

Analogue Transformation Acoustics Covariant Methodology in Transformational Acoustics Executive Summary

Authors: Alberto Favaro¹, Martin W. McCall¹ and Paul Kinsler¹, Luzi Bergamin², Sante Carloni³

Affiliation: ¹Imperial College London, ²KBP GmbH, Fliederweg 10, 3007 Bern, Switzerland, ³Advanced Concepts Team ESTEC, PPC-PF, Keplerlaan 1, Postbus 299, 2200 AG Noordwijk, The Netherlands

Date: 11th September 2012

ACT research category: Physics

Contacts:

Martin McCall

Tel: +44(0)20 7594 7749

Fax: +44(0)20 7594 7749

e-mail: m.mccall@imperial.ac.uk

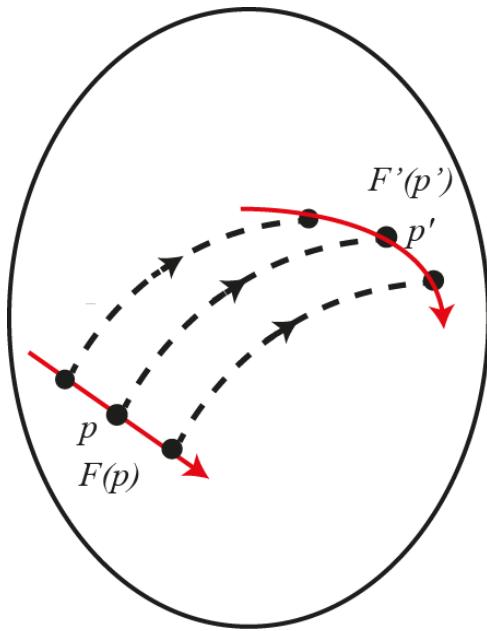
Leopold Summerer (Technical Officer)

Tel: +31(0)715654192

Fax: +31(0)715658018

e-mail: act@esa.int

Available on the ACT website


<http://www.esa.int/act>

Ariadna ID: 11-1301

Ariadna study type: Small

Contract Number: 4000104573/11/NL/KML

Picture:

Motivation:

Our goal was to understand how the principles of transformation optics, in which any well behaved deformation of space can be actualised by a suitable anisotropic, inhomogeneous medium, can be translated to the field of acoustics.

Methodology:

Taking electromagnetism as our paradigm, we sought to restate the underlying equations of acoustics with minimal a-priori assumptions on the underlying geometry. In particular, the role of the metric (which is almost completely dispensable in electromagnetics), was only introduced when necessary

Results:

- Rigorous transformation theorem for inertial media
- Rigorous transformation theorem for pentamode media
- Approximate (ray-based) recipe for relating any desired ray deformation to an index distribution

Publications:

Kinsler, P., McCall, M. And Favaro, "Transformation Acoustics, Transformation Mechanics: a general theory of transformation devices", AFPAC 2012, Brighton, 2012.

Kinsler, P. and McCall, M., "Transformation media: space and time, curvature and carpets", Metamaterials 2012, St Petersburg, 2012.

McCall, M., and Kinsler, P., "Transformation mechanics and transformation media", Photon 12, Durham, UK, 2012.

McCall, M., "Spacetime Cloaking", Invisibilité, Protection et Méta-matériaux, Workshop Scientifique au siège du CNRS, 2012

Highlights:

Geometrical (ray) transformation theory allows any desired ray deformation to be related to an index distribution. This can be applied to any theory in which a transport vector, $v(r) = \text{flux}(r)/[\text{energy density}(r)]$ is defined. For acoustics, the possibility exists for designing media that can acoustically cloak a given region, or deflect acoustic energy away from certain areas. Beyond acoustics, the theorem may find significance in areas such as heat and particle diffusion, and the manipulation of quantum waves.