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Activity summary: 
Mission Control deployed a low-level implementation of the OPS-SAT SmartCam model 
using a Field Programmable Gate Array (FPGA), comparing against a high-level CPU model 
using Tensorflow Lite. Experiments showed that the FPGA implementation reproduced the 
precision and accuracy of the high-level model, while running at a slower speed. Further 
optimizations of the FPGA are expected to close the gap in timing and unlock new methods 
for deploying deep learning on spacecraft. 
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➔ DISCOVERY 
Executive Summary 

Artificial intelligence (AI), in the form of deep neural networks, is a key enabler for space mission 
autonomy, performance, and functionality. The deployment of AI algorithms onboard spacecraft 
is an emerging capability currently limited to a handful of demonstration missions. Onboard AI 
holds the promise of empowering a new generation of more productive, autonomous spacecraft 
adaptable to new, complex, and unknown environments quickly. Several demonstrations of 
deep learning onboard EO satellites in orbit have been conducted and shown the utility of deep 
learning for EO in space, in particular the European Space Agency (ESA’s) OPS-SAT [1] and Φ-Sat-
1 [2]. OPS-SAT uses a CNN called SmartCam [3] to ingest data from an optical sensor onboard 
and classify incoming imagery as “Earth”, “Edge of Space”, or “Bad” to give an indication 
whether an image should be prioritized for downlink or whether it is oversaturated due to the 
presence of clouds. In the Φ-Sat-1 mission the Hyperscout-2 sensor by cosine feeds 
hyperspectral data to a Movidius Myriad 2 VPU which uses a neural network to segment clouds 
in the hyperspectral imagery, reducing the need for downlink for the large hypercube files since 
the sensor cannot see the earth’s surface through cloud cover. 
 
For remote sensing satellites neural networks are well-suited to deliver computer vision 
solutions using autonomous observation and data-filtering [4, 5] that enable human operators to 
maximize use of limited bandwidth. A crucial factor in the successful implementation of deep 
neural networks on space platforms is the embedded nature of such systems. The performance 
of onboard space processors lags that of their terrestrial counterparts due to the additional 
effort required to make circuitry that can operate in extreme radiation, thermal, and vacuum 
conditions [3]. The spaceborne processors available in the OPS-SAT Satellite Experimental 
Processing Platform, including the reconfigurable Field Programmable Gate Array (FPGA), 
address this performance gap and are the ideal test bed to develop new deep learning 
architectures for implementing neural networks on embedded space platforms. 
 
Mission Control reports results of an experiment to use its Deep Learning Processor (DLP) 
compiler and run-time (See Figure 1) to hybridize the SmartCam model across the CPU and FPGA 
of the Cyclone V System-on-a-Chip (SoC) onboard OPS-SAT. FPGAs offer a balance of 
reconfigurability, generalizability, and utilization efficiency but FPGA deep learning frameworks 
are still in their infancy [4, 5]. Our FPGA implementation advances how AI can be deployed on 
spacecraft using the Neural Network Exchange Format (NNEF), an open and standard data 
format for exchanging information about trained neural networks. We perform the first 
comparative study to make use of NNEF for deep learning on a spacecraft by comparing our low-
level implementation of the OPS-SAT SmartCam model against the existing high-level model that 
uses the Tensorflow Lite C API. The software developed as part of this study will explore the 
operational performance of SmartCam with a hybridized neural network and provide a modular 
scaffold for future space-based deep learning FPGA technology. 
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➔ DISCOVERY  

 
Figure 1 Mission Control’s Deep Learning Accelerator deploys deep learning models on spaceflight hardware 

using the NNEF format [6]. 

Technical development to execute OPS-SAT Experiment 177 was broken down into a series of 
development milestones and smaller experiments using development boards. Initial FPGA 
development focused on successfully packaging a joint FPGA-CPU adder experiment to run first 
on MitySOM development boards and then the ESA Engineering Model (EM). This was 
supplemented by additional FPGA tests including streaming data directly to DDR through FIFO. 
Metrics reporting software was developed to report on a representative test set of SmartCam 
imagery, both for the TensorFlow Lite and DLP implementations. Features were added to the 
underlying DLP architecture to support the SmartCam network layers. Orbital path planning 
calculations analyzed when and where to acquire imagery during the Flight Model experiment.  

The Software Architecture was written to begin the process of iteratively capturing RAW images 
using the onboard camera utility once the initial application was successfully uploaded to the 
FM. Flatsat testing concluded that the process of capturing an image, converting it from RAW to 
PNG, resizing and saving it takes around 20 seconds. The trade-off space for the FPGA 
implementation was explored, including toolchain evaluation like High Level Synthesis (HLS). The 
FPGA component was designed and is depicted in Figure 2. 

 
Figure 2 FPGA Component Design. 
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➔ DISCOVERY Mission Control ran multiple versions of the experiment, adding features and complexity with 
each step. Test versions, such as the FPGA adder were captured in Version 0.1. CPU-based 
experiments 0.2-0.5 advanced on the EM, overcoming problems with memory consumption to 
achieve a model that ran SmartCam with a simulated camera app embedded in the installation 
package. Release 1.0 included the first FPGA-based version to accelerate inference operations, 
while continuing to use test data. This release was validated on the MitySOM boards, with 
Version 1.1 using images from the camera on the FM. MitySOM testing and evaluation showed 
that the DLP and Tensorflow Lite (TFLite) implementations were equally accurate, precise, and 
sensitive, elapsed time showing that the TFLite CPU run was more efficient than a strictly CPU 
implementation of DLP, with average CPU time of 1599 ms for TFLite and 8644 ms for DLP. 
Future work will focus on the FPGA hybridization steps required to outperform the elapsed time 
criteria of the TFLite model. Detailed optimization of the FPGA optimization is expected to 
produce clear performance gains, particularly the use of Direct Memory Access that can 
decrease bottlenecks related to interfacing between the CPU and FPGA during computation. 
Mission Control will continue to mature the technology required to deploy deep learning on 
FPGA, advancing the Machine Learning Technological Readiness Level [7] required for future 
autonomy capabilities for the Earth, Moon, and Mars. 
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