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Summary Report for the project Operational Assimilation of
Space-borne Radar and Lidar Cloud Profile Observations for

Numerical Weather Prediction

M. Janisková and M. Fielding
ECMWF, Reading, U.K.

1 Introduction
Cloud radar and lidar measurements contain a wealth of information on the vertical structure of
clouds and precipitation. However, the only cloud-affected observations routinely assimilated in global
numerical weather prediction (NWP) models are microwave radiance observations, which contain
limited information on cloud structure. Observations providing vertical information on clouds from
space-borne active instruments on board of CloudSat (Stephens et al., 2002) and CALIPSO (Cloud-
Aerosol Lidar and Infrared Pathfinder Satellite Observations, Winker et al., 2009) are already available
and new ones, such as Earth, Clouds, Aerosols and Radiation Explorer (EarthCARE, Illingworth
et al., 2015) should appear in the near future. The EarthCARE mission (ESA, 2004) will provide the
vertically resolved characterization of clouds by the combination of lidar (Atmospheric Lidar, ATLID)
and a cloud profiling radar (CPR).

A number of studies, including the European Space Agency (ESA) funded project Quantitative
Assessment of the Operational Value of Space-Borne Radar and Lidar Measurements of Cloud and
Aerosol Profiles (QuARL, Janisková et al., 2010), have shown that observations of clouds from space-
borne radar and lidar are useful not only to evaluate the performance of current NWP models in
representing clouds, precipitation and aerosols, but they have also the potential to be assimilated
into these models to improve their initial atmospheric state. The subsequent study (STSE Study -
EarthCARE Assimilation, Janisková et al., 2014) focused on the development of an off-line system
to monitor/assimilate space-borne radar and lidar observations in clouds within the NWP model of
the European Centre for Medium-Range Weather Forecasts (ECMWF) in order to prepare for the
exploitation of radar and lidar observations in data assimilation. The studies using a technique com-
bining one-dimensional variational (1D-Var) assimilation with four-dimensional variational (4D-Var)
data assimilation provided indications on the potential that assimilation of cloud information from
active sensors could offer.

Inspired by the success of 1D+4D-Var experiments, the current project has focused on develop-
ments towards direct assimilation and monitoring systems to exploit cloud radar and lidar data for
their assimilation in NWP models. The direct (in-line) data assimilation and monitoring systems
developed during this project allow extended research studies beneficial for future applications of
EarthCARE ATLID and CPR data once available on the global scale.

2 Observation processing

2.1 Observation operator developments and updates
The observation operator is a fundamental part of data assimilation as it transforms model variables to
observations, thus allowing the model fit to observations to be assessed and improved. The observation
operators for radar reflectivity and lidar backscatter within the Integrated Forecasting System (IFS)
model were developed in two previous projects (QuARL, Janisková et al., 2010; and STSE Study
- EarthCARE Assimilation, Janisková et al., 2014), however in this current project they have been
updated for in-line assimilation, where operational constraints require a balance of efficiency and
complexity. There has also been a focus on consistency; the assumptions made in the observation
operators have been modified to be consistent with each other, and (as much as possible) consistent
with other forward models and parameterizations in the ECMWF 4D-Var assimilation and forecasting
systems. Without consistency, observation operators for different observation types could work against
each other, preventing the model initial state from getting closer to the truth.
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Two major updates were made to the operator to improve efficiency. The first was to introduce
a parameterization of the hydrometeor scattering properties. In the original version of the operator,
the scattering properties were found using a pre-computed look-up table as a function of temperature
and in-cloud water content. Through experimentation it was found that both radar reflectivity and
lidar backscatter could be approximated by a two-variable two-degree polynomial with six fitting
coefficients. Secondly a much more efficient way to handle cloud overlap was devised. By partitioning
the transmission into a cloudy and a clear column, similar results can now be obtained as from the
original multi-column method, which requires the computation of at least 20 sub-columns and is not
differentiable and therefore was used for monitoring and evaluation only. The development of the
double-column method allows cloud overlap to be specified in the data assimilation, which should
improve the assimilation of lidar in scenes with strong attenuation, such as multi-layer clouds.

Considering all the updates to the observation operator for radar reflectivity, Fig. 1 shows the
frequency distribution of radar reflectivity with temperature for CloudSat observations, the previous
version of the observation operator and the latest version of the operator. In particular, this figure
highlights the new particle size distribution chosen for stratiform rain Abel and Boutle (2012). The
new scheme’s shift towards smaller drops for smaller water contents results in a significant reduction
in radar reflectivity for water content less than 0.01 g m−3, providing a much better fit to observations.
Other modifications to the microphysical assumptions of the operator were designed to match those
in the IFS cloud scheme and with each other, such as changing the ice cloud particle habit.

Figure 1: Frequency distribution of observed and simulated radar reflectivity with temperature. Panel (a)
shows CloudSat observations for August 2007 after averaging at model resolution. Panels (b) and (c) show the
simulated reflectivity using the original and updated lookup tables, respectively.

2.2 Observation pre-processing
To enable the in-line assimilation of radar reflectivity and lidar backscatter within the ECMWF 4D-Var
assimilation system significant developments, both scientific and technical, were required. Firstly the
quality control and bias correction schemes needed to be refined and compared to those used in the
1D+4D-Var experiments.

2.2.1 Quality control and screening

Quality control and screening help to prevent observations that will have a negative impact on the
data assimilation analysis and subsequent forecast from entering the system. There are several reasons
that an observation may not have a positive impact; they may be unphysical, the forward model may
not be capable of representing the observation, or they may cause excessive non-linearities in the
observation operator. New screening indicators included the blacklisting of excessively attenuated
signals in the lidar backscatter, situations with radar multiple scattering and model levels with small
cloud fraction.
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2.2.2 Bias correction

Due to the updates in the observation operators and the new screening criteria, a new bias correction
scheme was required. A bias correction scheme is an important component of any data assimilation
system as it ensures systematic biases, which can have a detrimental impact on the analysis, are
removed. The bias correction scheme is based on indicators of height and temperature, thus provid-
ing an implicit regime dependence. Joint probability density plots of simulated and observed radar
reflectivity before and after the bias correction has been applied are shown in Fig. 2.

For the radar reflectivity, in a global sense, the difference between observations and model equi-
valent is remarkably unbiased and a strong correlation (a correlation coefficient of approximately 0.7)
is apparent. After bias correction, the slight underestimation of precipitation was corrected and the
overestimation of ice cloud reflectivity was reduced. For the lidar backscatter, the difference between
observations and model equivalent are greater and the correlation is less than seen for the radar re-
flectivity. An underestimation in the ice cloud (with first guess around -30 dBβ) was corrected by
applying bias correction.

The bias correction will need to be recomputed each time either the IFS model or the observation
operator is updated as both will affect any systematic biases present. However, as the framework has
been constructed, it should be straight-forward to generate, providing the changes do not warrant the
selection of different indicators. In an operational context, it would be desirable to use variational bias
correction where biases are automatically corrected within 4D-Var, but this would require at least six
months of stable observations and significant efforts to ensure the system was performing correctly.

(a)

(b)

Figure 2: Joint probability density plots of (a) simulated radar reflectivity and observed CloudSat radar
reflectivity, and (b) simulated lidar backscatter and CALIPSO lidar attenuated backscatter using observations
during September 2007. The left panel shows data before bias correction, while the right panel shows the
relationship after bias correction. Only data passing quality control are considered.

2.2.3 Observation error
To combine the observations and the model, the data assimilation system requires an estimate of the
observation error. Following the approach taken in previous projects, we assume that the observation
error is a function of measurement error, representativity error and forward model error. By computing
these constituent parts, a physically based estimate of the observation error is obtained. To model the
representativity error, a new technique is implemented that uses the local variability along the transect
combined with the climatological correlation. The new method has been validated using synthetic data
and MODIS radiances and has similar performance to a more complex method based on look-up tables
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(Stiller, 2010). To obtain estimates of forward model error, we use a Monte Carlo approach (similar to,
e.g., Kulie et al., 2010; Di Michele et al., 2012), where microphysical assumptions are perturbed within
their physical ranges. With all components combined, this physically based estimate of observation
error has the advantage of being independent from the model background errors and should give a
better estimate of the true observation error, thus optimising the observation’s use.

Figure 3 shows the mean observation error calculated for one month of CloudSat and CALIPSO
observations. For CloudSat radar reflectivity, representativity error tends to dominate over tropical
areas, while forward model error dominates the extra-tropics, particularly in stratiform regimes. Con-
versely, for CALIPSO lidar backscatter, the observation error tends to be less in the tropics as the
lidar has the smallest errors for regions associated with ice cloud, such as those formed by convective
outflow. The spatial magnitude of observation error for both CloudSat and CALIPSO also compares
favourably with the standard deviation of first guess departures.

Figure 3: A comparison of global maps of CloudSat radar (left side) and CALIPSO lidar (right side) mean
expected observation errors (sum of instrument, operator and representativity errors; top) versus the standard
deviation of first guess departure errors (bottom). The red ovals are to aid comparison.

2.3 Adjustments required for the EarthCARE observations
The CloudSat radar and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) lidar share
many characteristics of the EarthCARE CPR and ATLID and have been considered synonymous
for technical testing and feasibility studies. However, to assimilate the CPR and the ATLID with
scientific meaning, several modifications were required. For the radars, the main differences between
the instruments relate to the larger antenna of the CPR, which leads to greater sensitivity and reduced
multiple scattering. The CPR also detects the phase shift of signals, such that the Doppler velocity of
targets can be measured. For the lidars, the differences are potentially more significant; the wavelength
of the instruments are also different, which leads to different cloud and molecular scattering properties.
The smaller field of view of the ATLID also leads to reduced multiple scattering.

The main conclusions from adapting the forward models to EarthCARE specifications were firstly
that the CPR will detect significantly smaller hydrometeors (the 7 dB increase in sensitivity will detect
particles with up to 30% smaller radii), which should halve the number of clouds missed (particularly
ice clouds) and allow greater synergy with the lidar. Secondly, the sensitivity in total attenuated
backscatter is less for ATLID due to the increased molecular backscatter at 355nm compared to
CALIPSO. Finally, the effects of multiple scattering are likely be similar in the two lidars due to
compensating effects of ATLID’s narrower field of view, yet shorter wavelength.

Technical changes needed to process the EarthCARE data into a format that can be ingested
and used by the data assimilation system were also developed. Changes to the data selection, pre-
processing and screening were needed, particularly in relation to the cloud masks, which will not
be provided in the L1b raw data. Tests demonstrating the technical capability of the system to
assimilate EarthCARE data were made, making use of the A-NOM and C-NOM test data produced
using a high-resolution model and the EarthCARE Simulator.
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3 Data monitoring of cloud radar and lidar observations
Before any new observations are actively assimilated in the ECMWF 4D-Var system, they are passively
monitored, along with all assimilated observations, ensuring both the observations and model are
behaving as expected. Due to the vast quantities of data involved, the monitoring system at ECWMF
is automated, where selected indicators are checked against expected ranges. Alerts are automatically
triggered and sent to analysts for further investigation if the observations exceed these ranges. In
addition, alerts can be sent to other relevant parties, including instrument mentors, which could be
critical in detecting and correcting problems with satellite data in a timely manner.

To set up the automated monitoring system for cloud radar and lidar data, indicators were chosen
and statistics generated to set the expected ranges of the data. Figure 4 shows statistics for 12-hour
mean indicators of observation value only and the first guess departures for both radar reflectivity and
lidar backscatter. The hard limits, designed to detect drifts in the observations or model are set (red
dashed lines) using a threshold in the standard deviation. As the indicators’ distributions resemble
normal distributions, the data is suitable for monitoring and detecting errors.

To show the power of combining observations and model information within a monitoring system,
an experiment was carried out where artificial drifts were applied to CloudSat and CALIPSO data.
Figure 5 shows an example where a 1% decrease per day was applied to the CloudSat radar reflectivity,

(a)

(b)

Figure 4: Histograms of 12-hour global mean observations and their model equivalent between August - Septem-
ber 2007. Panels on left side show observations: (a) CloudSat radar reflectivity and (b) CALIPSO lidar at-
tenuated backscatter. Panels on right side show corresponding observation and model equivalent - mean FG
departures. The black dashed lines show the Gaussian distribution with the mean and standard deviation of
the data. The red dotted lines indicate 5 standard deviations from the mean.

(a) (c)

(b) (d)

Figure 5: Example of CloudSat (left) and CALIPSO (right) data within the automatic monitoring system
using observation-only indicators of global mean (a) radar reflectivity or (c) lidar attenuated backscatter and
using combined observation and model indicators of global mean first guess departures where a 1% per day
drift in observed (b) radar reflectivity or (d) attenuated lidar backscatter has been introduced at day 10.
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leading to a total bias of 3 dB after two months. No automatic alerts due to the drift were triggered
when considering observations only (Fig. 5a), whereas alerts were triggered around 30 days after
the bias was introduced when considering the combination of observations and model (Fig. 5b). A
similar conclusion was reached when considering the artificial drift in CALIPSO observations of lidar
backscatter (Fig. 5 c,d).

4 Data assimilation experiments for radar and lidar

4.1 Performed experiments
In order to study the impact of new space-borne cloud radar and lidar observations on analyses and
subsequent forecasts, the 4D-Var assimilation system used at ECMWF needed to be updated. This
required a lot of technical development, such as implementing the modifications and developments
to observation operators, observation error definition and data handling for observations (i.e. quality
control, screening and bias correction) as described in the previous sections. After technical testing of
the correctness of the updated system, 4D-Var assimilation experiments have been performed using
CloudSat cloud radar reflectivity and CALIPSO lidar backscatter. Using the full system of regularly
assimilated observations at ECMWF and assimilation cycles of 12-hours (i.e. the current length of
4D-Var assimilation window at ECMWF), several experiments have been performed over 10 days
covering 1-10 August 2007 period adding the new observations to the system. 4D-Var experiment-
ation has been done using a horizontal resolution of TCo639 spectral truncation (corresponding to
approximately 18 km on a cubic octahedral grid) and 137 vertical levels.

Several 4D-Var experiments have been run with different setups to study the impact of the new
cloud radar and lidar observations, either each of them separately or together and then without or in
combination with other regularly assimilated observations. The impact of observation error definition
on the performance has been also investigated. From obtained 4D-Var analyses, 10 day forecasts have
been run to study the impact of these new observations on the subsequent forecasts.

4.2 Summary of the results
4.2.1 Impact on the analysis

The performed experiments have shown that 4D-Var provides analysis departures closer to cloud radar
and lidar observations than would be obtained if these observations were not assimilated. Probability
distribution function (PDF) of the first-guess (FG) and analysis (AN) departures for the cloud radar
reflectivity and lidar backscatter shown on Fig. 6 for the different assimilation experiments (as specified
in figure caption) indicates that analysis including radar and lidar observations together with all other
normally assimilated observations provides better PDF distribution than the reference run. Obviously,
the most symmetric PDF shapes are achieved when assimilating just the new observations alone.

The fact that the analysis is drawn to the radar and lidar observations has been also demonstrated
by an along-track evaluation (Fig. 7 - 8) where the impact of individual clouds can be assessed.
As expected, the analysis provides a closer fit to the observations which is more pronounced for the
analysed radar reflectivity (Fig. 7c). The model is not drawn as strongly to cloud lidar backscatter
observations (Fig. 8c) perhaps due to ambiguities in generating the analysis increments; increasing
cloud amount at the top of the cloud to match the observations could also result in corrections of the
departures at the base of the cloud due to the increased attenuation of the modelled signal leading to an
excess of cloud in the model. Investigations will be done whether assimilating the whole profile rather
than just when there is cloud in both model and observations might help to solve this problem. But
overall, impact of the new observations on 4D-Var analysis when compared against own observations
based on statistics for 10 days of assimilating cycling further confirmed that analysis is getting closer
to these observations.

Verification of the performed assimilation runs has also been carried out against other assimilated
observation types in 4D-Var. The results indicated that mainly for conventional observations (such as
TEMP radiosonde, PILOT or AIREP observations), bias and standard deviations of the background
departures are overall marginally smaller in the experimental runs compared to the reference run not
using the new cloud radar and lidar observations (Fig. 9). The largest impact of these observations
is observed for wind. For all other types of observations assimilated in 4D-Var, no significant changes
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Figure 6: Probability distribution functions of the first guess departures before (black dotted line) and after
(black solid line) bias correction applied combined with the analysis departures for the reference experiment
(REF, red solid line), experiment assimilating cloud radar and lidar observations with all other normally
assimilated observations (ALL_RAD_LID, blue solid line), experiment assimilating cloud radar and lidar
observations only (RAD_LID, orange solid line) and assimilation using lidar observations only (LID, violet
solid line). Results are presented for (a) radar reflectivity and (b) lidar backscatter departures (dB) over the
whole globe. Situation 2007080100 with 12-hour assimilation period between 31 July 2007 21:00 UTC and
1 August 2007 09:00 UTC.
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Profiles

Figure 7: Cross-sections of radar reflectivity related variables corresponding to the portion of orbital track
(21:00 UTC 31st July 2007). Panels show (a) observed CloudSat radar reflectivity (dBZ), (b) model equi-
valent (FG) radar reflectivity using the model background (dBZ) and (c) model equivalent (AN) radar re-
flectivity using the model analysis from the assimilation experiment using all observations with radar and lidar
(ALL_RAD_LID). Note that the first guess radar reflectivity is only displayed where there are hydrometeors
detected in both model and observations. To elucidate the position of the model clouds, the first-guess model
cloud boundaries are shown in grey.

have appeared when considering FG and AN departure statistics. Generally, it is not easy to achieve
a significant improvement in the experimental run compared to the reference one over a domain well
covered by a large amount of other measurements. Therefore any improvement is encouraging since
it indicates a potential benefit from assimilating cloud information.

4.2.2 Impact on the subsequent forecast

Assimilating cloud radar and lidar was shown to reduce forecast errors, particularly in temperature
and wind. The evaluation of the impact of the assimilation of cloud radar and lidar observations
on the skill of subsequent forecasts has been done in terms of differences in the root-mean-square
(RMS) forecast error between the forecasts starting from analysis assimilating these new observations
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Figure 8: Same as Fig. 7, but for CALIPSO lidar backscatter.
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Figure 9: Normalised standard deviation (left) and bias (right) of background (solid line) and analysis depar-
tures (dotted line) with respect to TEMP (a) zonal wind and (b) temperature observations for the reference
run (REF, red) and experiment assimilating in addition cloud radar reflectivity and lidar backscatter obser-
vations (ALL_RAD_LID, black) using double observation errors. The number of observations for REF
experiment (nobsRef) for the period 1 August 2007 00:00 UTC - 10 August 2007 12:00 UTC is displayed in the
middle together with negative red and positive black numbers indicating how many less or more, respectively,
observations are used by the ALL_RAD_LID run. Results are shown for the whole globe.

and the forecast starting from the reference analysis. Both experiment’s forecast errors have been
computed with respect to the operational analysis. Zonal means of these RMS error differences are
shown for temperature and zonal wind in Fig. 10 for one assimilation cycle with the analysis time
00:00 UTC 1 August 2007. The forecast generated using the experimental analysis shows an increase
in forecast skill of temperature and wind, with the greatest increases in three regions; one in the
Northern Hemisphere extra-tropics, one just north of the equator corresponding to the Inter-Tropical
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Convergence Zone (ITCZ), and a third in the Southern Hemisphere extra-tropics. These three regions
correspond to locations with the greatest quantity of cloud and hence radar and lidar observations.

Investigation of the forecast skill by verification of the forecast against operational analyses also
indicated that while the radar provided the largest impact on forecast errors, assimilating both radar
and lidar has the greatest total benefit to the forecast.

90°S60°S30°S0°N30°N60°N90°N

200
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1000

Temperature T+48(a)
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Figure 10: Zonal mean of differences of (a) temperature (K) and (b) wind (m s−1) RMS errors for the
differences between the 48-hour forecasts starting from analysis created by 4D-Var assimilation of cloud radar
reflectivity and lidar backscatter observations with doubled observation errors and the operational analysis and
between the forecast starting from the reference analysis and the operational analysis. Situation 2007080100
with 12-hour assimilation period between 31 July 2007 21:00 UTC and 1 August 2007 09:00 UTC. Reduction
(resp. increase) of RMS errors for the experimental run is shown with blue (resp. red) shadings.

In addition to verifying forecast against model analyses, verification against observations has been
also done. Based on 10-day assimilation cycling, forecast departures with respect to TEMP (radio-
sonde) observations (Fig. 11) indicated an increased skill in predicting tropospheric winds in the
experimental run compared to the reference run for the 24 hour forecasts in the Northern hemisphere,
where the observations are densest. The skill in 48 hour forecasts is reduced, but still comparable to
the reference forecast. Statistics for the tropics and the Southern hemisphere are noisy, suggesting
significantly more assimilation cycling is required to draw any significant conclusions. A similar pat-
tern of increased skill in the shorter term forecasts relative to the reference has be seen in radiosonde
temperature observations with the greatest improvements in the Southern hemisphere.

Assessment of rain rates in the tropics using independent observations from TRopical Measurement
Mission (TRMM) has shown that the RMS in short-term surface rain rate forecasts over the tropics
compared to TRMM is reduced by around 2 % when assimilating CloudSat radar reflectivity and
CALIPSO lidar backscatter (Fig. 12). The RMS was reduced a further 1 % when using the forecasts
initialised with the double error analysis, in agreement with the improved fit to other observation
types (e.g., radiosonde) when using double errors.

5 Conclusions
The main objectives of the project was to develop the tools and structure to enable routine EarthCARE
radar and lidar observations of clouds to be assimilated in the ECMWF NWP model and to prepare for
the real-time monitoring of the observations to detect instrument degradation or errors. This required
adjustments of assimilation tools, such as the observation operators, observation error definition,
quality control, data screening and bias correction. Several key advances have been made, including a
new fast way to account for cloud overlap, increases in operator efficiency and a wholly flow-dependent
specification of the observation error.

Based on the in-house automatic monitoring system, data monitoring experiments for cloud radar
and lidar observations using CloudSat and CALIPSO data have suggested that the skill of monitoring
system to detect a degradation in the quality of observations is improved when the FG departures are
used compared to using just observations alone.

The performed assimilation studies have demonstrated the potential which assimilation of cloud
information from active sensors could offer. The feasibility to assimilate such observations directly
into 4D-Var system in the global scale has been demonstrated for the first time, with improvements
in forecast skill shown for temperature and wind. Gaining benefit on forecast skill by including new
observations into a well-established observing system is extremely difficult, so the results presented here
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Figure 11: Normalised standard deviation of forecast departures with respect to TEMP (radiosonde) ob-
servations for 24h (solid line) and 48h (dotted line) forecasts for the experiments assimilating cloud radar
reflectivity and lidar backscatter using double observation errors and combined with all other routinely assimil-
ated observations. Results are presented for (left) Northern Hemisphere, (middle) Tropics and (right) Southern
Hemisphere and for (a) temperature and (b) zonal wind. The number of observations (nobsRef) for the period
4 August 2007 00:00 UTC - 10 August 2007 12:00 UTC is shown at the right side of each profile.

Figure 12: RMS error between TRMM and forecast near-surface rain rates for varying forecast lead times of up
to 3 days. Statistics are generated from forecasts initialised at 00:00 UTC and 12:00 UTC using the reference
analysis (REF; blue) and all observations analysis (ALL_RAD_LID; red). The solid lines indicate a
12 hour averaging window, while the dashed lines indicate a 24 hour averaging window.

are extremely promising and warrant the opening of many avenues of further research that were not
able to be explored here. The sensitivity of the results to the prescribed observation error was shown
to be large and it is envisaged that relatively easy gains in forecast skill would be achievable through
careful tuning. The behaviour of the assimilation system for different regimes, for example the effect of
cloud radar and lidar on convective situations, requires further work and could result in improvements
in the forward operator assumptions or screening criteria. No attempt was made to optimise the
pre-processing of the observations, so investigations of the averaging scale and possible thinning of
the observations in both the horizontal and vertical would be beneficial. Finally, investigation of the
synergistic benefit of cloud radar and lidar observations to other observation types related to clouds, in
particular the all-sky radiance assimilation framework used at ECMWF, is worthy of further research
in the future.
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