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1 Introduction

With the launch of the first Sentinel satellites, a new era in Earth Observation has started
that allows for the development of new approaches that use these novel observations at
high temporal frequencies and fine spatial resolution with complementary information
from the optical and microwave spectral domains. One very important application for
is the monitoring of crops.

Optical remote sensing of crops and crop yields has a long history, stretching back as
nearly far as the advent of satellite remote sensing itself (e.g. Idso et al. 1977, Tucker
1980). Most early examples use vegetation indices (primarily NDVI — the Normalised
Difference Reflectance Index) from AVHRR or Landsat data and calibrate empirical
relationships with variables such as yield or leaf area. Indeed, even today the majority
of studies using optical remote sensing data to monitor crops continue to focus on the
use of vegetation indices. For example, NDVI for yield determination in soybean (Liu
and Kogan, 2002), PVI for determining faPAR in corn (Weigand et al. 1986), LAI from
RVI in maize (Gardber and Blad, 1986) and TSAVI for determining green crop area in
wheat (Broge and Mortensen, 2002). Vina et al. (2011) compared a large number of
vegetation indices to estimate the leaf area index of maize and soybean and found that
those designed to be sensitive to chlorophyll concentration (e.g. the MERIS Terrestrial
Chlorophyll Index, MTCI) gave the best predictions. The advantage of these and similar
techniques is that they are relatively straight forward to apply and computationally
cheap to implement. In principle they give reasonable results for the areas and cover
types over which they were calibrated. However, their major shortcoming is that with
little or no underlying physics they are not generalizable beyond the areas which they
were calibrated and applications on an appreciable scale are unlikely to yield accurate
results. In particular such techniques are not amenable to combining data from different
sensors and different domains of the electromagnetic spectrum. If we want to combine
data from optical sensors such as Sentinel-2 with SAR sensors such as Sentinel-1 some
form of physically based model will be required.

Examples of crop remote sensing using physical models of radiative transfer in the
optical domain are far less numerous than those using empirical techniques. One ap-
proach that has been used by a number of authors is to use a vegetation canopy radiative
transfer (RT) model to calibrate the vegetation indices. Féret et al. (2011) used the
PROSPECT-5 model to develop relationships between spectral indices and leaf pigment
concentrations using partial least squares at the leaf level. The study included maize
and soybean crops as well as a number of tree species. They showed that it is possible
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to construct simple polynomial relationships that describe a large amount of variability
in the data – however it is likely to be more complex when moving to a full canopy due
to the influence of soil optical properties and the physical structure of the canopy.

The retrieval of biogeophysical parameters over agricultural landscapes also has a
long tradition in microwave remote sensing. The general challenge is the separation of
the different contributions of surface properties to the Synthetic Aperture Radar (SAR)
signal. These typically comprise components such as soil moisture, surface roughness,
vegetation water content and vegetation structural effects and need to be disentangled
during a retrieval process.

Unlike in the optical domain there has been a greater focus on physical modelling
for SAR applications. Attempts to describe the backscattering from vegetation covered
areas have been made since the late 1970s. They have evolved from the simple “cloud”
model of Attema and Ulaby (1978) to multilayered, multi-constituent models like the
MIchigan MIcrowave Canopy Scattering Model (MIMICS) proposed by Ulaby and Elachi
(1990) or the radiative transfer model of Karam et al. (1992). More complex radiative
transfer (RT) models have been developed to take into account the 3-dimensional canopy
structure (e.g. Floury, 1999; Martinez et al. (2000); Disney and Lewis (2003); Lewis et al.
(2003); Bracaglia (1995)). Some examples of empirical indices from SAR data also exist.
Kim and van Zyl (2001) proposed the Radar Vegetation Index (RVI), which is sensitive
to the fresh biomass and vegetation water content (Kim and Won, 2003).

Usually vegetation biomass and LAI over agricultural fields is estimated from SAR
data at high frequencies. However, from the SIR-X/C as well as multi-frequency air-
borne campaigns knowledge exist that L-band backscattering exhibited a high sensitivity
to vegetation biomass of crops characterized by large leaves (e.g. corn and sunflowers);
whereas higher frequencies (C and X bands) showed good agreement with the develop-
ment of plants with narrow leaves (e.g. wheat) (Ferrazzoli and Guerriero, 1996; Mattia
et al., 2003). Mattia et al. (2003) used ENVISAT ASAR data for the retrieval of fresh
biomass and LAI values over wheat fields by means of the HH/VV ratio and Satalino
et al. (2006) used the same approach for the retrieval of LAI and compared results with
LAI derived from in-situ data. They concluded that LAI can be retrieved with the same
accuracy as with optical (MERIS) data. McNairn et al. (2012) used Radarsat2 data
for the retrieval of LAI data and concluded that, similar to Mattia et al. (2003), the
co–pol ratio as well as the HV/VV ratio and HV backscatter is a good estimator of
LAI. However, with the availability of fully polarimetric data, they suggest the usage
of H from the H, A, alpha decomposition as well as the volume component from the
Freeman-Durden decomposition for the retrieval of LAI. Paloscia et al. (2012) used dual
frequency X- and L-Band data for the retrieval of plant moisture content. Using an
empirical model combining L-Band HH- pol and X-Band VV-pol backscatter values in
dependency of the growth structure of the plants, they inverted plant moisture content
within a for the season expected range and accuracy.

The advent of Sentinel–1 and Sentinel–2 in orbit at the same time provides an ex-
citing opportunity to develop new retrieval technique to exploit the synergy’s between
the microwave (specifically SAR) and optical domains. Because of a historical lack of
contemporaneous observations in these domains the combination of SAR and optical
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instruments for crop monitoring is less common than the use of either one on its own
but the potential of this combination to provide information to crop models is significant
as the two types of observations contain very different and complementary information.
Prévot et al. (2003) present one of the few examples; they used PROSAIL and the zero
order SAR model of Attema and Ulaby (1978) to assimilate both optical and SAR data
into the STICS crop model. A small number of parameters were retrieved: the sowing
date, duration of maximum LAI, the field capacity of the first soil layer and parameters
that control stem density and evaporation. Interestingly the authors note that whilst
the optical data improved the model outputs the SAR data did not improve the model
performance. They suggest that the main reason for this is that the relatively low vol-
umes of SAR data available made it difficult to characterise the soil moisture correctly.
There is clearly the potential to improve on this situation: with the advent of Sentinel-1
the amount of SAR data available will be much greater and newer data assimilation
techniques are capable of dealing with a larger number of parameters.

This paper examines synergistic retrievals from Sentinel–1 and Sentinel–2 data by
inverting coupled optical and microwave radiative transfer models. The retrieval of the
actual state of the land surface is typically an undetermined problem. The number of
observables is typically much smaller than the number of unknown parameters in both,
the optical and SAR domain. However, the SAR and optical data contain complementary
information that can be exploited by advanced retrieval algorithms.

2 Data and methods

2.1 Satellite Data

Sentinel–1 and Sentinel–2 data were downloaded from the Sentinel data hub API for
the sites described in Section 2.2. For Sentinel–2, level 2a surface reflectance data were
acquired, resampled to a common spatial resolution and co–registered with the Sentinel–
1 data using the ESA SNAP toolbox. Cloudy pixels were eliminated based on the level
2a internal cloud mask. No further pre–processing was carried out on the Sentinel–2
data.

Additional pre–processing steps for Sentinel–1 data, all using the SNAP toolbox,
included thermal noise removal, radiometric correction, backscatter normalisation to
account for changes in incidence angles across the swath and speckle filtering using a
multi–temporal Lee filter.

2.2 Field Data

Field data were acquired as part of the Munich North Isar (MNI) campaign which takes
place in farmland to the north of the city of Munich (Germany). The MNI fields used
in this study are labelled 508, which is growing wheat, 515 which is goring maize and
542 which its growing triticale which is a hybrid of wheat and rye. For each field three
points were sampled and are labelled in this manuscript as “low”, ”mid’ and ”high”
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Figure 1: Sentinel–2 NDVI images of the three fields used in this study. From left to
right they are growing wheat, maize and triticale. The images were acquired
on the 26th of June 2017.

representing their position from South to North, The campaign started end of March
2017 and continued until harvesting of the corresponding crops. Measurements of leaf
area index (LAI) and soil moisture were been carried out at the sampling locations
indicated in Figure 1. LAI was measured using a Li–Corr LAI2000 instrument. Each
sampling locations is equipped with a data logger (Decagon EM50) and probes (Decagon
5TM) that measure the soil moisture dynamics in 5cm, 10cm and 30cm depths with two
repetitions each.

2.3 Radiative Transfer models

2.3.1 Optical Radiative Transfer

The Semi Discrete model of N. et al. (1997) represents canopy reflectance via the addition
of three terms:

ρcanopy = ρ1(z0,Ω,Ω0) + ρ0(z0,Ω,Ω0) + ρM(z0, µ, µ0) (1)

where ρcanopy is the canopy reflectance, ρ1 is the reflectance from photons that have had
a single interaction with the canopy ρ0 is the reflectance due to photons that have only
interacted with the soil and ρM is the reflectance due to photons that have had multiple
interactions within the canopy, possibly including the soil. The BRDF is controlled by
the first two terms and the third is assumed to be isotropic. A hotspot term is added
into ρ1 and ρ0 to account for the enhanced probability of a photon exiting the canopy if
it leaves along the same or similar path via which it entered. Leaf optical properties are
prescribed using the PROSPECT model (Jacquemoud and Baret , 1990) and soil optical
properties via the model of Price (1990). PROSPECT parameters were held constant at
typical values for healthy cereal crops. In addition a very simple model of the impact of
soil moisture on the first component of the Price reflectance spectra was included such
that

ρ∗s1 = ρs1(1 − 0.5θm), (2)

where ρs1 is the first orthogonal component reflectance spectra from the Price model,
θm is the soil moisture and ρ∗s1 is the modified reflectance spectra. The effect of this
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modification is a first order approximation to make the soil darker when it is wetter.
To convert from the top–of–canopy reflectance spectra computed by the Semi–discrete

model to the wave bands of Sentinel–2 the model outputs were convolved with the
spectral response functions of the instrument.

2.3.2 Microwave Radiative Transfer

For the microwave domain, the semi-empirical single scattering radiative transfer model
developed by De Roo et al. (2001) is used to model the backscatter values of Sentinel–1.
The total single-scattering pq-polarized backscattering coefficient is expressed by the
following equation:

σ0
pq[m

2/m2] = σ0
gpq + σ0

cpq + σ0
gcgpq

+ σ0
cgpq

(3)

where each component represents a different scattering mechanism. For a particular
-polarization configuration, these components are: σ0

gpq , the direct backscatter contribu-

tion of the underlying soil surface (including two-way attenuation by the canopy); σ0
cpq ,

direct backscatter contribution from the canopy; σ0
gcgpq

, ground–canopy–ground scatter-

ing contribution and; σ0
cgpq

, the combined ground–canopy and canopy–ground scattering

contribution. For the soil backscattering term, σ0
gpq , the model of Oh et al. (1992) is

used. The other components are modelled as a uniform water cloud following Attema
and Ulaby (1978).

2.4 Retrieval Algorithm

To link a satellite observation to the state of the land surface, si, at acquisition time ti
we need a forward model or observation operator Kaminski et al. (2017), that simulates
the satellite observations given si. In our case, the observation operators for S1 and
S2 are provided by the models described in sections 2.3.2 and 2.3.1 respectively. We
denote these observation operators by Hb(si, xb, gb) and Ho(si, xo, go), using the index b
for backscatter and o for optical. The vectors xb and xo denote uncertain parameters
in the formulation of the respective observation operators while gb,t and go,t are known
variables, for example sun–sensor geometry. We formulate the retrieval by concatenating
the unknown sequence of states si at all times ti into one long vector s, the state
trajectory. We also introduce a dynamic model that we will use to help constrain the
solution. If the model was perfect, M would fulfill the equation

0 = M(s) − s (4)

We represent each of the above four pieces of information by a probability density
function (PDF), with respective means b (for backscatter), o (for optical), p (prior),
and 0 (for the devation of M(s) from s) and respective covariance matrices C(b), C(o),
C(p), and C(m) which quantify the respective uncertainties. We note that Cb and Co

include the uncertainty that arises from errors in the respective observation operators
that cannot be corrected for by perfect state and parameter values.
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For a compact notation we assemble all unknown quantities, i.e. the trajectory s and
the parameters in the observation operators xb and xo into one long vector x̃ that we
call the control vector. The retrieval is then achieved by find x̃ that minimises the cost
function

J(x̃) = Jb(x̃) + Jo(x̃) + Jp(x̃) + Jm(x̃), (5)

which is the sum of four contributions, one dedicated to each piece of information:

Jb(x̃) =
1

2

∑
i=1,nb

(Hb(s̃i, x̃b, gb) − bi)
TC(b)−1(Hb(s̃i, x̃b, gb) − bi), (6)

where nb is the number of S1 acquisitions;

Jo(x̃) =
1

2

∑
i=1,no

(Ho(s̃i, x̃o, go) − oi)
TC(o)−1(Ho(s̃i, x̃o, go) − oi), (7)

where no is the number of S2 acquisitions;

Jp(x̃) =
1

2
(x̃− p)TC(p)−1(x̃− p); (8)

Jm(x̃) =
1

2
(M(s) − s)TC(m)−1(M(s) − s). (9)

In our implementation we keep the dynamical model both simple and generic, and
we deliberately allow the solution to infer a state vector that deviates from the model
prediction. Such an approach is often called “weak-constraint variational” (Zupanski ,
1997) in contrast to variational approaches that exclude deviations from the model tra-
jectory, i.e where the model equations act as a strong constraint on the minimisation
problem. The advantage of the weak-constraint approach (in particular with high un-
certainty C(m)) is that it leaves high flexibility to fit the sentinel observations. In other
words, our trajectory will be primarily determined by sentinel observations rather than
by the dynamical model, i.e our output will be primarily an EO product rather than a
model output constrained by observations.

The form of the model used here follows that of Lewis et al. (2012), who use a simple
linear (more precisely a simple affine) model:

M(s) = As+ b , (10)

where the model parameters (i.e. the matrix A and the vector b) can be specified to
suit a particular problem. In the following retrievals we set A = I and b = 0 which
equates to a simple zero-order model (“today is like tomorrow”). The consequence of
using a model formulation like this is that it imposes a degree of temporal smoothness
on the results, but also allows the information from each observation to influence the
retrievals at other time steps. This is analogous to the temporal constraints on linear
BRDF inversion described by Quaife and Lewis (2010).
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3 Results and discussion

3.1 Retrievals

Figure 2: Comparisons of the retrievals for Sentinel–1 (left hand column) and Sentinel–
2 (middle column) individually and jointly (right habd column). Field 508,
“mid” sampling point. Stars indicate field observations. Dark points retrievals
at Sentinel–2 acquisition times and light grey points retrievals at Sentinel–1
acquisition times.

For each of the evaluation points in described in 2.2 we compare retrievals of leaf
area index and soil moisture for Sentinel–1 and Sentinel–2 separately and combined.
Figure 2 shows the results for each of these combinations for the mid point of field
508. The general pattern here is indicative of the results for each of the evaluation
locations and the full results are summarised using Taylor diagrams in Figure 5 and 6
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and described later in this section. Sentinel–1 only retrievals tend to capture the mean
soil moisture reasonably well but the variability, especially later in the growing season,
is not well correlated with the field observations. We hypothesise that this is due to the
poor representation of LAI in the in the retrieval, which is very poorly correlated with
the field observations and is biased low for most of the growing season. The retrieval
algorithm is adjusting the soil moisture to be too high to compensate for the low LAI.
This is perhaps unsurprising and suggests a level of equifinality between the two variables
in the SAR signal. The Sentinel–2 only retrievals show a much stronger correlation with
LAI, representing the phenology of the crops well, with a small bias in the order of
1.0 LAI units. The soil moisture appears to represent the mean well but this is not
borne out across all of the data points (see Figure 5) where in general the RMSE and
correlation of the Sentinel–2 only soil moisture results is poor. For the joint retrieval
the LAI matches very well. The influence of Sentinel-2 on the on the retrievals pulls the
Sentinel–1 results into line via the dynamic model that is implemented in the retrieval
algorithm. In turn this allows the soil moisture to take on a more realistic temporal
evolution, albeit somewhat biased high and not exhibiting sufficient variability in this
example.

Figures 3 and 4 show the joint retrieval results for each of the evaluation points for
leaf area index and soil moisture respectively. For LAI the results are consistently good,
in particular for fields 508 and 542. The phenological profile is well captured despite the
fact that this is somewhat different between the fields. Field 542, for example, which
is growing triticale starts its green up weeks later than the wheat growing in field 508
and this is well captured by the satellite data. Field 515 shows a positive bias in the
retrieval results, which then appears to become unbiased toward the end of the season.
The same is observed in the “mid” point of field 542. A consistent pattern observed
for the wheat field is that the ground observed LAI appears to slow its decline toward
the end of the season, whereas the retrieved LAI continues to reduce. This could be
due to the effective LAI of the retrieval being reduced to compensate for a yellowing
of the wheat foliage as the plant becomes senescent, where as the optical measurement
technique used to estimate the LAI relies only on the amount of light intercepted and
is hence to sensitive to changes in the leaf colour. However this pattern is not observed
in the maize or triticale measurements and both of these species yellow as they pass
maturity in much the same way as wheat.

Statistical summaries of the results for all nine points and the three possible combi-
nations of sensors entering the retrievals are shown in Figure 5 for LAI and Figure 6 for
soil moisture using Taylor diagrams (Taylor, 2001). The Taylor diagram allows for easy
comparison of multiple experiments. The relative standard deviation of the retrievals to
the ground observations is on both the x–axis and y–axis and increases radially from the
origin. Correlation is shown on the polar axis such that the smaller the angle between
a point and the horizontal axis the more correlated it is with the observations. Because
there is an algebraic relationship between the relative standard deviation, correlation
and RMSE it is also possible to plots the RMSE on the Taylor diagram; these are the
radial contours the emerge from the 1.0 point of the x–axis. For LAI the Taylor diagram
shows a clear picture. The Sentinel–1 only retrievals have very poor reproduction of
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the variability in the ground–truth data and the RMSE is > 0.75 for all experiments.
The Sentinel–2 only retrievals over–estimate the variability in the observations, but tend
to have a correlation better the 0.8 and an RMSE > 0.5. For the joint retrievals the
results are better than the individual cases for all points with RSME always less than
< 0.5 and a correlation of better than 0.95. The Taylor diagram for the soil moisture is
less clear. The join retrievals tend to have a a lower RMSE and higher correlation than
the retrievals from either Sentinel on its own but this is not always the case. The joint
retrievals also appear to suppress the variability quite significantly in most cases, where
is the individual retrievals tend to contain too much variability.

3.2 Future work

One aspect of the current study that can clearly be improved upon is the inclusion of
other variables from the respective radiative transfer models to be included in the re-
trieval. This was not attempted during this study as the complexity of the overall system
was already high and our objective was to gain confidence in the LAI and soil moisture
retrievals. Arguably the next most important variable to consider would be leaf water
content as this has an impact on both the microwave signal and the short–wave infra red
channels of Sentinel–2. We suggest that this should be the next step forward in similar
studies looking to exploit synergies between these two Sentinel missions. Including leaf
pigments such as chlorophyll should also be a priority and may help to improve retrievals
as plants become senescent.

Prior probabilities required as inputs to the retrieval algorithm described in Section 2.4
in this study were assigned on the basis of expert elicitation, which is common practice
in Bayesian inference, but more analytical methods could be employed for this purpose.
Specifically understanding the errors in the Sentinel–2 level 2a surface reflectance and
the microwave and optical radiative transfer models used as observation operators here
have the potential to improve the retrievals. In addition being able to objectively specify
the off–diagonal elements in the covariance matrices is well know to improve the results
of such algorithms (Pinnington et al. 2016).

The particular choice of Sentinel–1 polarization and Sentinel–2 band combination em-
ployed was based on preliminary experiments that suggested these worked well with our
choice of radiative transfer models. We do not intend to suggest that the combination
used here will be the best in every situation or even optimal for this particular exper-
iment. For Sentinel–2 for example, including all bands may lead to over confidence in
the results and biasing the retrievals toward the optical data unless errors are correctly
specified in the matrix C(o). It is likely that this will need to include off–diagonal ele-
ments as well to represent correlated uncertainties in bands that are close to each other
spectrally. In the examples in this paper C(o) was set as a diagonal matrix.

The software used for the retrievals in this study was designed to allow flexibility but
not computational efficiency. Ultimately the time series retrieval is likely too slow to be
used across entire images. Consequently some further work is required to make this tool
more efficient. Analysis of the computational performance of the retrievals (not shown
here) revealed a large amount of time being used in the optical radiative transfer model,
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despite the fact that there are relatively far fewer data points collected by Sentinel–
2. The bulk of this is being used to perform multiple scattering calculations (ρM in
Equation 1). A future evolution of the system we have presented should probably include
a modified version of the Semi–Discrete model with a modified multiple scattering term.
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Figure 3: LAI retrievals using all Sentinel–1 and Sentinel–2 data from the 2017 growing
season for each field (columns) and each sampling point (rows). Stars indicate
field observations. Dark points retrievals at Sentinel–2 acquisition times and
light grey points retrievals at Sentinel–1 acquisition times.
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Figure 4: Soil moisture retrievals using all Sentinel–1 and Sentinel–2 data from the 2017
growing season for each field (columns) and each sampling point (rows). Stars
indicate field observations. Dark points retrievals at Sentinel–2 acquisition
times and light grey points retrievals at Sentinel–1 acquisition times.
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Figure 5: Taylor diagram showing summary results for LAI for each experiment. Dis-
tance from the origin indicates the level of variability compared to observations,
with the dark dashed line representing the variability in the observations. The
angle subtended with the horizontal axis represent correlation with the obser-
vations and the radial contours extending from the black dot represent relative
RMSE. The closer a point to the black dot (which represent the observations)
the better the retrieval has performed.
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Figure 6: As Fig. 5 but for soil moisture.
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4 Conclusions

We have demonstrated a joint retrieval algorithm for LAI and soil moisture from Sentinel–
1 and Sentinel–2 data using physically based radiative transfer models. The inversion
scheme uses adjoint versions of the computer code of these models to perform the cost–
function minimisation and the values of the retrieved variables are constrained tempo-
rally using a dynamic model the prescribes the degree of smoothness in their evolution.
By comparison against field observations from agricultural sites in Germany we showed
that the joint retrieval improves estimates of leaf area index in every case compared
to individual retrivals, and soil moisture in the majority of cases. There are very few
examples of joint retrievals using physically based radiative transfer in the optical and
SAR domains and none, to our knowledge, using Sentinel–1 and Sentinel–2. Our results
show promise for future developments in this field
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