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Activity summary:

Mission Control deployed a low-level implementation of the OPS-SAT SmartCam model
using a Field Programmable Gate Array (FPGA), comparing against a high-level CPU model
using Tensorflow Lite. Experiments showed that the FPGA implementation reproduced the
precision and accuracy of the high-level model, while running at a slower speed. Further
optimizations of the FPGA are expected to close the gap in timing and unlock new methods
for deploying deep learning on spacecraft.
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Artificial intelligence (Al), in the form of deep neural networks, is a key enabler for space mission
autonomy, performance, and functionality. The deployment of Al algorithms onboard spacecraft
is an emerging capability currently limited to a handful of demonstration missions. Onboard Al
holds the promise of empowering a new generation of more productive, autonomous spacecraft
adaptable to new, complex, and unknown environments quickly. Several demonstrations of
deep learning onboard EO satellites in orbit have been conducted and shown the utility of deep
learning for EO in space, in particular the European Space Agency (ESA’s) OPS-SAT [1] and ®-Sat-
1 [2]. OPS-SAT uses a CNN called SmartCam [3] to ingest data from an optical sensor onboard
and classify incoming imagery as “Earth”, “Edge of Space”, or “Bad” to give an indication
whether an image should be prioritized for downlink or whether it is oversaturated due to the
presence of clouds. In the ®-Sat-1 mission the Hyperscout-2 sensor by cosine feeds
hyperspectral data to a Movidius Myriad 2 VPU which uses a neural network to segment clouds
in the hyperspectral imagery, reducing the need for downlink for the large hypercube files since
the sensor cannot see the earth’s surface through cloud cover.

Executive Summary

For remote sensing satellites neural networks are well-suited to deliver computer vision
solutions using autonomous observation and data-filtering [4, 5] that enable human operators to
maximize use of limited bandwidth. A crucial factor in the successful implementation of deep
neural networks on space platforms is the embedded nature of such systems. The performance
of onboard space processors lags that of their terrestrial counterparts due to the additional
effort required to make circuitry that can operate in extreme radiation, thermal, and vacuum
conditions [3]. The spaceborne processors available in the OPS-SAT Satellite Experimental
Processing Platform, including the reconfigurable Field Programmable Gate Array (FPGA),
address this performance gap and are the ideal test bed to develop new deep learning
architectures for implementing neural networks on embedded space platforms.

Mission Control reports results of an experiment to use its Deep Learning Processor (DLP)
compiler and run-time (See Figure 1) to hybridize the SmartCam model across the CPU and FPGA
of the Cyclone V System-on-a-Chip (SoC) onboard OPS-SAT. FPGAs offer a balance of
reconfigurability, generalizability, and utilization efficiency but FPGA deep learning frameworks
are still in their infancy [4, 5]. Our FPGA implementation advances how Al can be deployed on
spacecraft using the Neural Network Exchange Format (NNEF), an open and standard data
format for exchanging information about trained neural networks. We perform the first
comparative study to make use of NNEF for deep learning on a spacecraft by comparing our low-
level implementation of the OPS-SAT SmartCam model against the existing high-level model that
uses the Tensorflow Lite C API. The software developed as part of this study will explore the
operational performance of SmartCam with a hybridized neural network and provide a modular
scaffold for future space-based deep learning FPGA technology.
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Figure 1 Mission Control’'s Deep Learning Accelerator deploys deep learning models on spaceflight hardware
using the NNEF format [6].

Technical development to execute OPS-SAT Experiment 177 was broken down into a series of
development milestones and smaller experiments using development boards. Initial FPGA
development focused on successfully packaging a joint FPGA-CPU adder experiment to run first
on MitySOM development boards and then the ESA Engineering Model (EM). This was
supplemented by additional FPGA tests including streaming data directly to DDR through FIFO.
Metrics reporting software was developed to report on a representative test set of SmartCam
imagery, both for the TensorFlow Lite and DLP implementations. Features were added to the
underlying DLP architecture to support the SmartCam network layers. Orbital path planning
calculations analyzed when and where to acquire imagery during the Flight Model experiment.

The Software Architecture was written to begin the process of iteratively capturing RAW images
using the onboard camera utility once the initial application was successfully uploaded to the
FM. Flatsat testing concluded that the process of capturing an image, converting it from RAW to
PNG, resizing and saving it takes around 20 seconds. The trade-off space for the FPGA
implementation was explored, including toolchain evaluation like High Level Synthesis (HLS). The
FPGA component was designed and is depicted in Figure 2.
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Figure 2 FPGA Component Design.
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Mission Control ran multiple versions of the experiment, adding feature S8 P!SC.OVERY

each step. Test versions, such as the FPGA adder were captured in Version 0.1. CPU-based
experiments 0.2-0.5 advanced on the EM, overcoming problems with memory consumption to
achieve a model that ran SmartCam with a simulated camera app embedded in the installation
package. Release 1.0 included the first FPGA-based version to accelerate inference operations,
while continuing to use test data. This release was validated on the MitySOM boards, with
Version 1.1 using images from the camera on the FM. MitySOM testing and evaluation showed
that the DLP and Tensorflow Lite (TFLite) implementations were equally accurate, precise, and
sensitive, elapsed time showing that the TFLite CPU run was more efficient than a strictly CPU
implementation of DLP, with average CPU time of 1599 ms for TFLite and 8644 ms for DLP.
Future work will focus on the FPGA hybridization steps required to outperform the elapsed time
criteria of the TFLite model. Detailed optimization of the FPGA optimization is expected to
produce clear performance gains, particularly the use of Direct Memory Access that can
decrease bottlenecks related to interfacing between the CPU and FPGA during computation.
Mission Control will continue to mature the technology required to deploy deep learning on
FPGA, advancing the Machine Learning Technological Readiness Level [7] required for future
autonomy capabilities for the Earth, Moon, and Mars.
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