

Additive Manufacturing Powder Material Supply Chain: Verification and Validation

Aneta Chrostek-Mroz Irma Heikkilä

MTC Swerim

19th September 2023

Content

- Project background
- Aims & Objectives
- Project work breakdown
- Powder characterisation campaign
- Analysis campaign of AM artefacts
- The summary of lessons learnt
- Next steps
- Q&A

Project Background

- The quality and integrity of a part is determined by a combination of multiple factors.
- This project specifically addressed material supply and the impact it has on the quality of parts.
- Laser Beam Powder Bed Fusion (PBF-LB)
- AlSi10Mg 20-63 µm
- GSTP activity "Additive Manufacturing Powder Material Supply Chain: Verification and Validation (G61A-018QT)"
- Consortium partners:
 - European Space Agency (ESA)
 - Manufacturing Technology Centre (MTC)
 - Swerim AB
 - Swedish Space Corporation

Aims & objectives

The aim of the project was to:

 Develop understanding of the relationship between powder properties and properties of parts manufacturing by AM, specifically Laser Beam Powder Bed Fusion (PBF-LB) systems

WP3000

- 4 AlSi10Mg 20-63µm powders
- 3 AM bureaus
- 44 powder characterisation tests
- 39 AM parts built per powder batch
- 8 tests evaluating properties of AM parts

WP4000

- 2 AlSi10Mg 20-63µm powders
- 2 AM Bureaus
- 18 powder characterisation tests
- 35 AM parts built per powder batch
- 5 tests evaluating properties of AM parts

XY view of the position of the parts on the build plate

Project work breakdown

mtc

WP1000 Market review of powder suppliers and space part design	WP2000 Selection of laboratories and AM service providers	WP3000 1 st powder material evaluation campaign	WP4000 2 nd powder material evaluation campaign
Definition of initial powder procurement specification PS1 (general and premium specification)	Survey powder characterisation laboratories	→ Powder distribution	Feedstock procurement Selection of powder characterisation laboratories and AM service providers
Selection of AM parts	Survey AM service providers	1 st critical review of powder testing results	Powder distribution
Downselection of AlSi10Mg ■■■ suppliers for PBF-LB	Downselection of powder characterisation service providers and test methods	1 st test and analysis campaign on AM artefacts	2 nd critical review of powder testing results
	Downselection of AM service providers (3 AM bureaus)	1 st critical evaluation of test results generated by service providers PS2 specification	2 nd test and analysis campaign on AM artefacts
	Feedstock procurement		2 nd critical evaluation of test results generated by service providers PS3 specification

Powder characterisation

campaign

Evolution of procurement specification

	Chemical composition (Inductively Coupled Plasma Emission Spectroscopy; O,N, H determined via Inert Gas Fusion)															
Element	AI	Si	Mg	Fe	Cu	Mn	Ni	Zn	Pb	Sn	Ti	Ν	0	н	Other (each)	Other (total)
PS1 General	Balance	9-11	0.20-0.45	< 0.55	< 0.05	< 0.45	< 0.05	< 0.10	< 0.05	< 0.05	< 0.15	None	None	None	< 0.05	< 0.15
PS1 Premium	Balance	9-11	0.25-0.45	< 0.25	<0.05	< 0.10	< 0.05	< 0.10	< 0.02	< 0.02	<0.15	< 0.20	< 0.08	None	< 0.05	< 0.15
PS2, PS3	Balance	9-11	0.25-0.45	< 0.25	< 0.05	< 0.10	< 0.05	< 0.10	< 0.02	< 0.02	< 0.15	< 0.20	< 0.03	< 0.003	< 0.05	< 0.15
Variation of PS2 and PS3 to ASTM F3318				(< 0.55) √		(< 0.45) √			(<0.05) √	(0.05) √				None √		

		Particle	e size (La	ser diffractio	n)	Den	sity	Flow rate		Particle density (Helium Pycnometry)	BET surface area	Morphology (D Anal	Oynamic Image ysis)
Parameter	D10 (μm)	D50 (μm)	D90 (μm)	Volume % < 20 μm (%)	Volume % > 63 μm (%)	Apparent density (g/cm ³)	Tapped density (g/cm ³)	Hall flow (s/50g)	Carney flow (s/50g)	Average particle density (g/cm ³)	Surface area (m²/g)	Aspect ratio: d50 (xc_min or x_area)	Sphericity: d50 (xc_min or x_area)
PS1 General	18-30	37-47	55-70	< 5%	< 7%	> 1.0	None	None	None	None	None	None	None
PS1 Premium	25-30	42-47	60-65	< 2%	< 5%	> 1.2	> 1.2 > 1.6 < 6		< 17	None	None	None	None
PS2	None	None	None	< 5%	< 10%	> 1.30	> 1.30 > 1.65 No		None	> 2.660	< 1.110	≥ 0.85	≥ 0.95
PS3	None	None	None	< 5%	< 10%	> 1.30	> 1.65	None	None	> 2.660	None	≥ 0.85	≥ 0.95

Powder characterisation laboratories and test selection (WP4000)

Consortium partners and external laboratories

	Test	Test conducted in WP3000	Test conducted in WP4000	Laboratory conducting the test
WD2000.	Apparent, poured, tapped density; Hausner ratio	Yes	Yes	ESA, MTC
44 tests	Automated Scanning Electron Microscopy (ASEM) and SEM	Yes	Yes	External test houses (ASEM-WP3000) ESA (ASEM-WP4000), MTC (SEM)
	BET Surface area	Yes	Yes	External test house
	Dynamic angle of repose (DAoR) (GranuDrum)	No	Yes	External test house (WP3000) ESA (WP4000)
·	Dynamic angle of repose (Revolution Powder Analyser)	Yes	Yes	MTC, Swerim
WP4000:	Dynamic Image Analysis (DIA) (Camsizer XT)	Yes	Yes	MTC, Swerim
18 tests	Helium gas pycnometry	Yes	Yes	External test house
	Inductively coupled plasma optical emission spectrometry (ICP-OES)	Yes	Yes	MTC
	Inert Gas Fusion (IGF) O, N, H content	Yes	Yes	MTC
	Laser absorptivity	No	Yes	External test house
	Laser diffraction	Yes	Yes	ESA, MTC
	Laser diffraction & DIA using Microtrac SYNC	No	Yes	External test house
	Layer density	Yes	Yes	External test house
	Moisture content via Karl Fischer	No	Yes	External test house

Summary of AlSi10Mg[®]powders[®]against PS2 specification

MTC characterisation results

		PS2 specification									
Requirements	P1	P2	P3	P4	P5	P6					
Chemical composition – alloying elements	Passed	Passed	Passed	Passed	Passed	Passed					
Chemical composition – interstitial elements	Failed	Failed	Failed	Failed	Passed	Passed					
Particle size distribution – laser diffraction	Passed	Failed	Failed	Failed	Failed	Passed					
BET surface area	Passed	Failed	Failed	Failed	Passed	Failed					
Apparent density	Failed	Passed	Failed	Failed	Passed	Passed					
Tapped density	Passed	Passed	Failed	Failed	Passed	Passed					
Particle density	Failed	Passed	Failed	Failed	Passed	Passed					
Particle morphology – dynamic image analysis	Failed	Passed	Failed	Failed	Passed	Passed					

Vacuum Induction Gas Atomisation (VIGA) 20-63 µm

Plasma atomised 20-63 µm

P1 (powder 1) P2 (powder 2) P3 (powder 3) P4

P4 (powder 4)

P5 (powder 5) P6 (powder 6)

Repeatability analysis

Reproducibility analysis conducted in the WP4000 (P5 and P6 powders)

Repeatability refers to the variability of test results when a test is conducted using the same machine and the operator in the same laboratory

Chemical property tests	Repeatability	Laboratories
Bulk alloy chemistry (ICP-OES)	Passed	MTC
Trace element chemistry (ICP-OES)	Passed	MTC
Interstitial chemical analysis (IGF)	Failed	MTC
Physical property tests	Repeatability	Laboratories
Physical property tests Apparent density	Repeatability Passed	Laboratories ESA, MTC
Physical property tests Apparent density Poured density	Repeatability Passed Passed	Laboratories ESA, MTC ESA, MTC

Rheologica	I property tests	Repeatability	Laboratories	Geometr	ic property tests	Repeatability	Laboratorios	
Haus	sner ratio	Passed	ESA, MTC	Distrib	ution descriptor	d10 d50 d90	Laboratories	
	Avalanche angle	Passed	MTC, Swerim		Laser Diffraction	Passed	ESA, MTC	
Dynamic angle of	Avalanche	man and		Particle size:	DIA (x_area)	Passed	MTC, Swerim	
	energy	Falled	IVITC, Swerim		DIA (xc_min)	Passed	MTC Swerim	
	Surface fractal	Failed	MTC, Swerim	Accept ratio	DIA (x_area)	Passed	MTC, Swerim	
repose:	Thickness		N/TO	Aspect ratio.	DIA (xc_min)	Passed	MTC, Swerim	
	cohesion	Failed	MIC	Coborioity <i>u</i>	(x_area)	Passed	MTC, Swerim	
	Dynamic angle	Passed	ESA	Sphencity.	(xc_min)	Passed	MTC, Swerim	
GranuDrum:	Dynamic cohesion index	Failed	ESA					

MTC - Private - Commercial in Confidence Reproducibility analysis

Reproducibility analysis conducted in the WP4000 (P5 and P6 powders)

	-	1
ИП		99

Property	Test	Variable	Reproducibility	Laboratories		
		d10	Failed			
	Laser diffraction	d50	Passed	(Microtroc)		
		d90	Passed	(iviicrotrac)		
		d10	Passed			
	DIA Particle size	d50	Passed	MTC + Sworim		
Geometric	(x_area + xc_min)	d90	Passed	WIG + Swellin		
		Mean	Passed			
		d10	Failed			
	DIA Aspect Ratio	d50	Failed	MTC - Sworim - MIC		
	(x_area + xc_min)	d90	High	WITC + Swellin + WIC		
		Mean	Failed			
		d10	Passed			
	DIA Sphericity	d50	Passed	MTC + Sworim		
	(x_area + xc_min)	d90	Passed	WIC + Swellin		
		Mean	Passed			
Physical	Apparent density	Apparent density	Passed	MTC + ESA		
	Hausner ratio	Hausner ratio	Passed	MTC + Swerim		
		Avalanche Angle	Failed			
Rheological	Dynamic angle of	Avalanche	Failed	MTC - Sworing		
	repose	Energy	Falled	WITC + Swerim		
		Surface Fractal	Failed			

- Where one test evaluated multiple variables, if an RSD of > 5% was recorded between the mean values of the laboratories, for more than 10% of the results, then the test was said to fail the reproducibility analysis.
- Tests considered to be repeatable:
 - Particle size
 - Sphericity
 - Density
- Aspect ratio and rheological evaluations are considered to exhibit low reproducibility

Consistency analysis MTC - Private - Commercial in Confidence

Based on the reproducibility analysis conducted in the second round of the project (results for P5 and P6 powders)

 A dataset with an RSD value lower than 5% was deemed to have an acceptable level of consistency, whilst one with an RSD greater than 5% was believed to have poor consistency.

	Descriptor	d10		d50		D	90			
	Powder batch	P5	P6	P5	P6	P5	P6			
Geometric	Test methods included within									
property	the evaluation	RSD (%)								
Particle size	 Laser diffraction (Mastersizer) Laser diffraction (SYNC) DIA (Camsizer, x_area) DIA (Camsizer, xc_min) 	2.36	2.79	2.31	2.26	4.58	5.11			
Morphology: Aspect ratio	 DIA (Camsizer, x_area) DIA (Camsizer, xc_min) DIA (SYNC, Feret diameter) 	0.16	0.33	0.04	0.07	0.04	0.04			
Morphology: Sphericity	 DIA (Camsizer, x_area) DIA (Camsizer, xc_min) DIA (SYNC) 	0.04	0.02	0.31	0.02	0.02	0.02			

- d10 and d50 size evaluations prove to be consistent across test techniques
- Shape evaluations prove to be highly consistent across different definitions used for shape parameters calculations and across different equipment (Camsizer and SYNC) based on the same methodology (DIA)

Correlations between flow measurements

 Layer density measurements were found to correlate well with the powder capsule density

mtc

Powder spreading testbed (Lab-based test)

Powder capsule (In-process powder bed density)

Correlations Comparison of lab-based and in-process density evaluations

 In-process powder capsule density evaluations correlate well with lab-based density evaluations (poured density, apparent density, tapped density, Hausner ratio)

Apparent density using Hall flowmeter

GranuPack

Autotap density analysed

Effect of particle shape and size on the formation of a spread layer

						-						
		Laser	Diffracti	on:				DIA (x	_area)		Archin	nedes:
	> 63 μm	d10	d50	d90	Span		Sphericity	Sphericity	Aspect ratio	Aspect ratio	Powder capsule	
	(%)	(µm)	(µm)	(µm)	(-)		Mean (-)	d10 (-)	Mean (-)	d10 (-)	(% o	of ρ _t)
	MTC	MTC	MTC	MTC	MTC		MTC	MTC	MTC	MTC	B1	B2
P1	5.60	24.7	38.3	57.8	0.86		0.91	0.91	0.82	0.71	68.78	71.53
P2	15.6	29.7	45.6	67.6	0.83		0.91	0.93	0.85	0.73	71.38	72.73
P3	12.4	25.8	41.2	65.5	0.96		0.87	0.84	0.74	0.59	66.88	69.24
P4	14.3	24.7	40.9	68.1	1.06		0.87	0.85	0.74	0.56	66.32	69.14
P5	14.5	29.6	45.0	66.9	0.83		0.94	0.94	0.86	0.75	72.91	75.28
P6	8.78	26.1	40.4	61.6	0.88		0.93	0.94	0.85	0.73	71.95	74.61

 There is great correlation between particle shape and powder capsule density

1.0

Density correlations from powder to part

	Pycnometry: Average particle density (g/cm ³)	Archimedes: in tens	% of porosity iles (%)	Archimede capsule	es: Powder (% of ρ _t)
	EXT	B1	B2	B1	B2
P1	2.659	0.46	0.49	68.78	71.53
P2	2.648	0.39	0.41	71.38	72.73
P3	2.658	0.50	0.44	66.88	69.24
P4	2.635	1.82	0.68	66.32	69.14

	Pycnometry: Average		Image analysis: Percentage of			Archimedes: Powder			
	particle density (g/cm ³)	article density (g/cm ³)		total area covered by pores (%)			(% of ρ _t)		
	EXT		B1	B2		B1	B2		
Р5	2.671		0.18	0.13		72.91	75.28		
P6	2.676		0.14	0.04		71.95	74.61		

 Solid parts appear (as evaluated via image analysis) to exhibit greater correlation with individual particle porosity than with the bulk material density (powder capsule density)

The summary of the observed correlations

mtc

- The spreading testbed at Inspire was found to best replicate in-process powder spreading behaviour as evaluated using Archimedes powder capsule.
- Apparent and tapped densities found to correlate well within the in-process powder capsule density.
- The particle shape appears to correlate more to powder capsule density than the particle size for PBF-LB AlSi10Mg feedstock with the nominal particle size within 20-63 μm.
- The results suggest there is a correlation between the individual particle porosity and density of fully densified AM parts.
- Control of moisture content via Karl Fischer might serve to improve the in-process powder bed density.

mtc

Powder procurement specification PS3

		Chemical composition (Inductively Coupled Plasma Emission Spectroscopy; O,N, H determined via Inert Gas Fusion)														
Element	AI	Si	Mg	Fe	Cu	Mn	Ni	Zn	Pb	Sn	Ti	Ν	0	н	Other (each)	Other (total)
PS3	Balance	9-11	0.25-0.45	< 0.25	< 0.05	< 0.10	< 0.05	< 0.10	< 0.02	< 0.02	< 0.15	< 0.20	< 0.03	< 0.003	< 0.05	< 0.15
Variation of PS2 and PS3 to ASTM F3318				(< 0.55) √		(< 0.45) √			(<0.05) √	(0.05) √				None √		

			Particle s	Morphology (Dynamic Image Analysis)			
Parameter	D10 (μm)	D50 (μm)	D90 (µm)	Volume % < 20 μm (%)	Volume % > 63 μm (%)	Aspect ratio: d50 (xc_min or x_area)	Sphericity: d50 (xc_min or x_area)
PS3	None	None	None	< 5%	< 10%	≥ 0.85	≥ 0.95

	Den	Particle density (Helium Pycnometry			
Parameter	Apparent density (g/cm³)	Tapped density (g/cm³)	Average particle density (g/cm ³)		
PS3	> 1.30	> 1.65	> 2.660		

Analysis campaign of AM

artefacts

AM artefacts and characterisation

Artifacts

- Design activity led by Swedish Space Corporation
- Tensile bars, benchmarking designs, generic space parts
- Campaign 1: 469 parts
- Campaign 2: 140 parts

mtc SWERIM

Non-destructive analysis

- Shape accuracy
- Density
- Surface roughness

Destructive analysis

- Tensile testing
- Fractography
- Microstructure

AM activity

- Three bureaus with aerospace/space experience
- Deliverables of the bureaus:
 - AM services
 - Information on powder handling procedures & AM processing
 - Pre-treatment for dehumidification
 - Process observations
 - Communication

Bureau	Machine	Strategy	Baseplate Start T (°C)	Re-coater	Max O% ppm	Argon Gas Pressure	Flow rate
Bureau 1	EOS M290	In house	35	carbon brush	170	6000 mbar	1 l/min
Bureau 2	3DSystems DMP 320	expertise on	20	silicon blade	150	250 mbar	2,5 m/s
Bureau 3	EOS M290	AISITOINIS 20 MIII	60	silicon blade	100		

- The aim of the activity was to evaluate the trends of properties across all characterisations, in order to identify possible correlations between the powder, the used AM process and the properties of the parts
- Examples of found correlations
 - Mechanical properties tensiles
 - Microstructure heat pipes
 - Shape accuracy
 - Surface roughness

- thin lattice squares, space designs
- angled walls

Mechanical properties

MTC – Private – Commercial in Confidence

Tensile testing: EN ISO 6892-1 Method A1

■ Rp0.2 ■ Rm ■ At [%]

Machined tensile bars – no heat treatment in WP3 & WP4

Mechanical properties

MTC – Private – Commercial in Confidence

The effect of powder: premium powder

Un-treated machined bars - WP3 & WP4

■ Rp0.2 ■ Rm ■ At [%]

Characterisation of defects

The effect of powder: premium powder

Defect distribution in tensile bar by XCT

Defects in XZ direction of the build by LOM

- Bureau 1: A low number of defects high A_t (7,95 %)
 - Powder pre-treatment for dehumidification
 - Route card: good spreading behavior in process
- Bureau 2: Some very large random defects low A_t (4,11%)
 - No powder pre-treatment
 - Route card: powder sticking to blade, drag lines, sensitivity for humidity

Premium powder P1

Mechanical properties

MTC – Private – Commercial in Confidence

The effect of powder: standard powder

Un-treated machined bars - WP3 & WP4

■ Rp0.2 ■ Rm ■ At [%]

Characterisation of defects

The effect of powder: standard powder

Bureau 1: Spherical pores & some large defects – low A_t (4,46%)

- Powder pre-treatment for dehumidification
- Route card: bad spreading behavior in process
- Bureau 2: Some large defects low A_t (4,11%)
 - No powder pre-treatment
 - Route card: good spreading behavior, oversized particles cause empty spots

mic

Standard powder P4

MTC - Private - Commercial in Confidence Mechanical properties

The effect of powder pre-treatment: Premium powder

■ Rp0.2 ■ Rm ■ At [%]

Fractography and microstructure

The effect of powder pre-treatment: Premium powder

Defects by fractography in SEM & by cross-section in XZ direction by LOM

Defects by fractography in SEM & by cross-section in XZ direction by LOM

mic

SWERIM

- Bureau 1: A low number of defects high A_t (7,63 %)
 - Powder pre-treatment for dehumidification
 - Route card: good spreading behavior in process
- Bureau 2: Large defects with AI Mg -oxide films low A_t (3,25%)
 - Powder pre-treatment for dehumidification
 - Route card: high surface roughness, bad spreading behavior, formation of black smoke (typical for Mg)

Premium powder P5

Mechanical properties

MTC – Private – Commercial in Confidence

The effect of contours: Premium powder

As-build tensile bars – no heat treatment in WP4

Fractography and microstructure

The effect of contours: Premium powder

Defects on fracture surface

Contours Premium powder P6 B2 P6

No defects on fracture surface

- Bureau 1: Spherical defects at contours low A_t (5,85 %)
 - Powder pre-treatment for dehumidification method not known
 - Rupture initiated at contours
- Bureau 2: No porosity at contours high A_t (7,18 %)
 - Powder pre-treatment for dehumidification vacuuming cycles

MTC - Private - Commercial in Confidence MTC - Private - Commercial in Confidence

XY cross-section on wick structure

Crystal orientation map (IPF Z) of the heat pipe by EBSD (step size 2 µm). Scale bar 1000 µm.

MTC - Private - Commercial in Confidence Microstructure of heat pipes

mtc SWERIM

XY cross-section on wick structure

Spherical porosity at contours

Spherical porosity at contours

Fine Al-Si eutectic structure (BS) EDS map for Al and Si K series

- Wicks build mostly by using contours that contain spherical porosity
 - Negative for thermal conductivity and mechanical strength

Contours Heat pipes

- The overlapping scan beams created a very fine grain size
- Silicon rich areas typical for overlapping scan beams induce inhomogeneous thermal conductivity for the material as silicon displays low thermal conductivity
- The applied contouring and scanning strategy is of importance for providing a homogenous and defect free microstructure

Shape accuracy of thin lattice squares

Contours in fine features

L.	

Powder	Area % out of tolerance								
	E	31	В	2	B3				
	ROI 1	RO1 2	ROI 1	ROI 2	ROI 1	ROI 2			
P1	8	30,2	51	39	4,9	3,2			
P2	10,5	31,6	35,2	30	3,4	4,8			
P3	14,3	20,5	45,1	52,9	3,4	3,4			
P4	12,4	22,1	40,2	23,3	3,3	3,5			

Square feature	ROI 1	ROI 2
Wall thickness (mm)	0.4	0.4
Hole size (mm)	0.6	0.4
Height (mm)	10	10

Shape accuracy by XCT

Shape accuracy of thin lattice squares

Contours in fine features

Bureau 1 – Powder 3

Shape accuracy of fine features

Shape accuracy clearly influenced by the AM process

- Route card: In bureau 3 a very low energy was applied for the contouring. The contours were hidden behind the bulk parameters.
- It is assumed that the very thin contours increased the shape accuracy of the thin features in the lattice

Shape accuracy of space design

- Relatively small deviations from the CAD model
- A clear trend for the effect of the AM can be observed:
- I-Bureau 2 2-Bureau 1 3-Bureau 3
- The influence of powder secondary
- Route cards: positive factors for good shape accuracy high laser focus, high overlaps of the laser scans, long build times, high density of powder bed, high powder dosing ratio, low partial pressure in build chamber

Shape accuracy of space designs

Surface roughness

mtc

Surface roughness

Surface roughness by focus variation microscopy, wall 45° up-skin

Surface roughness Premium powder

- Surface roughness of the artefacts was influenced by the used manufacturing method and the powder.
- Up-skins display lower roughness than down-skins
- Route cards: large effect on the post-processing, also effects from contouring, powder bed density
- P5 at bureau 2: high roughness

Key highlights

Analysis campaign of AM artefacts

- The mechanical properties of the studied 18 batches displayed significant variations
- Premium and standard powder specification can result in variable tensile properties
- The powder, its pre-treatment and the applied AM processing (hardware and parameters) are together of importance for the mechanical properties
- Mechanical properties can serve as an indicator of the quality of the build
- The contouring strategy and parameters are of importance for defect-free contours
- Contouring in delicate designs is of importance as it influences the parts shape accuracy, microstructure and physical properties
- Shape accuracy of complex, larger design is primary influenced by the AM process
- Surface roughness displays correlation to applied the AM process, powder and post-processing
- AM process displays a major effect for quality and properties of the parts when using a powder fulfilling the criteria in the powder specification. AM processing displays sensitivity for formation of defects and it is therefore motivated to increase understanding on topics related to powder pre-treatment, and the effect of the used hardware, AM processing parameters and strategy for achieving improved part quality.

Lessons learnt

- Better insight into powder properties required for improved part properties
- Effectiveness of a wide range of powder characterisation techniques
- Method development and recommendations for powder storage, handling and testing
- There are some final part properties more dominated by the AM process, some more dominated by the powder, but most are dominated by the combined effect of the AM process and the powder properties.
- It can be concluded that even a powder batch that meets strict requirements, might generate AM parts exhibiting different
 properties depending on the applied AM process.
- However, it was also observed that all the powders purchased from the AM powder supply chain in this study were
 processable via AM and produced parts.
- The powder procurement specification PS3 (valid only for AlSi10Mg 20-63 µm, investigated in the project), targeting powder properties that will manufacture of AM parts with optimal properties, was developed.

- 1. Adoption of PS3 specification within AM community would require individual engagement with powder suppliers.
- 2. Further development and standardisation of powder test rigs would provide better insight into powder behaviour during spreading than currently available lab-based techniques.
- 3. The impact of powder conditioning practices on powder performance in AM process and AM part properties should be better understood.
- 4. The latest research suggests that moisture content present within the AlSi10Mg might change when the powder is stored in a sealed container (ASTM F3606). It possesses need of (1) understanding actual impact of moisture content present within feedstock on AM part properties; (2) revision current storage strategies for AlSi10Mg; and (3) control of moisture content within metal feedstock and determination of specification limit for moisture content.
- 5. It was observed that the formation of defects and microstructure at the contouring area is sensitive to the strategy for contouring. Additionally, the design of heat pipes manufactured in the project, was sensitive for formation of large defects exhibiting spherical morphology. It is proposed that grain and crystallography characteristics of the contours in both un-treated and heat-treated conditioned should be investigated in detail. It is suggested that the research would increase our understanding of the effect of contours on mechanical properties of AM test pieces. Additionally, the research would enable optimising of contours parameters and thus, the reduction of sensitivity for formation of stress concentrations at the surface areas.

THANK YOU

DISCLAIMER:

The data contained in this document contains proprietary information. It may not be copied or communicated to a third party, or used for any purpose other than that for which it was supplied, without the MTC's prior written consent ©MTC