

European Space Agency

Science and Technology in Advanced Manufacturing

ADVANCED SPACE ADDITIVE MANUFACTURING APPLIED TO HIGH TECH CONTROL VALVES 4000137618/22/NL/GLC/idb

Closing meeting (31st of May 2023)

Rocco Lupoi, Giacomo Cappelli, Patrick Walsh, David O'Dwyer

http://www.schuf.ie/ https://www.tcd.ie/mecheng/research/stam/

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

- 1. Project overview
- 2. Workflow
- 3. Work packages
- 4. Open Discussion

Project Overview

SchuFIR innovative valves, precision engineering

10 mm

Activity Duration 1st of June 2022 - 31st of March 2023

Project background

June	July	August	September	October	November	December	January	February	March	April
5 12 19 26	3 10 17 24 31	7 14 21 28	4 11 18 25	2 9 16 23 30	6 13 20 27	5 12 19 26	2 9 16 23 30	6 13 20 27	6 13 20 28	3 10
Management WP1										
Material and Surface	e Requirements WP2									
SchuF Products Revi	ew WP3									
Literature Review W	P4									
			Design and Sim	ulation WP5						
				Process Development WP6						
						Product Understandi	ng WP7			

Material and surface requirements (WP2)

SchuF products review (WP3)

Literature review (WP4)

Design and simulation (WP5)

Process development (WP6)

Product understanding (WP7)

REQUIREMENTS	SPINDLE	PLUNGER TIP
IMPINGEMENT EROSION RESISTANCE	X	
CAVITATION EROSION RESISTANCE		Х
CORROSION RESISTANCE	Х	Х
HARDNESS	High	Not essential
POROSITY	< 1%	< 1%
ROUGHNESS	Machined	Machined
THERMAL STABILITY	Up to 350°C	Up to 350°C
ADHESION STRENGTH	40 – 50 MPa	NA
THERMAL EXPANSION COEFFICIENT	Close to 10.1 μ m/m°C (440C)	
DEPOSITION EFFICIENCY	>20%	NA
PROCESSABILITY	Under 900°C 30 bar, N2	Under 300W

WP3 – Product Review

Traditional casting or Additive Manufacturing? FACTORS:

- Production volume
- Complexity
- Customization
- Part consolidation

Cold Spray??

- <u>Erosion protection coating?</u>
- <u>Part restoration?</u>

	Microhardness	Imping erosion r (erosio	ingement n resistance Electrochemical sion rate) corrosion resistance in		l T TEC s Porosity [um/(m°C)]		Thermal stability below		DE	Parameters		ers	Cold sprayability	Score
		30 °	90 °	NaCl medium		[[[]]]	350°C			Temp [C]	Press [bar]	SoD [mm]	spray as my	
Inconel625	1.5 (570HV0.3)	-	-	1 (-0.49V)	0.5 (4.2%)	1 (13.1)	ok	3	2	800*	30*	30	o (He)	9
Inconel718-Ni	0.5 (242HV0.3)	37 mg/min	19 mg/min	0.5 (-0.59V)	3 (0.84%)	1.5 (12.8)	ok	3	2	900	30	30	2	12.5
WC-Co	3 (981HV0.3)	-	-	1.5 (-0.43V)	3 (0.7%)	2 (8.8)	ok	1	1	800	40	40	2	13.5
WC-Ni	1 (335HV0.3)	27 mg/min	15 mg/min	0.5 (-0.63V)	3 (0.9%)	2.5 (9.3)	ok	3	1	850	30	40	3	14
WC-Ti	1.5 (549HV0.3)	-	-	1(-0.5V)	2 (1.8%)	1.5(7)	ok	2	1	550	45	30	3	12
WC-TiC	3 (922HV0.3)	-	-	2.5 (-0.2V)	2.5 (1.2%)	1 (6.5)	ok	2	1	550	45	30	3	15
Diamalloy 5849-AA5083	1.5 (500HV0.1)	-	-	0.5 (-0.6V)	-	0.5 (16.5)	ok	2	1	500			2	7.5
Diamalloy 3004	1.5 (450HV0.3)	-	-	0.5 (-0.59V)	0 (7%)	1.5 (12.2)	ok	3	1	800	40	30	2	9.5
HEA Cantor	1 (351HV0.3)	-	-	3 (-0.07V)	1 (3%)	0.5 (15)	ok	2	2	950	50	50	1	10.5

	Cavitation	Electrochemical		Thermal			Proc			
	erosion resistance	corrosion resistance in NaCl medium	Porosity	stability below 350°C	Processability	Availability	Power [W]	Scan speed [mm/s]	Hatch [um]	Score
Inconel 625	0.5 (0.160 mg/min)	1 (-0.49V)	2 (1.44%)	ok	2	3	180	500	70	8.5
Inconel 718	1 (0.04 mg/min)	1 (-0.59)	2 (1.3%)	ok	2	3	180	600		9
Maraging steel	-	2 (-0.2V)	2.5 (0.4%)	ok	3	3	380	960	110	10.5
SS316L	3 (0.005 mg/min)	2 (-0.2V)	2.5 (0.6%)	ok	3	3	200	80 μs (exposure time)	60	13.5
Cantor HEA	-	3 (-0.07)	3 (0.07%)	ok	3	2	280	800	60	11

Powder material	Companies	Minimum order [Kg] Price €/Kg			
WC-Ti	WC-Ti MBN Nanomaterialia		152		
WC-Ni	Hoganas (AMPERIT547)	5	100		
HEA Cantor	HC Starck GmbH		100-150		
Maraging steel 18Ni300	Hoganas (Amperprint 1556), Carpenter additive (POWDERRANGE M300)	5, 10	100		
SS316L	Hoganas, Carpenter additive (POWDERRANGE 316L)	5, 10	80		

WP5 – Plunger Design

SchuFik innovative valves, precision engineering

Cold Spray

SEM powders Define working parameters First deposition test

Porosity, Microhardness and defect analysis

Parameters optimization for porosity minimization

Heat treatments

Adhesion tests

Erosion tests

Corrosion tests

Cold Spray

Tested substrates:

- Annealed 440C (350HV1)
- 2205 duplex stainless steel (310HV1)

Parameters	Value
Temperature [°C]	900
Pressure [bar]	30
Spray distance [mm]	40
Feed rate [g/min]	80

a) WC/Ni, b) WC/Ni c) Nickel d) CrMnFeCoNi e) SS316

HEA sprayed on 2205 duplex stainless steel.

SS316 steel coating deposited on 2205 duplex stainless steel.

70-30 % vol

80 – 20 % vol WC/Ni – Ni % vol

90-10 % vol

Trinity College Dublin, The University of Dublin

a) As-sprayed WC/Ni-Ni
b) Heat treated WC/Ni-Ni
c) Heat treated CrMnFeCoNi HEA on as-sprayed SS316
d) Heat treated CrMnFeCoNi HEA on heat treated SS316

Trinity College Dublin, The University of Dublin

Adhesion test ASTM B571 - 97

HT HEA on SS316

HT HEA on HTSS316

Trinity College Dublin, The University of Dublin

Parameters	Value
Temperature [°C]	20
Pressure [bar]	1.5
Spray distance [mm]	10
Feed rate [g/s]	~ 0.03
Duration [min]	10

0.50

Corrosion test ISO11846 – Method B

440C

HEA

WC/Ni-Ni

SchuFIK innovative valves, precision engineering

Open circuit potential

Cyclic potentiodynamic polarization

Material	Open circuit potential [mV]	Corrosion current [µA/cm ²]	Corrosion potential [mV]	Corrosion rate [mpy]	Corrosion rate [mm/y]
440C (annealed 800°C)	-365	4.47	-307	2.04	0.052
HEA	-256	2.59	-373	1.17	0.030
HEA on HTSS	-278	1.95	-352	0.88	0.022
WC/Ni-Ni	-178	2.31	-263	0.78	0.020
In Hite rature µA/cm ² mr WC/N1-N1	e, 440C with martensite a thigher lb ah the one re	alpha phase showed ecorde Bhart.	l corrosion potential -485 -303	5 mV and corrosion 1.05	o current 15.0 0.027

The 440C currently in use might be even worse then the tested one!

WP6 – Selective Laser Melting

SLM

- a) Maraging 18Ni300 steel
- b) Stainless steel 316.

SLM – Stainless steel 316

Sample	Power [W]	Scanning Speed [mm/s]	Hatch [mm]	Energy Density [J/mm^3]]	Highest pore length [mm]	Porosity %	HV0.5	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1	180	1200	0.05	100	0.1	0.58	251	$\begin{array}{c c} ab & 1 \\ \hline \hline \hline \hline 0.8 \\ \hline \hline 0.8 \\ \hline \hline 0.6 \\ \hline \end{array} \qquad \qquad$
2	180	1200	0.07	71	0.2	0.375	247	$\begin{bmatrix} 0.6 \\ 0.4 \\ 10 \end{bmatrix} = \begin{bmatrix} 2 \\ 15 \\ 12 \end{bmatrix} = \begin{bmatrix} 15 \\ 12 \\ 15 \end{bmatrix} = \begin{bmatrix} 15 \\ 7 \\ 11 \end{bmatrix}$
3	180	1000	0.05	120	0.8	0.57	261	
4	180	1000	0.07	86	0.45	0.461	252	60 70 80 90 100 110 120 130
5	180	800	0.07	107	0.13	0.08	252	1.2 10 6
6	180	800	0.1	75	1	1	276	
7	210	1200	0.05	117	0.1	0.42	262	$\begin{array}{c} & & & \\ & &$
8	210	1200	0.07	83	0.6	0.38	249	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
9	210	1000	0.07	100	0.04	0.17	265	0.2
10	210	1000	0.1	70	0.07	0.96	253	0 60 70 80 90 100 110 120 130
11	210	800	0.07	125	0.08	0.327	261	Energy density [J/mm^3]
12	210	800	0.1	88	0.1	0.17	258	270
13	240	1200	0.07	95	0.43	0.26	255	
14	240	1000	0.07	114	0.62	0.6	253	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
15	240	1000	0.1	80	0.16	0.23	256	
16	240	800	0.1	100	1.5	0.84	266	

Energy density [J/mm^3]

Parameters of sample 9 selected for tensile samples preparation

SLM – Maraging steel 18Ni300

Sample	Power [W]	Scanning Speed [mm/s]	Hatch [mm]	Energy Density [J/mm^3]]	Highest pore length [mm]	Porosity %	HV0.5
1	180	1300	0.05	92	0.21	0.62	399
2	180	1300	0.07	66	0.13	0.78	433
3	180	1100	0.05	109	0.21	0.57	397
4	180	1100	0.07	78	1.4	1.24	390
5	180	1000	0.07	86	0.23	0.89	383
6	210	1300	0.05	108	0.27	0.32	396
7	210	1300	0.07	77	0.49	0.37	395
8	210	1100	0.07	91	0.1	0.33	397
9	210	1100	0.1	64	0.14	1.13	411
10	210	1000	0.07	100	0.48	0.87	399
11	210	1000	0.1	70	0.4	0.5	382
12	240	1300	0.07	88	0.18	0.1	398
13	240	1100	0.07	104	0.35	0.44	400
14	240	1100	0.1	73	0.26	1.06	399
15	240	1000	0.07	114	0.1	0.15	399
16	240	1000	0.1	80	0.1	0.32	396

Parameters of sample 15 selected for tensile samples preparation

Heat treatments

SS316 600 °C – 2 hours dwell time – slow cooling –

Ductility improved, hardness slightly reduced from 265 to 255HV0.5

18Ni300 815°C – 30 minutes dwell time – water quenching

480°C – 6 hours aging – slow cooling

Precipitation hardening, hardness significantly increased from 400 to 565HV0.5

WP6 – Selective Laser Melting

Tensile tests

1% strain limit for strain control at 0.002 s^-1 test speed After yield 3mm/min displacement control

Gauge length 25 mm

WP6 – Selective Laser Melting

Tensile tests

Gauge length 25 mm

Cold spray									
		Tested materials							
	Properties	AN440C	WC/Ni-Ni	WC/Ni-Ni HT	HEA on SS316	HEA on HTSS316			
Microstructure	Porosity	/	1.50	0.70	1.80	1.00			
	Microhardness HV0.5	353	370	252	420	430			
Adhesion	Coating adhesion chisel test	1	ОК	ОК	Low adhesion of SS316 coating to 2205 Duplex SS	SS316 adhesion to substrate is higher than HEA adhesion to SS316			
	Coating adhesion coarse mill test	\	ОК	ОК	ОК	ОК			
Erosion	Expected volume loss in 6 months at 0.03 g/s Al2O3 federate, 30° impact angle for 40 hr per week [cm ³ /6 months]	26	37	36	30	40			
	Corrosion current [µA/cm ²]	4.47	2.31	3.11	2.59	1.95			
Corrosion	Corrosion potential [mV]	-307	-263	-303	-373	-352			
	Corrosion rate [mm/y]	0.052	0.027	0.020	0.030	0.022			

WP7 – Selective Laser Melting

SLM

Prop	Tested materials					
		SS316	SS316HT	18Ni300	18Ni300HT	
	Optimal energy density [J/mm^3]	100		114		
DOF	Porosity %	0.08	0.06	0.1	0.07	
DOL	Microhardness HV0.5	265	265 255		565	
	Highest pore length [mm]	0.04	\	0.1	/	
	Young modulus E [Gpa]	206	196	165	184	
Tongila togt	Proof strength 0.2% [Mpa]	600	540	1135	863	
Tensne test	Rm [Mpa]	693	699	900	1293	
	Strain at break %	29.6	28.3	8	6	

Deliverables

- TECHNICAL NOTES V
- TDP TECHNICAL DATA PACKAGE (The final versions of all approved technical documents)
- ESR EXECUTIVE SUMMARY REPORT (shall not exceed 5 pages of text and 10 pages in total) in progress
- FR FINAL REPORT (Shall provide a complete description of all the work done during the study and shall be self-standing) in progress
- CCD CONTRACT CLOSURE DOCUMENTATION
- TAS TECHNOLOGY ACHIEVEMENT SUMMARY

(http://www.esa.int/Our_Activities/Space_Engineering_Technology/Shaping_the_Future/Download_Area)

Trinity College Dublin Coláiste na Tríonóide, Baile Átha Cliath The University of Dublin

