

Final Presentation

Cesa IZN-1 DiG#5

Cesa

IZN-1 DiG®S

Laser Ranging Station for Cooperative Targets – Final Presentation – DiGOS Potsdam GmbH

05.09.2022

Outline

DiGŚS

0. DiGOS, Company

- 1. History, Project Definition & Preparations
- 2. Start of the Project
- 3. Realization & Implementation
- 4. Performance
- 5. Outlook for IZN-1 & beyond


Company Introduction

DiGOS is a system provider for turnkey Laser Stations

- Private German company, founded in 2014, ~25 employees (2022)
- Working domains
 - Geodetic & geophysical observation systems
 - System development, integration & operation
- National Innovation Price for "Turnkey Laser Ranging Stations" (2019)
- Strong connections into ILRS, SLR "research" Institutes

Capabilities and targets

- Role of (small) system integrator
- Providing solutions to challenging engineering tasks/problems
- Turn key stations (SLR, Debris, and derived systems)
- Efficient and economic system implementations,
- Own HW and SW products for selected applications
- Control system (automated in future) for applications with satellite tracking

History on ELRS / First discussions

- Ca. end 2015 first contacts with ESA
- Beginning 2016: First exchange of ideas for ESA SLR station with Igor Zayer
 - Technology demonstrator
 - Increase ESA's technological and operational observation capabilities
 - Precise Orbit Determination (POD) of Galileo satellites, Galileo laser ranging
 - Debris as a future upgrade
- Initial budget consideration was too low for a new station
- → Idea: Refurbishment of historic 1m Potsdam-2 SLR telescope with "some" limitations
- → Early interest / support by GFZ & IWF!

DiG

History / Iterations towards Start of the Project

- DiGŚŚ
- During 2016 "Design to Budget": various technical analyses, trade-offs, calculations, presentations, telco's
- → Unused Potsdam telescope based option "buried" (performance and flexibility deficiencies/risks)
- End of 2016 first consideration of an own station including new COTS telescope to meet performance requirements
- Sep. 2017 publication of ITT "ESA Laser Ranging Station for Cooperative Targets" (direct negotiation)
- ESA-internal funding by GSTP, SSA, PECS, MOI → "fixed" geo contributions & return (DE, AT, CH, LV)
- Site infrastructure (concrete foundation, power, data, install & operation permit) ESA CFI
- Deployment on Tenerife or in La Silla within 24 months

• State-of-the-art LRS with high flexibility to allow for further developments and demonstrations of

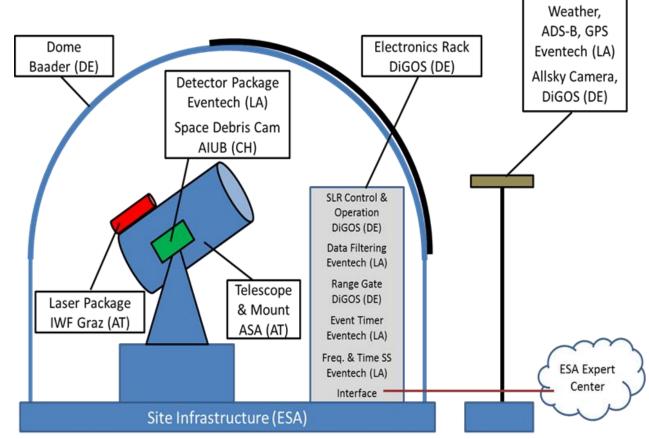
- Upgradability to fully automated operation
- Upgradeability laser ranging of known non-cooperative (space debris) objects during both day and night,
- hand-over from passive survey observations of unknown non-cooperative targets of <1m size for follow-on laser tracking at least in the most congested 800-km altitude band, as well as for re-entries
- optical communication & adaptive optics
- the development of associated technical and operational standards.

Objective:

• 1st Operational prototype Laser Ranging Station for cooperative targets supporting Space Traffic Safety at excellent European site (e.g. Tenerife) with high weather availability

Technical Requirements (Ranging [~mm] of Galileo spacecraft at 23.000 km):

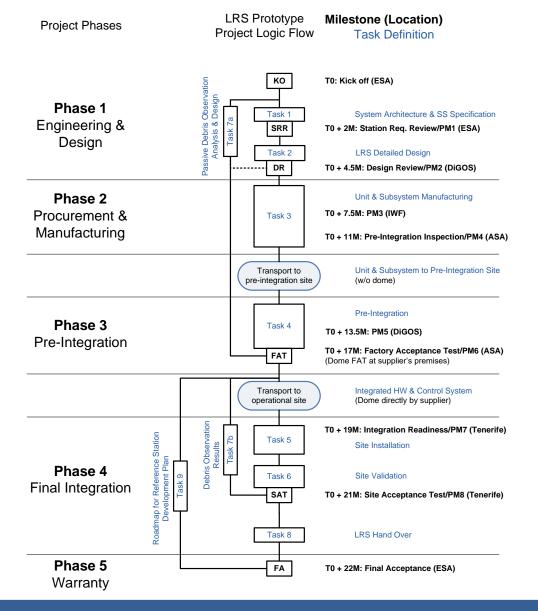
- Rx Telescope (80cm) with stable pointing (~1 arcsec)
- (slit) dome fro environmental protection
- Pulsed Laser Source with high-enough energy in green & IR
- Time-gated, high-bandwidth, photon-counting detector
- Precise system timing control (psec), calibration & analysis S/W prepared for automation
- Auxiliary sub-systems enabling automation (weather station & interlocks)


Site Operations Requirements:

- Operational Concept & Procedures satisfying Laser Safety (local & air traffic) & de-conflicting with passive astronomical observations (disturbance from laser stray-light)
- Hosting Agreement & Laser Operating License (ESA)

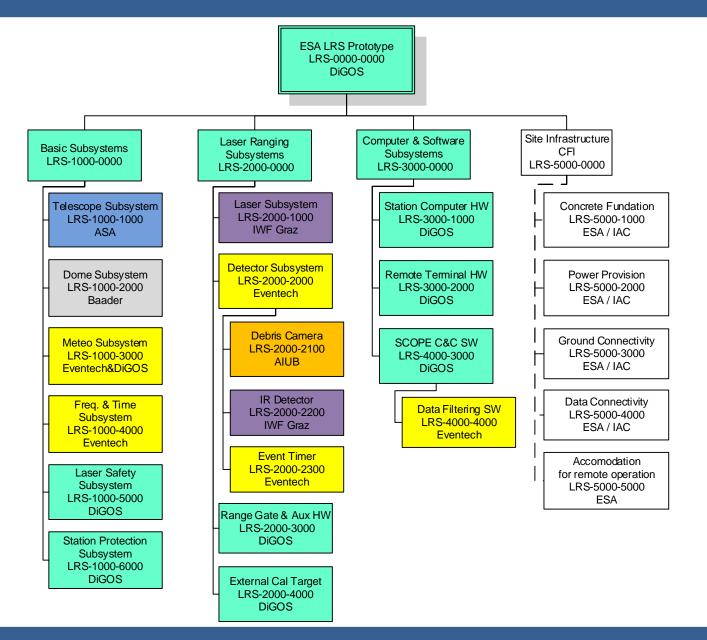
Proposal




- DiGOS Potsdam GmbH (DE) as prime contractor for the turn key delivery of the station and providing the control system plus auxiliary HW
- Subcontractors & Suppliers:
 - ASA Astrosysteme GmbH (AT) delivering the telescope assembly
 - Baader Planetarium GmbH (DE) leader in astronomical dome
 - Austrian Space Research Institute/Institut f
 ür Weltraumforschung (IWF), Graz (AT) providing the LRS laser packages & IR detector
 - Eventech Ltd (LV) together with the Institute of Astronomy, Riga providing the LRS event timer, a detector package, data filtering and additional electronics
 - Astronomical Institute University of Bern, AIUB (CH) for passive-optical tracking technology and providing an optical camera for testing space debris tracking

Project Logic & Start of the Project

- Nov 2017 Mar 2018 negotiations & clarifications
 - Site selection process
 - Link budget calculations
 - Software BIPR & Latvian contribution
- Contract signature on 22.03.2018



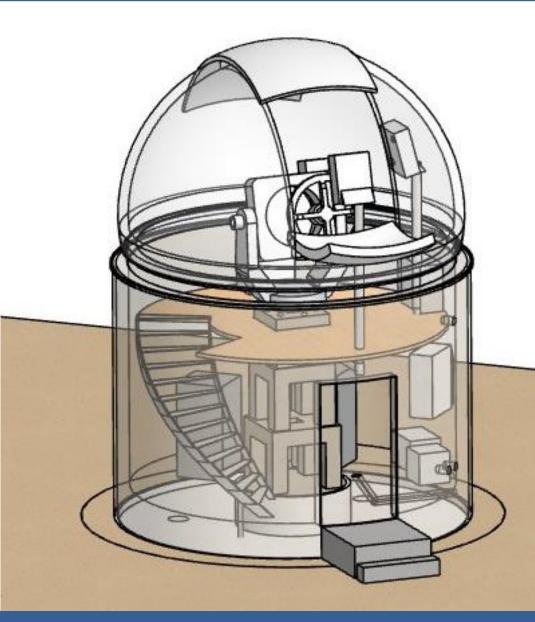
DiG

Laser Ranging Station for Cooperative Targets – Final Presentation – DiGOS Potsdam GmbH

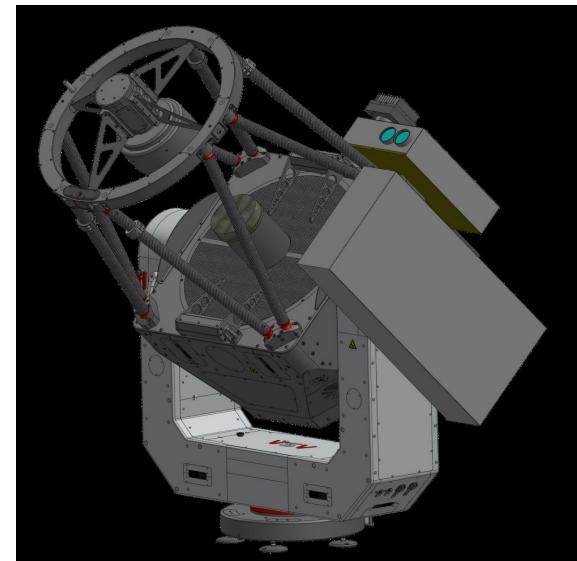
Product Tree

Laser Ranging Station for Cooperative Targets – Final Presentation – DiGOS Potsdam GmbH

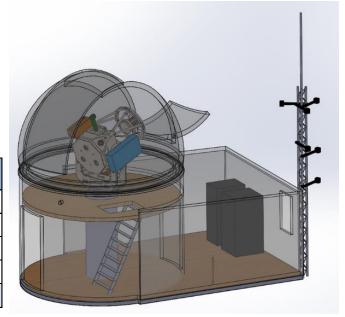
ESA Laser Ranging Station IZN-1


Main Subsystems

- Telescope: 80cm Ritchey-Chretien, 4 foci, pointing accuracy <5 arcsec
- Dome: 4.2m slit-type
- Detector Package: C-SPAD (532nm) & IR-SPAD (1064nm)
- Laser Package: 532 & 1064nm, <10ps pulses, ≤500µJ p. pulse, 400Hz
- Timing & Frequency: GNSS timing appliance, central freq. distribution
- Event Timer: ~3.5ps RMS
- Laser Safety & Station Protection Subsystems
- Integrated, Command & Control System
 - Commercially maintainable, upgradeable



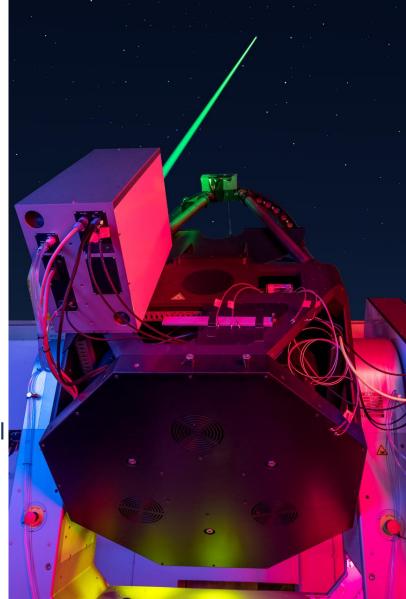
- Kick-off with subcontractors in April 2018
- System Requirements Review (SRR) in June 2018
 - External interfaces (site, predictions, etc.)
 - Safety subsystem & logic
 - Debris performance outlook
- Initial site design as one cylindrical building (ESA CFE) as base for the dome
- Later change to complete station base/ station provided by DiGOS with separate control room
 - Only foundation work as ESA provision

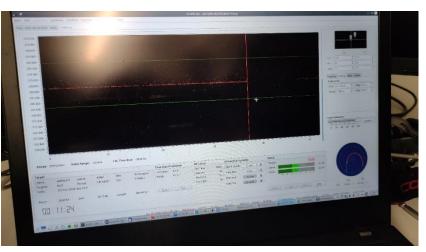

- Design Review (DR) in Dec 2018
 - Status was considered in accordance with or beyond design review objectives
 - Nominal project specific work
 - No major design problems or incompatibilities were identified, however site infrastructure specification → design reference
 - → CCN-1 in June 2019: Observatory type station base (Gambato) via new WP + extension of 4 months
- Pre-Inspection (PII) in Feb 2019
 - IWF: First successful ranging to Galileo, Glonass, Etalon with new Laser & Detector packages (AZ800 loaned by Uni Vienna)
 - ASA: Minor issues / questions wrt. interfaces, mount model & pointing of the telescope.
 - → System pre-integration & testing in was agreed in Sandl

DiG C

- System FAT in Sandl in March 2020
 - Remote FAT due to Covid situation
 - System test results very good! (tracking, calibration, ranging)
 - More testing, fine tuning and characterization agreed (weather far from ideal)
 - Limited travel even within Austria (lockdowns)
 - Storage of dome
 - CCN to improve laser package for beam steering/, remote alignment capability, water cooling, power meter

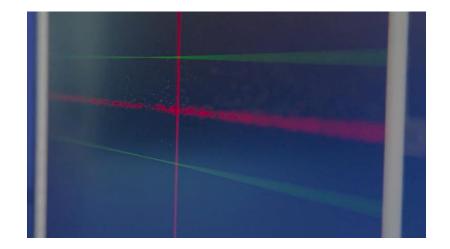
	Class	532nm	1064nm	Total
	LEO	3	2	5
	LAG	1	2	3
,	GNSS	7	9	16
	GEO	0	1	1
	Sum	11	14	25

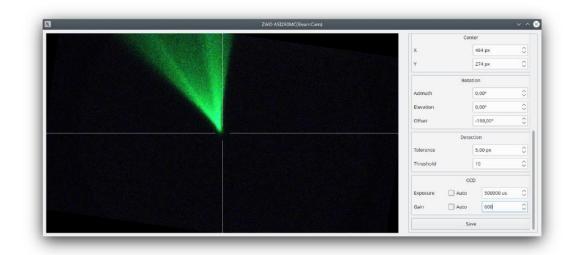


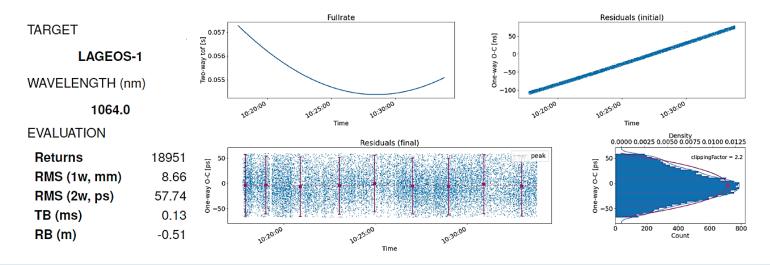


- Jan 2021 Clemens Heese (new ESA PM)
- Site preparation delays on Tenerife, Potsdam as test site made available
- Bundled CCN: ELRS test installation in Potsdam, schedule update, storage extension (dome)
- **Objectives**
 - Gain operational knowhow
 - Test of upgraded Laser Package (CCN) with water cooling + cabling, and re-verify mount model
 - Update of telescope firmware
 - Preparations for laser comms upgrade & recording of camera images + pointing angles for Flying Laptop
 - Priority is Galileo ranging (local tie measurement of ELRS in Potsdam will be checked to make real use of measurements)
 - Performance comparison with GFZ SLR station
- C19 Deployment Plan established

- Installation on Tenerife (Teide Observatory) May to June 2021 & acceptance (SAT)
 - Phase 1: Station base & dome
 - Phase 2: Telescope, Laser & Detector packages, electronics, etc.
 - First demo with Galileo 212 on 04.06.2021
 - Remote operation towards SAT preparation
 - Additional delays due to laser outage, alignment & calibration tests, coordinates estimation, bad weather
 - → Too optimistic verification & acceptance approach




• Site Acceptance Test (SAT) completed


IZN-1 SLR Performance

LAGEOS: 2.6 ± 8mm LAGEOS-2: 1.5 ± 9mm

Laser Ranging Station for Cooperative Targets – Final Presentation – DiGOS Potsdam GmbH

IZN-1 SLR Performance

	Sat	Date	Duration [min]	Range Bias [mm]	Time Bias [us]	Precision [mm]	Total NP	RMS [mm]
	LAG1	2021/09/20 21:49	0	-6		3	2	10
Batch 1	LAG1	2021/09/23 17:49	13	-2	1.9	1	8	12
	LAG2	2021/09/28 18:27	22	-2	-7.8	1	9	10
532nm	LAG1	2021/09/29 16:51	0	0		1	2	14
	LAG1	2021/09/30 18:31	32	6	-1.9	2	13	10
	AVG:	5	14	-0.8	-2.6	1.6	6.8	11

Batch 2	Sat	Date	Duration [min]	Range Bias [mm]	Time Bias [us]	Precision [mm]	Total NP	RMS [mm]
532nm	AVG:	14	18	-2.9	0.2	1.7	8.5	10.0

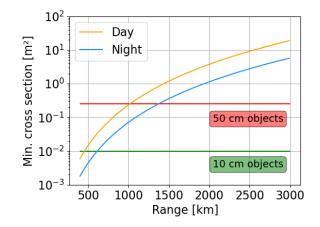
Batch 3	Sat	Date	Duration [min]	Range Bias [mm]	Time Bias [us]	Precision [mm]	Total NP	RMS [mm]
1064nm	AVG:	14	21	3.3	3.0	0.9	11.3	9.6

The pass-by-pass bias estimations for these batches using 532nm and 1064nm confirm the range bias <10mm.

IZN-1 Upgrade: Opto Comms

Space to ground laser communication

- CCSDS Standard Optical On-Off Keying (O3K)
- Typically 1550nm downlink & beacon laser
- License-free band, difficult to eavesdrop
- European Optical Nucleus Network (ESA) of Optical Ground Stations (OGS) developments ongoing
- Space Segment examples
 - Flying Laptop with OSIRIS (80MBit/s)
 - PIXL-1 with CubeLCT (100MBit/s)
 - TOSIRIS (10GBit/s)



© Uni Stuttgart

Recent IZN-1 Upgrade Contract: Space Debris Laser Ranging

- Context: Space Situational Awareness
- Collision avoidance is a first step to mitigate crashes in space
- Using SLR technology to measure orbit of space debris to increase knowledge about potential collision with satellites
- IZN-1 Upgrade contract running
- "Split configuration"
- Challenges & limits:
 - Reliable day & night operation
 - Technology not yet mature
 - Does not allow "scanning of the sky" (à priori information required)
 - Uncooperative targets: Distinguish between debris & "unknown" targets
 - Object size from rocket bodies & upper stages to CubeSATs

DiG

Summary

- A challenging project last not least through the CoVID situation
 - Long storage
 - Long offset from FAT to installation and final acceptance
 - Also offset from FAT to SAT was a "burdon" for the team (details/specifics during installation)
- Team spirit and results in general positive
 - It was the first time of this team composition
 - It was the first turn key project for DiGOS for SLR
- ELRS is performing well and is ILRS registered/accepted "IZN-1" (quality standards)
 - It is modern, flexible and capable station
 - Well suited for future "challenges"
- Remote operation (from any internet accesible location) works well
 - On site support for emergency situations very important for situations as
 - \circ $\,$ Power outage and recovery
 - o Lightning "recovery"
- Shared operation scheme evolved over time
 - DiGOS operate the station for ESA (since August 2022)

Some Remarks

- DIGOS is
 - proud (and relieved) having achieved SAT/FA for ELRS
- DiGOS is gratefull for having had the chance to build and deliver ELRS to ESA
 - Was strongly in support of the position DiGOS has now in the SLR community
- JAXA is having (soon) a "sibbling" type station. SAT currently under preparation.
- SLR and laser ranging in general is a dynamic environment
 - Trend to higher repetition rates
 - Trend to combined SLR and Debris station
- As a major lessons learned a configuration change to a "split configuration", separating Rx and Tx side is followed
 - Basis of the GLRS (G2G) testbed contract
 - Allowing accomodation of additional powerfull debris lasers, in addition to SLR
 - Allowing MHz lasers for SLR without interleaved operation
 - Allowing transportable station solutions by keeping dome sizes more compact

Thanks for your attention! See more impressions at https://digos.eu

Laser Ranging Station for Cooperative Targets – Final Presentation – DiGOS Potsdam GmbH

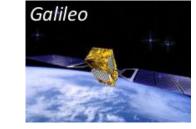
Backup

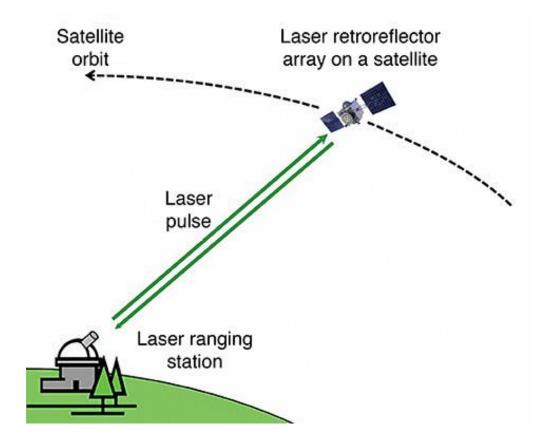
• Backup slides

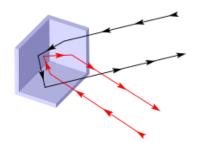
Laser Ranging Satellites

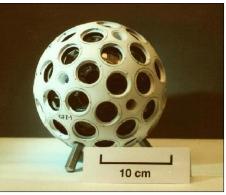
- 100+ satellites routinely tracked by SLR stations worldwide
- New & approved missions
 - S-NET (4 cubesats/testing inter-satellite communication)
 - Sentinel-3B (altimeter mission/restricted tracking)
 - GRACE-FO (2 satellites/gravity measurements)
 - Tiangong-2 (Chinese spacecraft)
 - Beidou-3M (4 GNSS satellites)
 - PAZ (SAR mission)
 - ICESat-2 (laser altimetry mission/restricted tracking)
 - Astrocast Precursor (2 cubesats/engineering testing)
 - GNSS (Galileo, IRNSS, BeiDou/Compass, etc.)
 - Constellations, etc.

\rightarrow Cooperative Targets

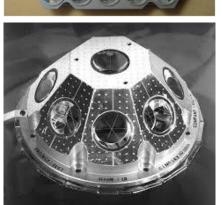




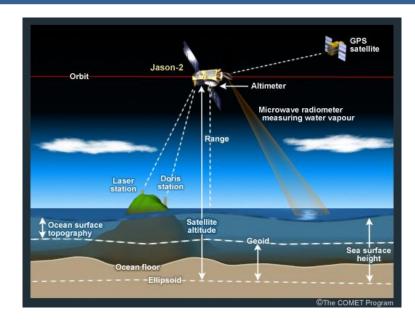

The precise measurement of the roundtrip time-of-flight of an ultra-short laser pulse between an SLR ground station and a retroreflector-equipped satellite which is then corrected for atmospheric refraction using ground-based meteorological sensors


- Unambiguous time-of-flight measurement
- 1 to 2 mm normal point precision
- Passive space segment
- Simple refraction model
- Night / Day Operation
- Near real-time global data availability
- Satellite altitudes from 400 km to 36,000 km and the Moon
- Centimeter to millimeter accuracy satellite orbits

Laser Ranging Satellites



- Mostly corner cubes, hollow reflector designs under consideration
- Cannon ball satellites as passive geodetic targets
- Pyramid shaped LRR for LEO (e.g. GRACE, Swarm, PAZ, TandemX, ...)
- Single retroreflectors for Cube Satellites
- Larger arrays of different shapes for GNSS / GEO / Luna



Uses of SLR data

- Main application
 - SLR and LLR are one of the fundamental technologies of geodesy besides GNSS, VLBI, Doris and gravimetry
- Main scientific contributions
 - Monitoring of Earth rotation parameters (polar motion and length of day)
 - Monitoring of 3-dimensional deformations of the solid Earth (station coordinates and velocities), time-varying geo-center coordinates
 - Static and time-varying coefficients of the Earth's gravity field
 - Calibration / validation of microwave instruments onboard of satellites (altimeter, GNSS orbits)
- New applications
 - Space debris tracking
 - Optical Direct-To-Earth communication / Laser Comm
 - Quantum Key Distribution
 - Time transfer

Laser Ranging Technology

DiGຶs

- First Generation
 - Mostly Ruby laser with repetition rates of \leq 1Hz
 - Pulse length 10-40 ns
 - Tracking satellites up to 6000km (LAGEOS)
 - Accuracy 1-2 meters
- Second Generation
 - Ruby lasers and frequency-doubled Nd:YAG
 - Pulse length 2-5 ns
 - Tracking satellites up to 19000km (ETALON)
 - Accuracy several decimeter
- Third Generation
 - Mostly frequency-doubled Nd:YAG laser
 - Repetition rates of 5-10Hz
 - Pulse length 35-400ps
 - Energy 20-100mJ per pulse
 - Tracking satellites in very low orbits (GFZ-1)
 - Accuracy of about 1cm
- Forth Generation
 - Mostly frequency-doubled Nd:YAG laser
 - Repetition rates of 1-2kHz
 - Pulse length of 5-30ps with <1mJ energy per pulse
 - SPAD or C-SPAD detectors
 - Accuracy 1-2 mm (per normal point)

ILRS Station Network

- Stations were built by different institutes at different times using different technologies
- Mix of new and old technologies within stations due to updates
- Average age of stations >20 years

ILRS Station Network

- Many geographic gaps, primarily in Latin America, Africa, Oceania, Antarctica
- Several new stations planed or already under construction
- Some of the oldest stations will be replaced in the next years