

DOCUMENT NUMBER: PAR7064443 DOCUMENT REVISION: A DATE: May 19, 2023 CAGE CODE: N/A

Customer: European Space Agency

Envision Mission – Ka-Band TWT

120W 32 GHz Helix TWT ET3706A for Payload Data Transmitters for EnVision mission

FP - Final Presentation

CDRL No.: N/A

Contract N.: 4000130150/20/NL/HK

Nr. of pages	Classification
4	UNCLASSIFIED
0	UNCLASSIFIED CONTROLLED
0	RESTRICTED
0	CONFIDENTIAL
0	SECRET
4	Total nr. of pages

The information contained in this document is proprietary to Leonardo S.p.a.. This document and the information contained herein may not be copied, reproduced, used or disclosed in whole or in part in any form without the prior written consent of Leonardo S.p.a.. © Copyright Leonardo S.p.a. – All Rights Reserved

Document Authority

Authors:			
Project Engineering Manager	R. Martorana		
Airborne Sensors & Mission Systems Lob			
Microwave Power Solutions			
Project Engineering	A. Mendolia Calella		
Airborne Sensors & Mission Systems Lob			
Microwave Power Solutions			
Approval:			
Engineering	R. Martorana		
Airborne Sensors & Mission Systems Lob			
Microwave Power Solutions			
Approval:			
Project Assurance Manager	A. Macaluso		
Quality			
Authorization:			
Engineering	R. Martorana		
Airborne Sensors & Mission Systems Lob			
Microwave Power Solutions			
Configuration Control:			
Configuration Manager	G. Vitrano		
Airborne Sensors & Mission Systems Lob			
Microwave Power Solutions			

Point of Contact

F. Bartolomei	Leonardo S.p.a.		
Program Manager	Site:		
Space Lob - Patf. Equip. & Subsys. Business Area	Viale Europa snc - 20014 Nerviano (MI) - Italy		
fabrizio.bartolomei@leonardocompany.com	Tel. +39 0331 587330		
+39 334 621 8500	Fax +39 0331 588106		

D. Gallina	Leonardo S.p.a.		
Program Manager	Site:		
Airborne Systems Lob – Microwave Power Solutions	Via Villagrazia, 79 – 90125 Palermo (PA) – Italy		
davide.gallina@leonardocompany.com	Tel. +39 091 7322248		
+39 335 1000226	Fax +39 091 7322277		

UNCLASSIFIED

REVISION RECORD

Rev.	Modification N.	Date	Description	Author/s
А	N/A	May 19, 2023	First Issue	R. Martorana A. Mendolia Calella

INDEX

1.	APPLICABLE DOCUMENTS	4
2.	ACRONYMS	4
3.	FINAL PRESENTATION	4

1. APPLICABLE DOCUMENTS

Ref.	Identifier Title	
	ESA-TEC-TDE-T206-015ES Statement of Work	
A1	Issue 1, Revision 1	Development of a 120 W 32 GHz TWT for Payload Data
	22/08/2019	Transmitters
10	4000120150/20/NIL /HK	ESA Contract for 120 W, 32 GHZ TWT
AZ	4000130130/20/NL/HK	for Payload Data Transmitter

2. ACRONYMS

Acronym	Description
CW	Continuous Wave
EBB	Elegant Breadboard
RF	Radio Frequency
SOW	Statement of Work
SWS	Slow-wave Structure
TWT	Travelling Wave Tube

3. FINAL PRESENTATION

Leonardo Electronics – Microwave Power Solution

Ka-Band TWT 120W 32 GHz Helix TWT ET3706A for Payload Data Transmitters for En Vision mission

ESA Contract 4000130150/20/NL/HK

FP – Final Presentation

PAR7064443 rev. A

Palermo

May 19th, 2023

SUMMARY

- Overview
- Main Performance Requirements
- Market: SSPA vs TWT
- TWT Design, Manufacturing and Verification
- Design Improvements
- Margin verification

Overview

This study is inserted in the frame of the preparatory activities for the "Development of 150 W 32 GHz TWT for Payload Data Transmitters" for EnVision mission.

The baseline launch date is in 2032, with a backup in 2033. The requirement for the Envision mission is to provide a high-power RF source in Ka band.

The development has been grounded on Leonardo know how and heritage on vacuum tubes design, technologies and production of microwave tubes for the airborne and military applications and the experience previously gained with the development, under ESA contract, of:

- C Band klystron for the Metop/SG program
- X Band 4 kW 10 % duty cycle Helix TWT for cSAR application.

The objective of this activity has been to design, develop, manufacture and test an Elegant Breadboard (EBB) capable to demonstrate the feasibility of a TWT operating in the frequency range 31,8 \div 32,3 GHz with 150 W saturated RF output power, 200 MHz instantaneous bandwidth and high overall efficiency.

The activity started with the design and test of a TWT BB with entry TRL 3 to reach TRL 4 with the TWT EBB.

In the frame of margin verification an electron gun test vehicle, reproducing the same electron gun adopted in the TWT has been designed, three assemblies have been manufactured and subjected to cyclic heater ON/OFF to verify experimentally its capacity to survive the induced thermal stresses.

Main Performance Requirements

PARAMETER	Min	Max	UoM
Frequency range	31,8	32,3	GHz
Patad autput power	150		W
	(51,8)		(dBm)
Gain at saturation	50	—	dB
Efficiency at saturation	60	—	%
Gain flatness	—	0,2	dBpp
Noise Figure	—	35	dB
Spurious output ratio	—	-60	dBc
Second harmonic output ratio	_	-30	dBc

Market: SSPA vs TWT

Vacuum Tube **Solid State Amplifier** 150 W Ka Band CW 50 W Ka Band CW

Building Blocks Description for TWT ET3706					
Block	Technology & Requirement	BB	EBB		
	Configuration				
Electron Gun	Modifications	The optics have been modified improving electron beam divergence and laminarity			
	Design Maturity	Med	lium		
•	Configuration				
Interaction	Modifications	No	ne		
Structure	Design Maturity	High			
	Configuration				
I/O Ports	Modifications	None			
	Design Maturity	High			
	Configuration				
Magnetic	Modifications	None			
Structure	Design Maturity	High			
Four-stages Collector	Configuration				
	Modifications	The geometry of the stages has b	een modified		
	Design Maturity	Medium			

TWT EBB Detailed Design

The simulation software **CST** has been used for the TWT design to demonstrate compliance with the RF specifications and Multipactor margin verification.

Ansys Mechanical has been used to demonstrate compliance with the thermal and mechanical requirements and to verify the Margin of safety compliance with respect to ECSS-E-ST-32C.

TWT EBB Manufacturing

Fabrication of the TWT has been accomplished in accordance with the established manufacturing and assembly flows, using the Leonardo approved processes and procedures

The manufacturing has been straightforward without significant issues.

TWT EBB Testing – Operating Conditions

SYMBOL	PARAMETER	Min	Мах	UoM	EBB Measurements
	Warm up time	_	3	min	3
E _F	Heater voltage	4	6	V	5,18
$I_{_F}$	Heater current	_	1,5	Α	1,09
E _K	Cathode voltage	-10	-8	kV	-9,2
I	Peak cathode current	_	150	mA	145
I	Helix current with RF	—	5	mA	4
$E_{_{FE}}$	FE ON voltage	-20	0	V	-1
$I_{_{FE}}$	FE current	-	1	mA	0
E	Anode voltage	0	1.000	V	0
I	Anode current	_	1	тA	0
	Collector voltage:				
<i>E</i> _{<i>c</i>1}	- first stage	$35\% E_K $	39% $ E_K $	V	37% <i>E</i> _K
<i>E</i> _{<i>c</i>²}	- second stage	$23\% E_K $	27% $ E_K $	V	25% $ E_K $
E _{c3}	- third stage	21% $ E_K $	25% $ E_K $	V	23% <i>E</i> _K
<i>E</i> _{<i>c</i>4}	- fourth stage	7% $ E_K $	$11\% E_K $	V	9% <i>E_K</i>
	Peak collector current:				
I	- first stage	_	50	mA	74
I _{C2}	- second stage	—	50	mA	36
I _{c3}	- third stage	_	100	mA	21
I _{C4}	- fourth stage	_	150 (NO RF)	mA	77
_	Duty cycle	_	100	%	100

A brief set of requirements for the TWT ET3706 EBB are presented in the following table.

TWT EBB Testing – Main Performances

PARAMETER	Min	Max	UoM	EBB Moasuromonts
Frequency range	31,8	32,3	GHz	31,8 ÷ 32,3
	150		W	170
Rated output power	(51,8)	_	(dBm)	(52,3)
Gain at saturation	50	—	dB	47
AM/AM curve	Mono	otonic	—	Monotonic
Efficiency at saturation	60	—	%	44
Gain flatness	—	0,2	dBpp	0,2
Noise Figure	—	35	dB	34,7
Spurious output ratio	—	-60	dBc	< -60
Second harmonic output ratio	—	-30	dBc	< -30
AM/PM curve	Mono	otonic	—	Monotonic
AM/PM conversion	_	5	°/dB	4,9
Electronic Efficiency	_	_	_	13

10

Design Improvements

The current TWT design has demonstrated, either by simulation prediction or by test, to fulfill most of the requirements in terms of margin of safety and performances. TWT assembly has not shown critical issues but nevertheless, some activities could be carried on to reduce the helix current and to increase the gain and the overall efficiency.

Margin verification

10.000 heater ON/OFF cycles

To demonstrate the lifetime of the heater/cathode assembly, a TV has been designed to be subjected to Heater ON/OFF cycles. The TV is made up by the same electron gun used in the TWT ET3706A and by a collector capable to dissipating the beam power during the cathode emission check.

15.000 heater ON/OFF cycles successfully performed against 10.000 cycles required.

12

Contacts

Leonardo Electronics

Rosario Martorana

Engineering Space TWT

T: +39 091 7322247

M: +39 3371005934

rosario.martorana@leonardo.com

.

& LEONARDO

THANK YOU FOR YOUR ATTENTION

leonardo.com

. . .