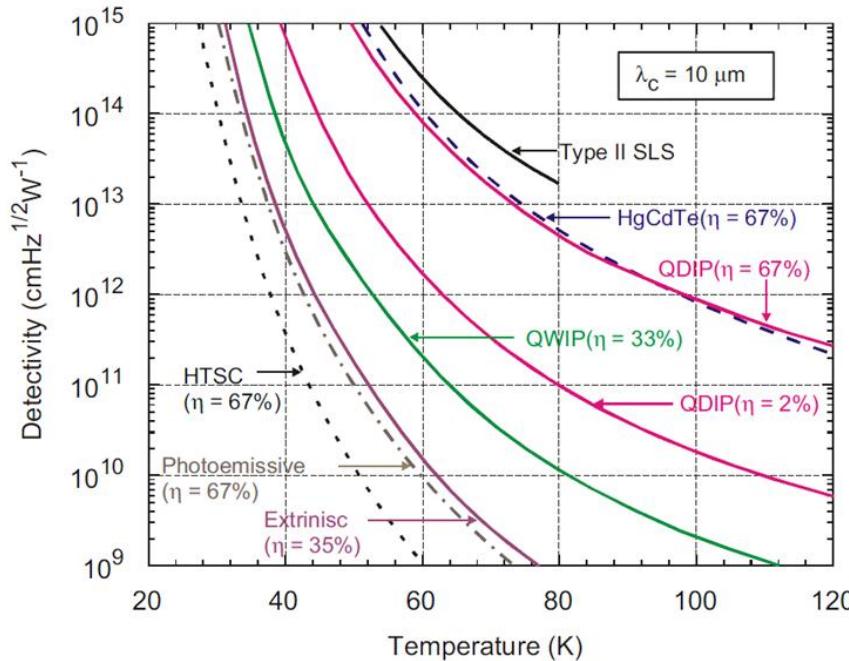
- Metal Photonic Crystals can be used to improve  $D^*$  and tune spectral response.
- Lee et al. [1] observed a 30 fold increase in  $D^*$  compared to as grown QDIP.



## References:

[1] S. C. Lee *et al.*, *Optics Express*, vol. 17, p. 119407, 2009.

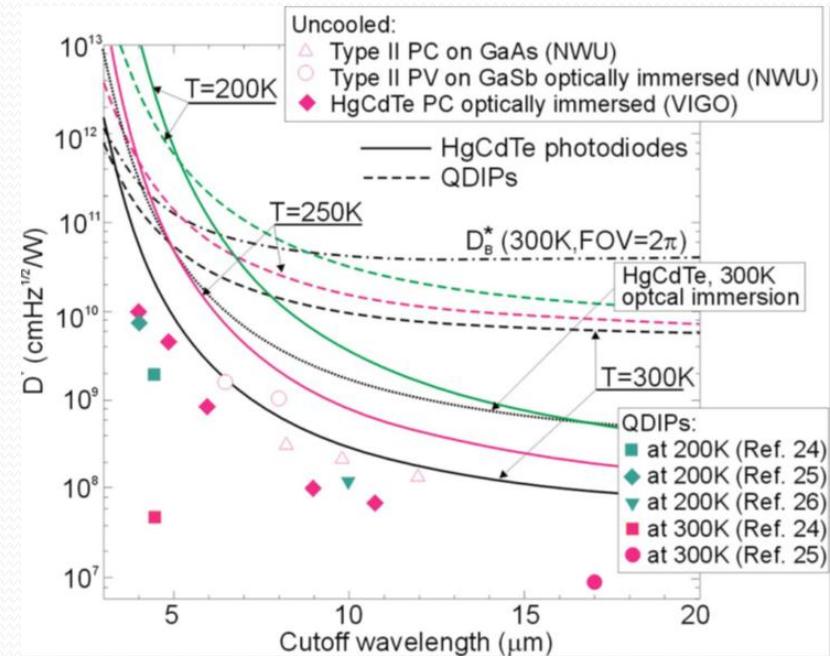
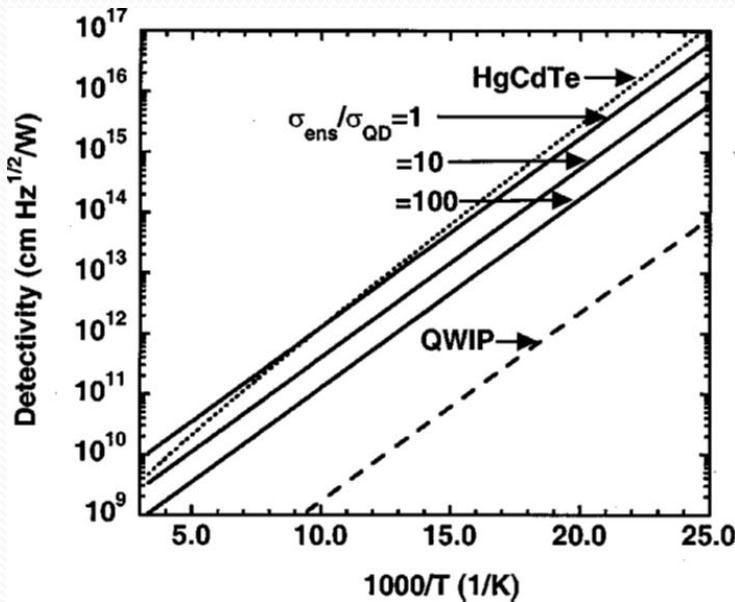
# Theoretical $D^*$



- Models developed by Phillips [1], Martyniuk *et al.* and Ryzhii *et al.* [3], [4] to predict  $D^*$  in QDIPs as a function of wavelength and temperature.
- Assumptions:
  - QD are completely uniform in size and shape
  - Two energy states per QD
  - Carrier lifetime of 1ns

## References:

- [1] J. Phillips, *IEEE J. Quantum Electron.*, vol. 91, pp. 4590-4594, 2002.
- [2] P. Martyniuk and A. Rogalski, *Prog. Quantum Electron.*, vol. 32, pp. 89-120, 2008.
- [3] V. Ryzhii *et al.*, *Semicond. Sci. Technol.*, vol. 16, p. 331, 2001.
- [4] V. Ryzhii *et al.*, *Appl. Phys. Lett.*, vol. 78, p. 3523, 2001.

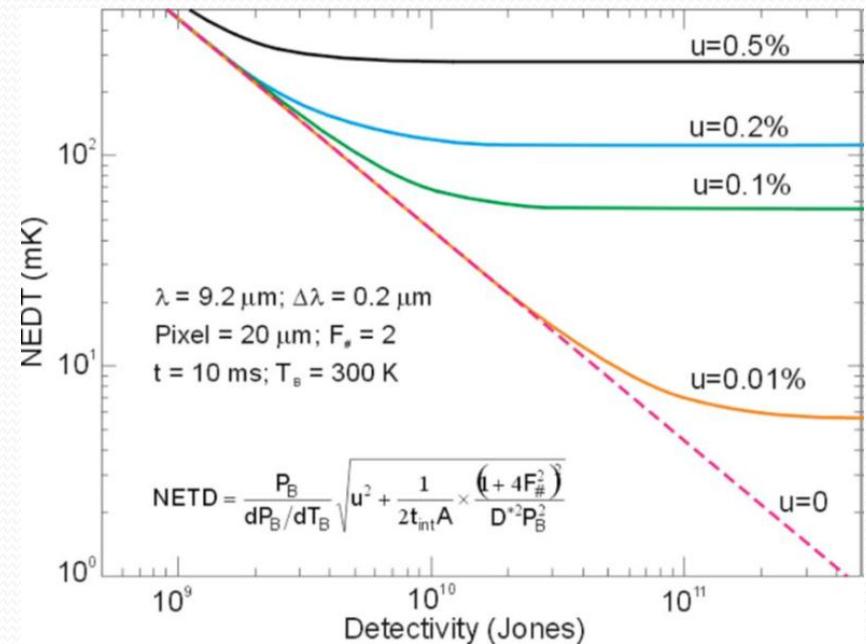
# Theoretical $D^*$



- QDIPs compared to HgCdTe and QWIPs at detection wavelengths of 5 and 10  $\mu\text{m}$



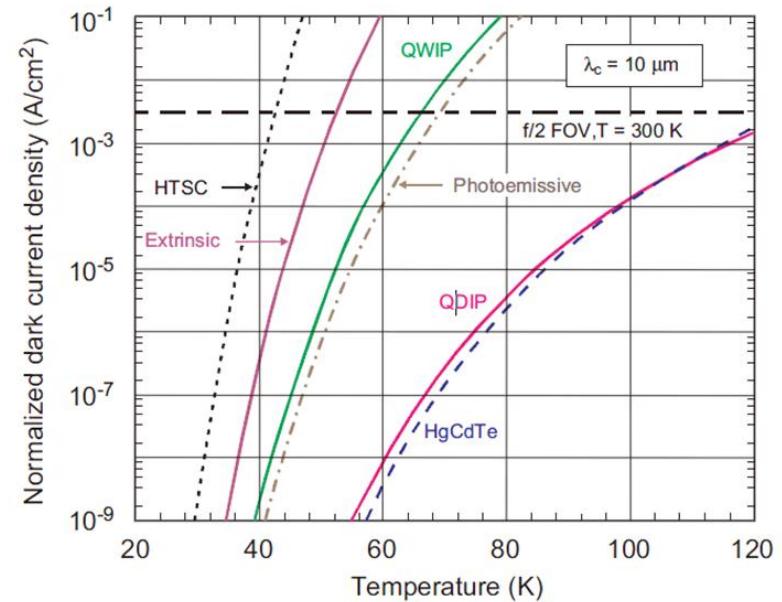
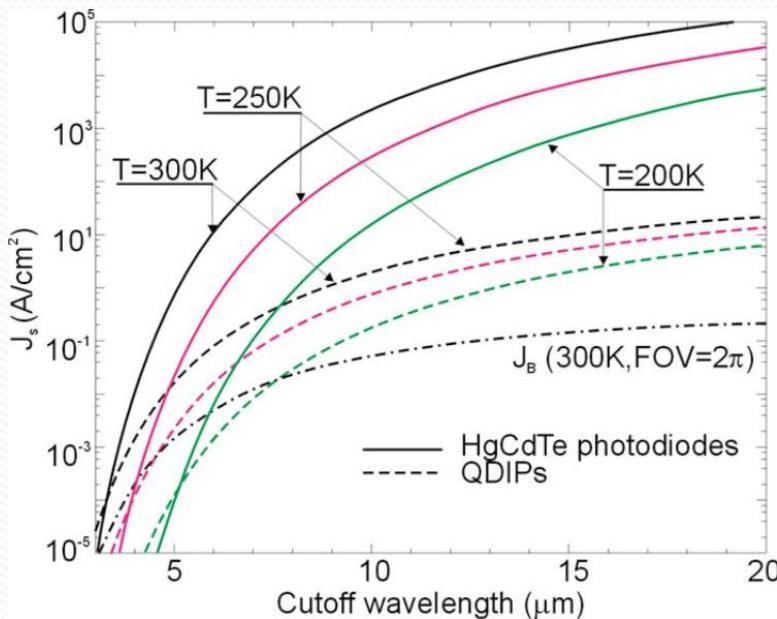
- Compares well to MCT if QDIP QE is assumed to 67%
- >1 order of magnitude higher than QWIPs if QDIP QE reduced to 2%

# Theoretical $D^*$ as function of T


- $D^*$  as a function of T and cut off wavelength
- Again compares favourably with MCT



- Performance degrades rapidly if QD uniformity is decreased



# Theoretical $D^*$ and NETD

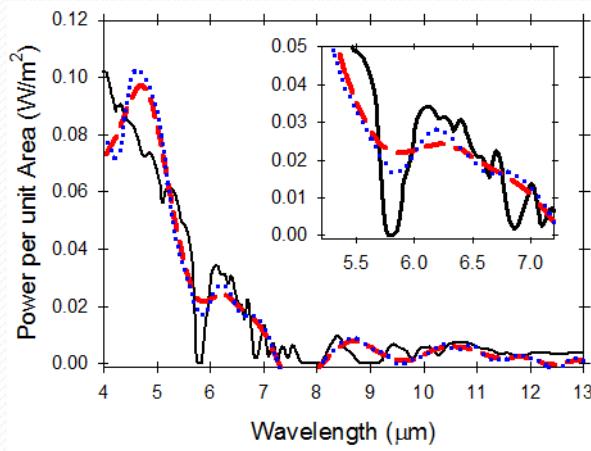
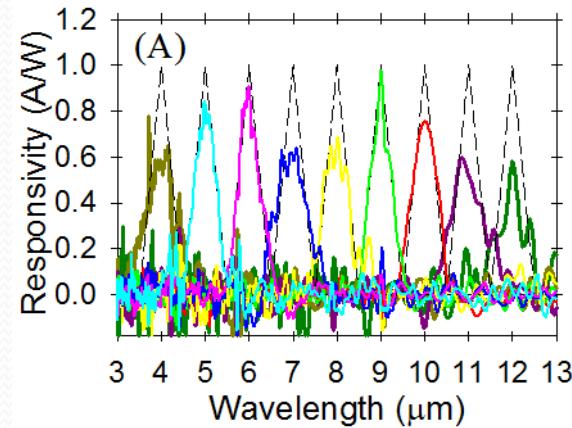
- Graph illustrates relationship between  $D^*$  and NETD
- Pixel non-uniformity has a large bearing on performance if NETD is low.



# Dark Current Density

- Dark current density also predicted.





- Compares favourably with HgCdTe

# QDIP improvements needed

- Several improvements are needed before QDIPs reach their predicted potential:
  - Improved QD uniformity
  - More control over QD doping
  - Greater absorption volume to achieve high QE
- These factors contribute to carrier lifetimes << 1ns assumed in model

# Spectral Tuning

- QDIP's bias tunability can be exploited by a post processing algorithm for potentially high resolution spectroscopy.
- Complex spectral shapes have been reconstructed throughout the MWIR and LWIR ranges from QDIPs without need for optical filters.



# Feasibility of using QDIP technology for TIR space instruments

# Scanning imaging multispectral radiometers

| Instrument          | Detector format                                                                                               | Bands (μm)                          | Array temp. (K) | NEP (W/Hz <sup>1/2</sup> ) | $D^*$ (cm.Hz <sup>1/2</sup> W <sup>-1</sup> ) |
|---------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------|----------------------------|-----------------------------------------------|
| AATSR (Envisat)     | Single pixel per TIR channel, 190 μm square                                                                   | 10.85, 12.0                         | 80              | $\sim 5 \times 10^{-13}$   | $3.8 \times 10^{10}$                          |
| ASTER (TERRA)       | Ten pixels (offset linear) for each of the five TIR bands. 50 μm square pixels.                               | 8.125-8.475                         | 80              | $0.4 \times 10^{-13}$      | $1.3 \times 10^{11}$                          |
|                     |                                                                                                               | 8.475-8.825                         |                 | $0.4 \times 10^{-13}$      | $1.3 \times 10^{11}$                          |
|                     |                                                                                                               | 8.925-9.275                         |                 | $0.5 \times 10^{-13}$      | $1.0 \times 10^{11}$                          |
|                     |                                                                                                               | 10.25-10.95                         |                 | $1.1 \times 10^{-13}$      | $4.5 \times 10^{10}$                          |
|                     |                                                                                                               | 10.95-11.65                         |                 | $1.1 \times 10^{-13}$      | $4.5 \times 10^{10}$                          |
| JAMI (MTSAT-1R)     | 84 x 2 pixels – second column for redundancy. Pixels offset. 50 μm square pixels, 50 μm pixel column spacing. | 3.5-4.0                             |                 | $6.9 \times 10^{-13}$      | $7.3 \times 10^9$                             |
|                     |                                                                                                               | 6.5-7.0                             |                 | $3.9 \times 10^{-12}$      | $1.3 \times 10^9$                             |
|                     |                                                                                                               | 10.3-11.3                           |                 | $6.9 \times 10^{-12}$      | $7.3 \times 10^8$                             |
|                     |                                                                                                               | 11.5-12.5                           |                 | $1.7 \times 10^{-11}$      | $2.9 \times 10^8$                             |
|                     |                                                                                                               | 3.74 ( $\Delta\lambda=0.38$ )       |                 | $3.0 \times 10^{-14}$      | $6.7 \times 10^{11}$                          |
| SLSTR (Sentinel-3)  | Two detectors per channel. Each pixel is 200 μm square.                                                       | 10.85 ( $\Delta\lambda=0.9$ )       | 80              | $6.3 \times 10^{-13}$      | $3.7 \times 10^{10}$                          |
|                     |                                                                                                               | 12.0 ( $\Delta\lambda=1.0$ )        |                 | $4.4 \times 10^{-13}$      | $4.6 \times 10^{10}$                          |
|                     |                                                                                                               | 6.7 ( $\Delta\lambda=0.5$ ) assumed |                 | $1.4 \times 10^{-12}$      | $3.9 \times 10^{10}$                          |
| MODIS (Terra, Aqua) | Each band has a ten-element linear array. Pixels are 540 μm square.                                           | 8.5 ( $\Delta\lambda=1$ ) assumed   | 85              | $2.4 \times 10^{-12}$      | $2.3 \times 10^{10}$                          |
|                     |                                                                                                               | 14.2 ( $\Delta\lambda=1$ ) assumed  |                 | $4.2 \times 10^{-12}$      | $1.3 \times 10^{10}$                          |

# Scanning imaging multispectral radiometers

- Potential of higher temperature operation. This has yet to be demonstrated in the LWIR band.
- Potentially more rugged, longer lifetime.
- Potential for greater uniformity.
- Potential for greater stability.

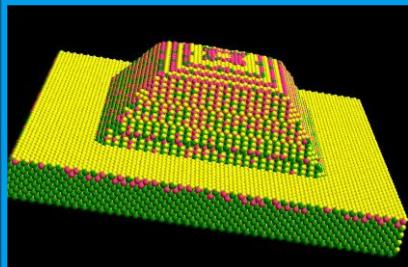
# Pushbroom imaging multispectral radiometers

| Instrument             | Detector format                                                                                                                                     | Bands (μm)                                                                                  | Array temp. (K)   | NEP (W/Hz <sup>1/2</sup> )                                                                                                           | Comments                                                                                                         |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| TIRS (LandSat-DCM)     | Requirement is 1x1850 pixels. Implemented as three 640x512 pixel arrays. Each pixel is 25 μm square. Bands defined by filters directly above array. | 10.8<br>12.0                                                                                | 43                | $6.7 \times 10^{-13}$<br>$5.6 \times 10^{-13}$                                                                                       | Calculated. Assumptions made on throughput & optical efficiency. Bandpasses assumed to be 1 μm.                  |
| MSI (EarthCARE)        | Requirement is 1x300 pixels per band. Implemented as a 384x288 pixel array. Each pixel on a 35 μm pitch.                                            | 8.8 ( $\Delta\lambda=0.9$ )<br>10.8 ( $\Delta\lambda=0.9$ )<br>12.0 ( $\Delta\lambda=0.9$ ) |                   | $2.2 \times 10^{-12}$<br>$\leftarrow 2.26 \times 10^{-12}$<br>$\leftarrow 1.89 \times 10^{-12}$<br>$\leftarrow 1.60 \times 10^{-12}$ | ← Calculated from quoted NETD<br>← Calculated required NEP. Assumptions made on throughput & optical efficiency. |
| IIR (CALIPSO)          | 320x240 pixel array. Only 64x64 pixels required. Each pixel is 51 μm square.                                                                        | 8.7 ( $\Delta\lambda=0.8$ )<br>10.5 ( $\Delta\lambda=0.8$ )<br>12.0 ( $\Delta\lambda=0.8$ ) | Integrated cooler | $8.5 \times 10^{-12}$<br>$5.6 \times 10^{-12}$<br>$4.6 \times 10^{-12}$                                                              | Calculated from quoted manufacturers NETD (f/1 optics, 30Hz frame). Actual image space f/# is 0.75.              |
| NIRST (SAC-D/Aquarius) | Two linear arrays, each 512x3 pixels                                                                                                                | 3.8<br>10.85<br>11.85                                                                       | Uncooled          | $4.6 \times 10^{-12}$<br>$6.5 \times 10^{-13}$<br>$5.4 \times 10^{-13}$                                                              | Calculated from quoted NETD and indications of bandwidth.                                                        |

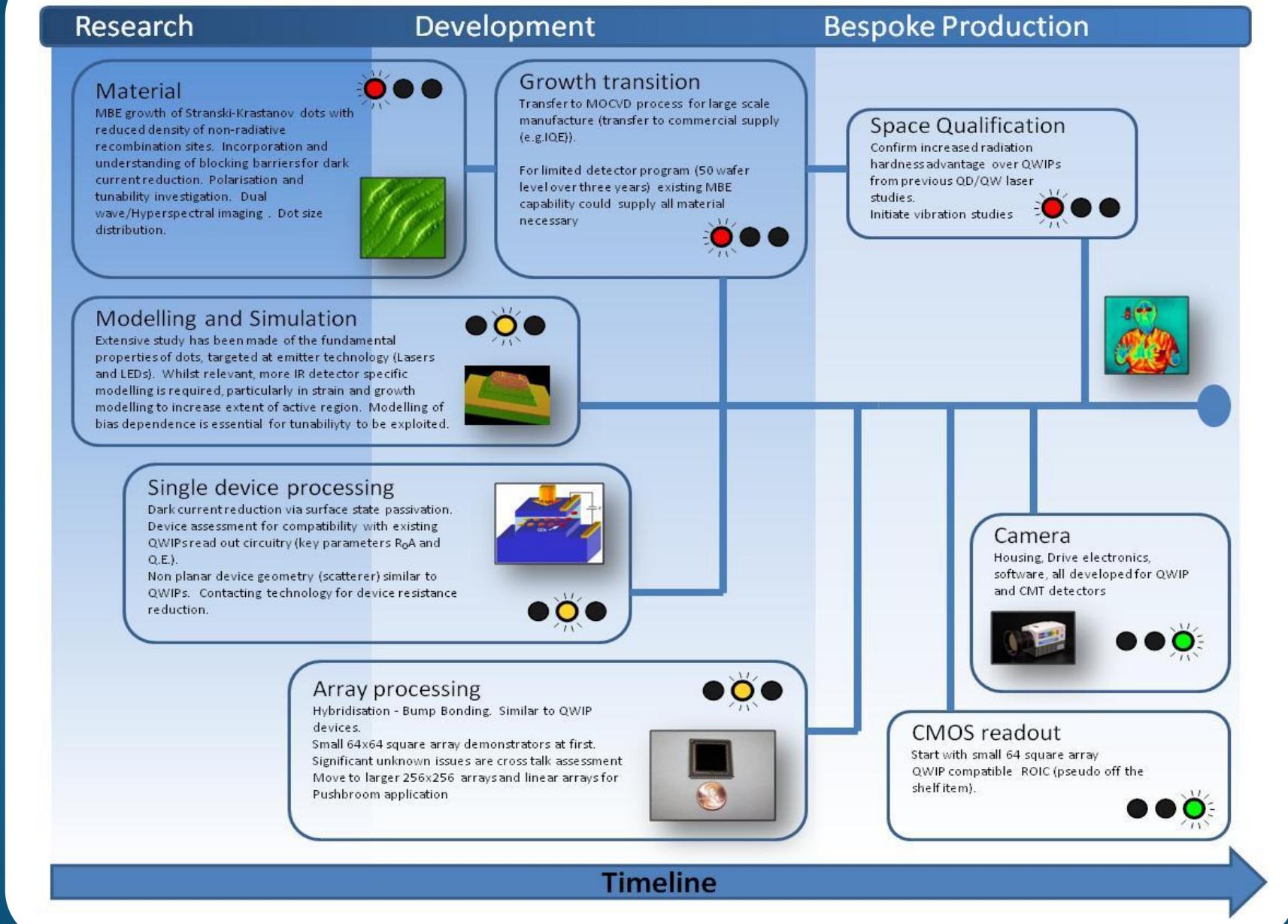
- QDIPs have sufficient sensitivity provided they can cover the necessary wavelength range.

# Space Qualification

# Space Qualification


- No specific studies on QDIPs.
- Predictions can be made due to similarities with QWIPs.
- QWIPs were used for the STRV-1d mission in 2000.
- QWIPs have been tested successfully for the Landsatt Data Community Mission.
- Since QWIPs can withstand the space environment it is probable that QDIPs can also.

# Conclusions

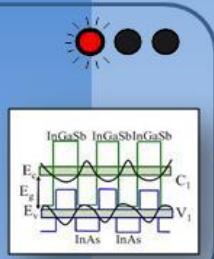

- At present QDIPs show modest performance.
- Performance predicted to rival leading TIR detectors if growth challenges can be overcome.
- Number of small advantages for using QDIPs to replace HgTeCd devices in scanning imaging multispectral radiometers.
- Potential for QDIPs to be used in pushbroom imaging multispectral radiometers.
- It is probable that QDIPs will withstand space environment and launch.

# Feasibility of using nanotechnology to improve TIR satellite imagers

Overview of Roadmapping : D4



# Quantum Dot Infra Red Photodetectors (QDIPs)




# Type Two Superlattices (T<sub>2</sub>SL)

## Research

### Material

Relating material defects to dark current studies  
Studies of material defects related to pixel uniformity  
New materials combination to reduce surface state leakage.  
Growth onto highly mismatched substrates via IMF layers



## Development

### Growth transition

Translation to higher capacity growth capability is low risk (already been done from MBE to MOCVD in a number of other (emitter) areas.  
Main study should focus on commercial viability commensurate with requirement and market need.



### Modelling and Simulation

Use of complex band structure modelling inherited from cascade laser studies to engineer more precise quantum state alignment.



### Single device processing

Low TRL study should critically be centred on the relation of material properties (defects) with device dark current. Study should evolve around issues such as surface passivation, including field effect gating which shows promise.  
Parameters limiting performance such as 1/f noise should be investigated.  
Investigation of novel designs such as barrier blocking designs, and new W and M structures



### Array processing

Very few FPA issues have been addressed, but the similarity to QWIP handling means this is medium TRL. Hybridisation by bump bonding similar to QWIP devices.  
Small 64x64 square array demonstrators at first moving rapidly to 256x256 arrays and larger.



## Bespoke Production

### Space Qualification

Confirmation of radiation hardness  
In particular focussing on the effect on surface leakage which for these devices could be critical



### Camera

Housing, Drive electronics, software, all developed for QWIP and CMT detectors



### CMOS readout

Start with small 64 square array QWIP compatible ROIC (pseudo off the shelf item).



Timeline

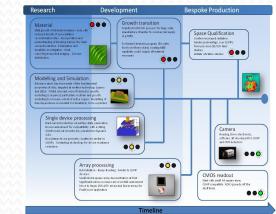
# EU Capability

- A number of ‘capabilities’ exist within the EU that can compete (technically) with the US.
- Selex Gallileo
  - Have developed infrared sensors for space applications (CMT)
  - Experience with producing QWIP sensors (GEC-Marconi Infra Red Laboratory – GMIRL)
  - *No III-V growth - would have to partner with growth facility (eg University of Sheffield in the UK)*
  - Little or no investment needed to produce array technology up to camera level.

# EU Capability

- Thales/Sofradir
  - Established partnership (Sofradir supplying QW material to Thales)
  - Existing QWIP camera marketed (Catherine-MP thermal imager)
  - *Need to develop QDIP material or partner*
  - Little or no investment needed to produce array technology up to camera level.
- AIM/Fraunhofer (IAF)
  - Partnership that already produces type II cameras
  - Well positioned to produce FPA devices for space application

# EU Capability


- IRnova (formerly part of Acreo) (Sweden)
  - Currently market QWIPs devices hybridised using FLIR readouts
  - Recent reports of type II devices (320x256)
  - *Currently Partner for Material supply*
  - Well positioned to provide III-V based FPA
- Xenics, (Belgium)
  - Currently Market cooled and uncooled thermal imaging cameras operating in the LWIR and MWIR wavebands.
  - Market QWIPs devices

# EU Capability - Key Point

- Only viable if there are **performance** or **cost** benefits
- **Still a niche market, and so partnering and hanging on existing technology is crucial. Very little joined up capability without state/government support, or parallel funding.**

# TRL - Status

- **However usually for new technology**



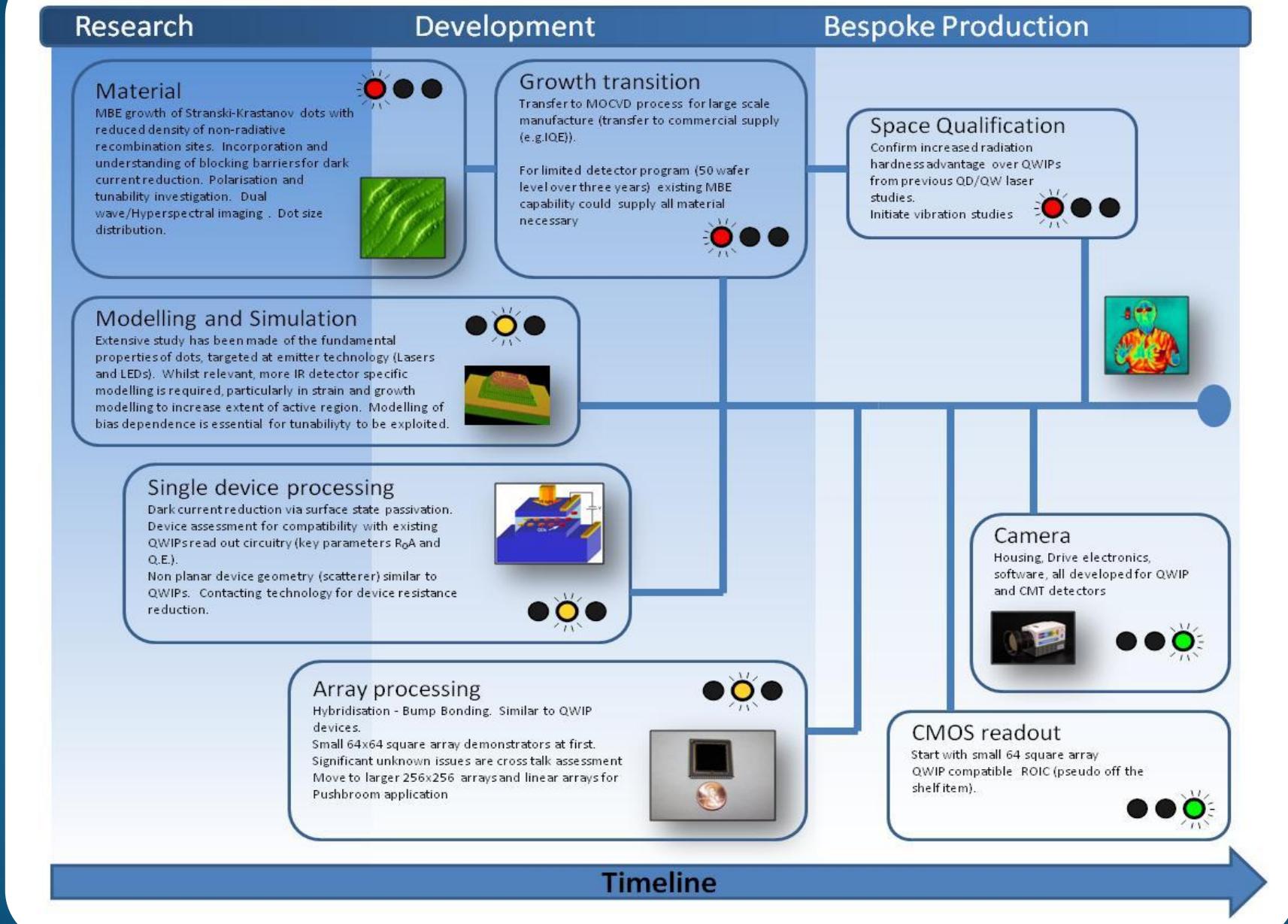
Supply Chain

Material

Devices

Systems

Products

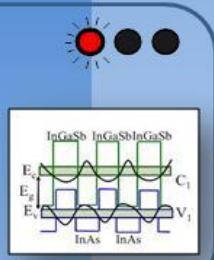

TRL<sub>7-9</sub>

TRL4-6

TRL<sub>7-9</sub>

This is not true for either of these technologies

# Quantum Dot Infra Red Photodetectors (QDIPs)




# Type Two Superlattices (T<sub>2</sub>SL)

## Research

### Material

Relating material defects to dark current studies  
Studies of material defects related to pixel uniformity  
New materials combination to reduce surface state leakage.  
Growth onto highly mismatched substrates via IMF layers



## Development

### Growth transition

Translation to higher capacity growth capability is low risk (already been done from MBE to MOCVD in a number of other (emitter) areas.  
Main study should focus on commercial viability commensurate with requirement and market need.



### Modelling and Simulation

Use of complex band structure modelling inherited from cascade laser studies to engineer more precise quantum state alignment.



### Single device processing

Low TRL study should critically be centred on the relation of material properties (defects) with device dark current. Study should evolve around issues such as surface passivation, including field effect gating which shows promise.  
Parameters limiting performance such as 1/f noise should be investigated.  
Investigation of novel designs such as barrier blocking designs, and new W and M structures



### Array processing

Very few FPA issues have been addressed, but the similarity to QWIP handling means this is medium TRL. Hybridisation by bump bonding similar to QWIP devices.  
Small 64x64 square array demonstrators at first moving rapidly to 256x256 arrays and larger.



## Bespoke Production

### Space Qualification

Confirmation of radiation hardness  
In particular focussing on the effect on surface leakage which for these devices could be critical



### Camera

Housing, Drive electronics, software, all developed for QWIP and CMT detectors



### CMOS readout

Start with small 64 square array QWIP compatible ROIC (pseudo off the shelf item).



Timeline

## Material

- Defect reduction research and understanding of non-radiative centres within the holding matrix, in particular time resolved luminescence measurements to study carrier relaxation mechanisms.
- Demonstration of saturated dot layers where the recapture length is less than the total device active layer thickness.
- Heterostructure engineering for resonant carrier escape mechanisms.
- Possible investigation into other growth modes that are better suited to uniformity

## Growth Transition

- Assessment of requirement for commercial quantity.

## Single Element Devices



- Novel geometries to enhance in plane absorption, similar to grating structures in QWIPs.
- Integration and investigation of Novel Plasmonic and Photonic Bandgap enhancement to absorption mechanisms (including the interaction of IR metamaterials with detector structures).
- Comprehensive examination of dark current mechanisms, origins and physical control.

## Theoretical Study and Device Modelling



- Tailored modelling for strain compensation to increase dot absorption layers, specifically for IR absorption.
- Specific modelling for plasmonic or metamaterial enhancement to detection process

## Focal Plane Arrays

- Cross talk studies of closely spaced (down to 15μm pitch) test arrays.
- Quantitative study of Pixel Uniformity for large arrays (→1024x768)

## Space Qualification

- Confirming radiation hardness of these devices.
- Initiate vibration study – expected to be the same as QWIPs

## Hybridisation

- No Significant Issues with current COTS technology
- Camera Electronics and Platform Housing

## Camera Electronics and Platform Housing

- No Significant Issues with current COTS technology

QDIPs

## Material



- The effect of dislocations on pixel operability and dark current
- Defect reduction research and understanding of non-radiative centres, in particular time resolved luminescence measurements to study minority carrier relaxation mechanisms.
- New strain relieving studies using IMF layers
- New material combinations to reduce surface conduction states

## Growth Transition



- Assessment of requirement for commercial quantity.

## Single Element Devices



- Reliable device passivation to eliminate/minimise surface leakage currents (dark currents)
- Develop novel mesa structures to minimise dark current/ sidewall leakage
- Investigate and progress novel gated structures to minimise dark current/ sidewall leakage
- Systematic study of 1/f noise in T<sub>2</sub>SL diodes

## Theoretical Study and Device Modelling




- Use band structure engineering developed for complex cascade laser designs to gain better predictive control of subband energies for complex T<sub>2</sub> designs (such as W and M structures)

## Focal Plane Arrays



- Growth onto large format GaAs material to enable III-V foundry processing to be utilised routinely

## Space Qualification



- Confirming radiation hardness of these devices.
- Initiate vibration study – expected to be the same as QWIPs

## Hybridisation



- No Significant Issues with current COTS technology

## Camera Electronics and Platform Housing



- No Significant Issues with current COTS technology

# Conclusion

- EU capability exists that has experience in III-V IR FPA
- No complete joined up capability (like the US)
- T<sub>2</sub>SL seem to be more advanced than QDIPs (more people actually supply these as current offerings)
- Gains can be made by low TRL materials and single device research, stimulating commercial chain.
- Exploit advantages (**Tunability**)

# Feasibility of using nanotechnology to improve TIR satellite imagers

Final review  
ESTEC 23<sup>rd</sup> November 2012

D5 final report outline

# What is required?

## 4.1.1. Final Report

The Final Report shall provide a complete description of all the work done during the study and shall be self-standing, not requiring to be read in conjunction with reports previously issued. It shall cover the whole scope of the study, i.e. a comprehensive introduction of the context, a description of the programme of work and report on the activities performed and the main results achieved.

## 4.1.4. Executive Summary Report

The Executive Summary Report shall concisely summarise the findings of the contract. It shall be suitable for non-experts in the field and should also be appropriate for publication. For this reason, it shall not exceed five (5) pages of text and ten (10) pages in total (1500 to 3000 words).

# We plan to provide:

- Final Report (D5) - Concise & informative summary of contract, as a standalone report
  - Summary of work carried out
  - Any deviations from SOW & reasons
  - Summaries & key conclusions of technical notes
    - Top-level descriptions of technologies, instrument types etc for a non-expert
    - Addressing all points in SOW
      - But in a clear and logical flow...easy reading!
    - Overall conclusions and recommendations
- And an executive summary – separate report - approx 5 pages.
- Format???