

Asteroid Impact Mission

High Frequency Radar

Concept Design Study Executive Summary

Authors: A. Hérique¹, V. Ciarletti², B. Agnus², W.S. Benedix³, R. Hannel³, R. Hassen-Khodja², M. Laabs³, C. Le Gac², M. Mütze², D. Plettemeier³, Y. Rogez¹, P. Schaffer³, A.J. Vieau²

Affiliations:
(¹) *Univ. Grenoble Alpes, CNRS, IPAG*
(²) *UVSQ, UPMC, CNRS, LATMOS-IPSL*
(³) *Technische Universität Dresden*

ESA study manager: Christopher Buck

*ESA RFP IPL-PTE/FE yc/209.2015
Asteroid Impact Mission - High Frequency Radar Concept Design
ESA Contract No. 40000113829/15/NL/FE*

This contract was carried out within ESA's General Studies Programme and funded by the European Space Agency. The views expressed herein can in no way be taken to reflect the official opinion of the European Space Agency.

Alain HERIQUE
IPAG
BP. 53 - F38041 Grenoble
+33 476 51 41 73
alain.hérique@ujf-grenoble.fr

Valérie CIARLETTI
LATMOS
11 bd d'Alembert - F78280 Guyancourt
+33 180 28 52 64
valerie.ciarletti@latmos.ipsl.fr

PICTURE

MOTIVATION

This purpose of the study was to develop a high frequency radar to sound the first tens of metres of asteroid regolith and to achieve 3D tomography with metric resolution in order to

- Determine its structure and layering
- Identify geomorphological elements (rocks, boulders, etc.) embedded in the sub-surface
- Map the spatial variation its texture
- Derive an estimate of dielectric permittivity of the sub-surface material

This purpose of the phase A study was to:

- Revisit the instrument system analysis
- Optimize instrument design inheriting from WISDOM ExoMars

Define interfaces and programmatic in the frame of the Asteroid Impact Mission

METHODOLOGY

The HFR concept design study has been performed according to the following logic:

- Review of the AIM Mission science objectives and scenario
- Review of radar instrument concepts and HFR instrument baseline specifications
- Preliminary payload sub-system specification: analogue radio-frequency s/s, onboard digital processing, radar control s/s and antenna s:s
- Preliminary design of sub-systems
- Review, trade-off and selection of architectural design
- Payload interface studies: mechanical, thermal, electrical & power preliminary studies, data handling and operational modes
- Development of performance and signal quality tools
- Review of on-ground radar processing methods.
- Review of preliminary regolith and dielectric models
- Radar performance analysis with baseline specification and operational concepts.
- Programmatic analysis

RESULTS

HIGHLIGHTS

Demonstration of the instrument concepts has been made for the main objectives. A trade-off has to be made on secondary objectives during phase B, in particular those addressed by the Arecibo (Earth based observation cross-validation) and altimeter modes.

Hardware and software toolboxes have been developed to support the AIM phase B tasks for the consolidation and complete verification of the instrument design. The preliminary design study has shown the identification of specific open issues and, in particular, concerning the power amplifier solution. This will also be addressed in the next development phase B.

First inputs on AIM platform and HFR instrument interface iterations have been initiated.

A working and efficient prototype for synthetic aperture radar processing software is ready to use to continue the definition of operation concept and instrument performances.

PUBLICATIONS

A Hérique and the FANTINA Team, *A DIRECT OBSERVATION OF THE ASTEROID'S STRUCTURE FROM DEEP INTERIOR TO REGOLITH: WHY AND HOW?*, proceedings of 4th IAA Planetary Defence Conference – PDC 2015 - April 2015, Frascati, Roma, Italy.

A. Herique , V Ciarletti and the AIM Team, *A DIRECT OBSERVATION OF THE ASTEROID'S STRUCTURE FROM DEEP INTERIOR TO REGOLITH: TWO RADARS ON THE AIM MISSION*, Asteroid Impact Mission (AIM) Science Meeting, 1-2 March 2016, ESA/ESAC (Conference invitee)

Valerie Ciarletti and Alain Hérique, *RADAR OBSERVATIONS OF THE ASTEROID'S STRUCTURE FROM DEEP INTERIOR TO REGOLITH*, EGU 2016