

Λιωπεν

Passion for Technology

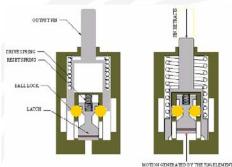
DEVELOPMENT AND QUALIFICATION OF A EUROPEAN PIN PULLER

ESA ESTEC Contract No. 4000103964-11-NL-RA

Mechanisms' Final Presentation Days 2014

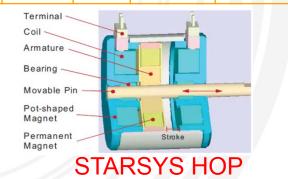
12-13/06/2014

ESA-REACT


www.arquimea.com


TECHNOLOGY SURVEY

ISRO

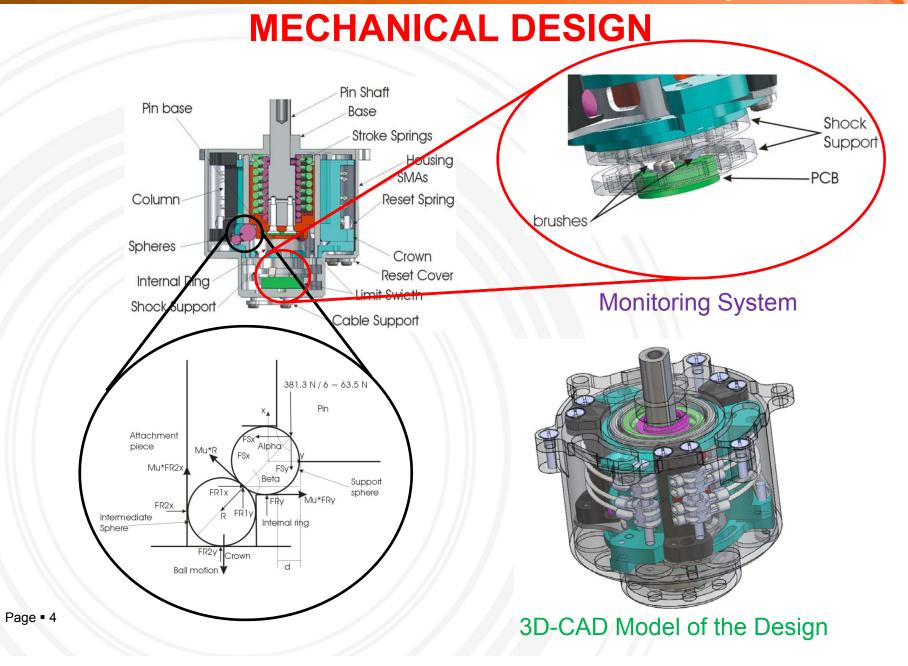

TiNi

ASTRIUM Thermal Fuse

Page 2

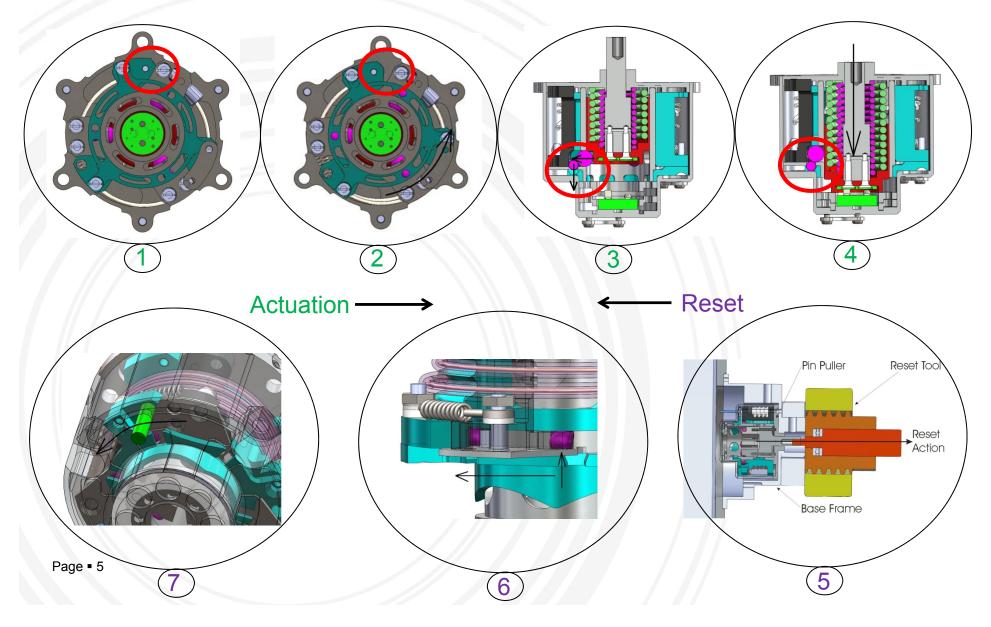
	Technology	Paraffin	Burn wire	SMA	Electromagnetic	Piezoelectric
	Criteria					
	Stroke	High	-	Medium-High	Medium-High	Low
T	Load capability	High	Medium	Medium-High	Medium-High	High
	Mass and volume	High	Medium	Low	Medium	Low
	Actuation time	Slow response	Fast response	Moderate – Fast response	Moderate – Fast response	Fast response
	Operating Temperature	Max. non actuation limited to 110°C	Medium	Higher	Higher	Limited (Curie Temperature)
	Type of release	Progressive	Shock	Progressive	Progressive	Progressive
	Power consumption	High	High	Medium - High	High	Medium
	Flight history	None (EM already developed)	None	PinPullers HDRM Rotary Actuators Frangibolt	None	None
	Recurrent cost (ROM)	High	Low	Low	High	Low

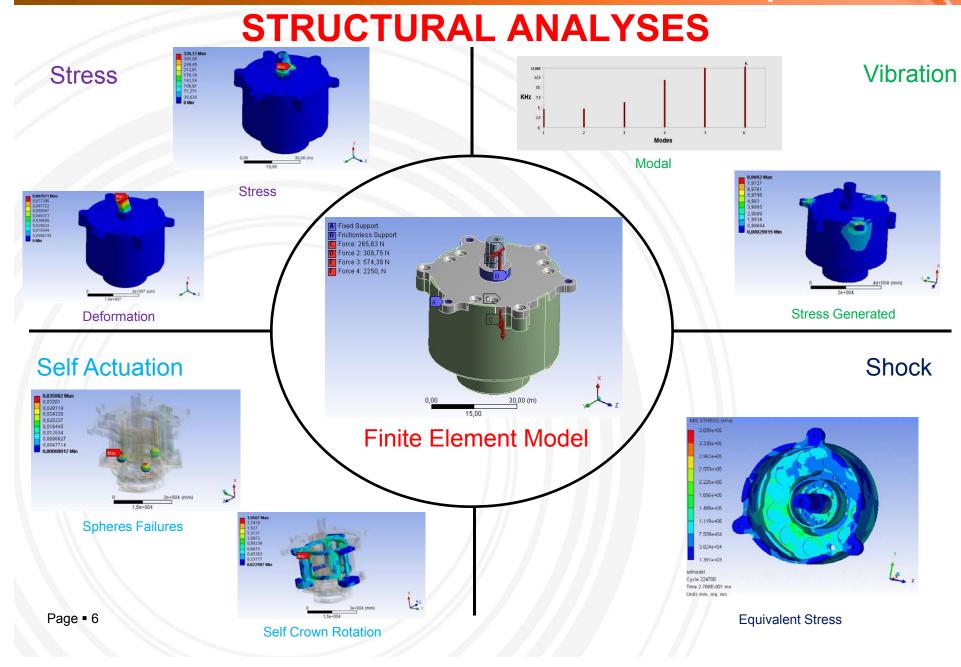
Paraffin

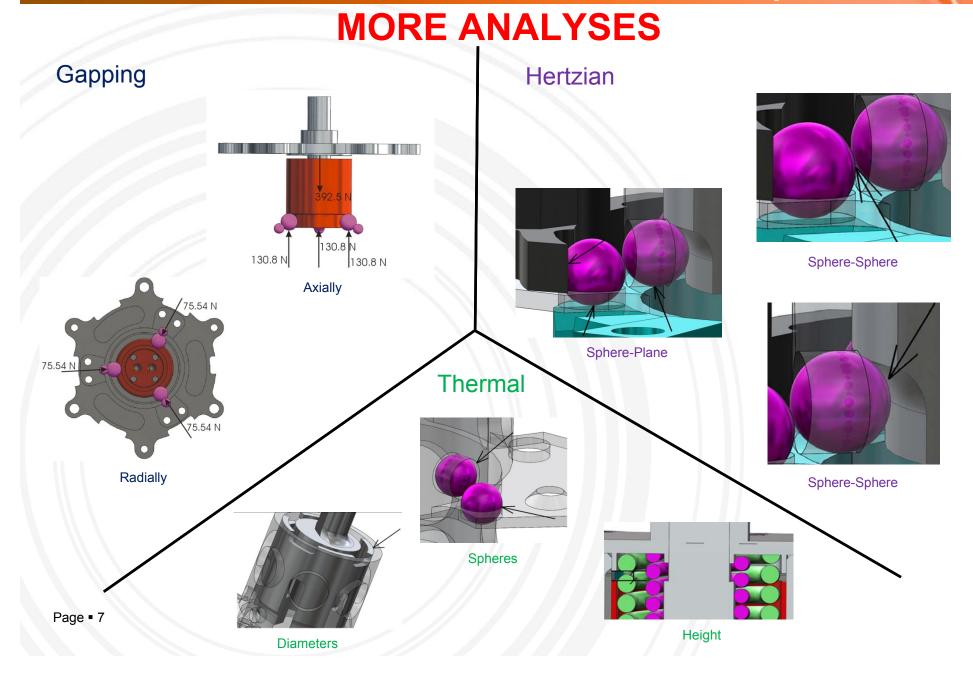

CEDRAT Piezoelectric

Page • 3

www.arquimea.com

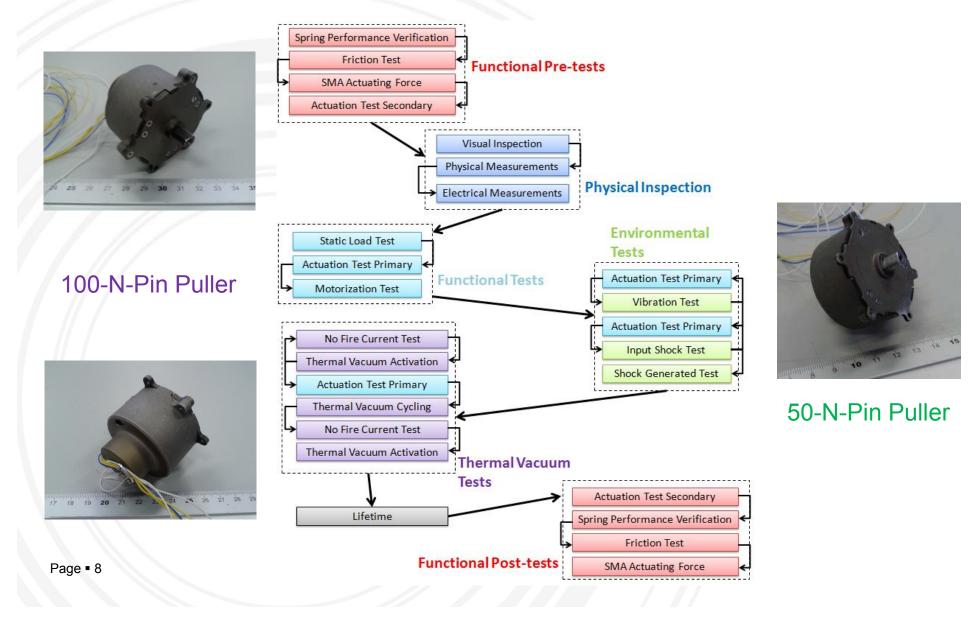

CRITICAL REVIEW OF ESA TECHNICAL REQUIREMENTS

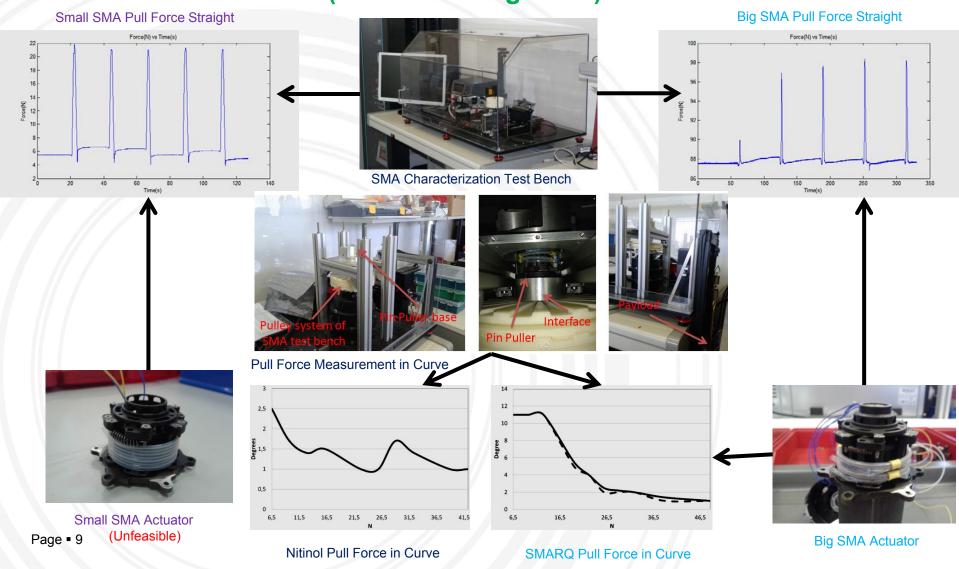

Parameter	Esa ITT	Achievable.	Comments
Recurring Price [k€]	< 7.0	Yes	 Preliminary analysis
Pin Stroke [mm]	10.0	Yes	 Ensured by preliminary design.
Min. Axial Pull Force [N]	100	Yes	 Ensured by preliminary design.
			 Motorization calculations according to ECSS-E-ST-33-01C.
Max. Shear Force (No-Actuation)	1800	Yes	- Requirement change. ⁽¹⁾
[N]			 Ensured by preliminary design.
			 Preliminary Analyses show the correct behaviour.
Max. Shear Force (Actuation) [N]	300	Yes	 Requirement change. ⁽¹⁾
			 Ensured by preliminary design.
			 Preliminary Analyses show the correct behaviour.
Mass [kg]	0.075	Yes	 Restrictive parameter. ⁽²⁾
			 Ensured by preliminary design.
Operational Temperatures [°C]	-150 to +125	Yes	 Maximum Operational Temperature.⁽³⁾
			 Minimum Operational Temperature. ⁽⁴⁾
			 Actuator design using SMARQ. ⁽⁵⁾
Operational Cycles (min)	100 cycles	Yes	 Reliable Mechanical Design.
	ŗ		 SMARQ lifetime > 100 cycles.
Redundancy	Redundant actuation	Yes	 Ensured by design. 2 independent trigger actuators will be included.
Electrical Interface	TBD after Market	Yes	 The most interesting option is Pyro interface⁽⁶⁾⁽⁷⁾
	Research	100	
Actuation Time max [s]	< 0.5	Yes	 Restrictive requirement. ⁽⁸⁾
Actuation Time Repeatability Error	10% of nominal actuation time.	Yes	 Error between actuations at the same environment temperature. (9)
No Shock	Yes	Yes	 Ensured by preliminary design.
			 Use of SMA technology.
Fully resettable	Yes	Yes	 Ensured by preliminary design.
			 A Reset Tool will be designed.
ITAR free	Yes	Yes	 ARQUIMEA technology.
Based on European components	Fully	Yes	 Fully designed with European technologies and components.
and processes	, i		 SMARQ is an European product.
Pin Puller Technology	Non explosive	Yes	 Use of SMA technology.
Reusable	Yes. Without refurbishment	Yes	 Ensured by preliminary design.
Resettable	Yes, via manual operation.	Yes	- Reset Tool.
Pin Positions	Only 2 possible Pin positions (i) retracted (ii)deployed	Yes	 Ensured by preliminary design.
Position monitoring	Possible Position Sensor	Yes	 Position Sensor. Possible problems with operating temperatures. ⁽¹⁰⁾



www.arquimea.com

OPERATION PRINCIPLE

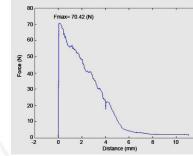



www.arquimea.com

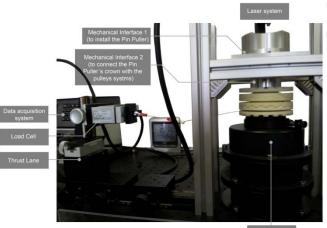
TEST SEQUENCE FOR QM

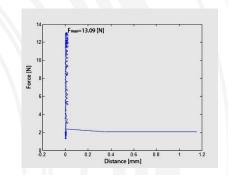
www.arquimea.com


FUNCTIONAL PRE-TEST (SMA actuating force)

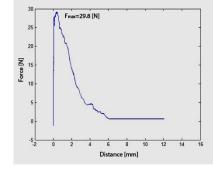

www.arquimea.com

FUNCTIONAL PRE-TEST

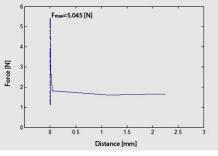

(Friction Tests)



Setup for Friction Test on Pin



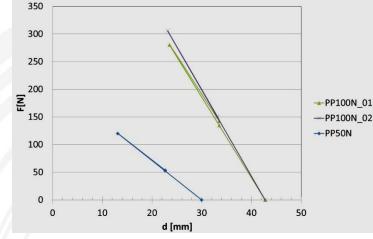
Friction on Pin for 100-N-Pin Puller



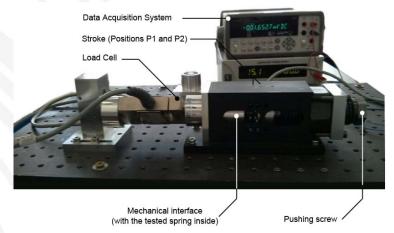
Friction on Crown for 100-N-Pin Puller

Friction on Pin for 50-N-Pin Puller

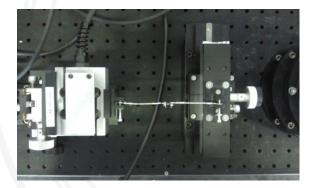
Setup for Friction Test on Crown


 $48.6 \text{ N} \ge 2^{*}(1.5^{*}(13.1\text{N}) + 1.2^{*}(2.89)) \ge 48.39 \text{ N} \Longrightarrow 100\text{-N-Pin Puller}$ $42.2 \text{ N} \ge 2^{*}(1.5^{*}(5.05\text{N}) + 1.2^{*}(8.04)) \ge 34.45 \text{ N} \Longrightarrow 50\text{-N-Pin Puller}$

Friction on Crown for 50-N-Pin Puller


Page = 10

www.arquimea.com

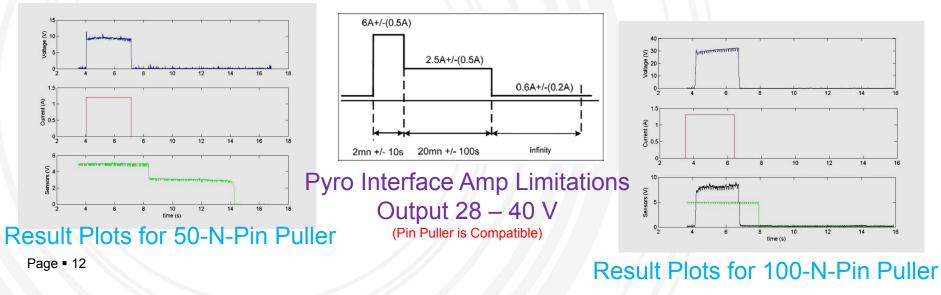

FUNCTIONAL PRE-TEST (Springs Performance Verification)

Stroke Spring Performances

Setup for Stroke Spring Verification

 $E = \begin{pmatrix} 6 \\ 4 \\ 2 \\ 0 \\ 0 \\ 2 \\ 2 \\ 4 \\ 2 \\ 0 \\ 0 \\ 2 \\ 2 \\ 4 \\ 4 \\ 6 \\ 8 \\ 10 \\ d [mm]$

Page 11 Setup for Reset Spring Verification


Reset Spring Performances

www.arquimea.com

FUNCTIONAL PRE-TEST (Actuation Test with Secondary SMA)

Setup for Actuation Test

www.arquimea.com

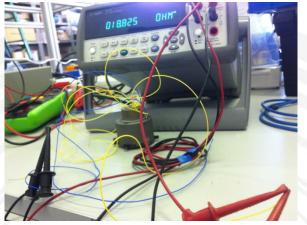
PHYSICAL INSPECTION (Physical Measurement)

Reference	Iteration	Required result (gr)	Current result (gr)		
Pin Puller of 100 N # 1					
10116_PP100_01_Weight_001	1	75	98.7		
		Average	97.5		
Pin Puller of 100 N # 2					
10116_PP100_02_Weight_001	1	75	97.2		
		Average	95.5		
Pin Puller of 50 N					
10503_ PP50_Weight_003	3	57	74.4		
		Average	75.2		

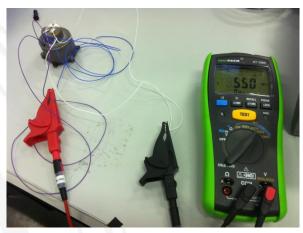
Mass

Envelope

Reference	Iteration	Required result (mm)	Current result (mm)			
Pin Puller of 100 N # 1						
10116_PP100_01_Diameter_001	1	≤ 60	53.15			
		Diameter average				
10116_PP100_01_Length_001	1	≤ 60	49.58			
		Length average				
Pin Puller of 100 N # 2						
10116_PP100_02_Diameter_001	1	≤ 60	53.07			
		Diameter average				
10116_PP100_02_Length_001	1	≤ 60	49.45			
		Length average				
Pin Puller of 50 N						
10503_PP50_Diameter_001	1	≤ 60	51.40			
		Diameter average				
10503_PP50_Length_001	1	≤ 60	38.82			
		Length average				

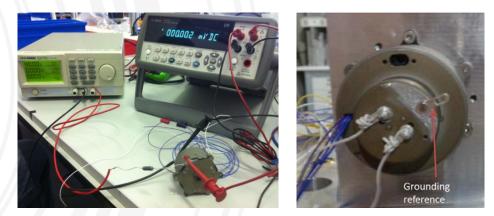


Page • 13


www.arquimea.com

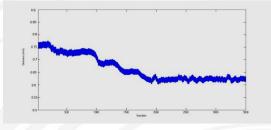
PHYSICAL INSPECTION

(Electrical Measurement)


Electrical Resistance: 20 Ω for 100-N-Pin Puller 8 Ω for 50-N-Pin Puller

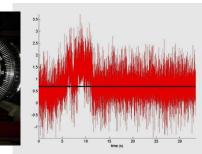
Insulation: results > 10 M Ω

Page 14 Dielectric: results < 50E-12 C



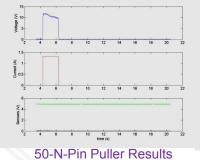
Grounding: results < 10 m Ω

www.arquimea.com

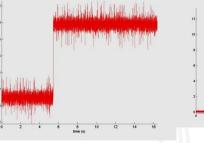

FUNCTIONAL TESTS

Static Load

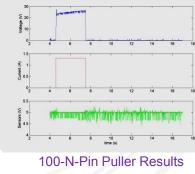
100-N-Pin Displacement

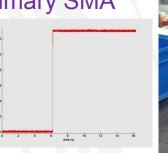

Test Setup for Static Load

50-N-Pin Displacement



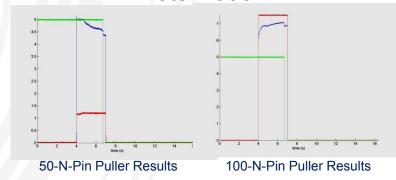
Test Setup for Actuation


Page 15

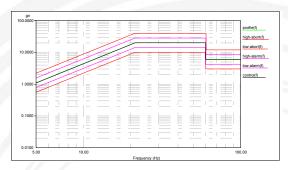


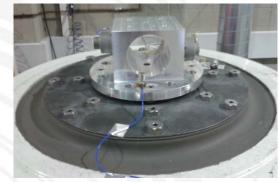
Actuation with Primary SMA

50-N-Pin Stroke

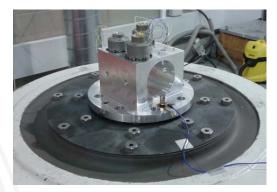


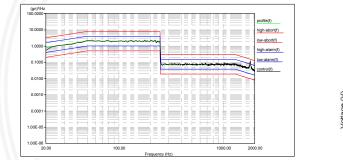
100-N-Pin Stroke


Test Setup for Actuation **Motorization**

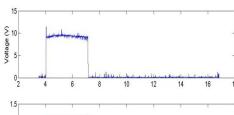

www.arquimea.com

ENVIRONMENTAL TESTS (vibration)

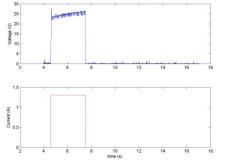

Test Setup for Axial Axis



Profile of Sine Vibrations

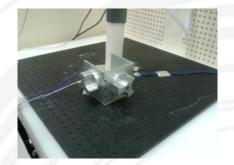


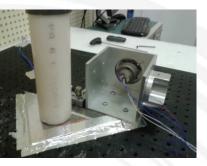
Test Setup for Radial Axes



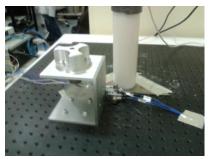
Profile of Random Vibrations

S 3 4 6 8 10 12 14 16 18 Control 12 14 14 16 18 Control 12 14 16 18 Control 12 14 14 16 18 Contro


Actuation of 100-N-Pin Puller Before and After Vibrations


Page • 16

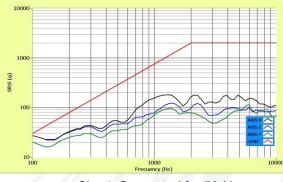
www.arquimea.com


ENVIRONMENTAL TESTS (Shock)

Shock Setup



Radial Axes


Axial Axes

Inputted Shock SRS

Shock Profile for All Axes

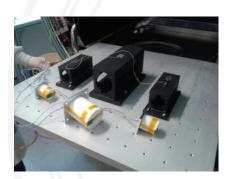
Shock Generated

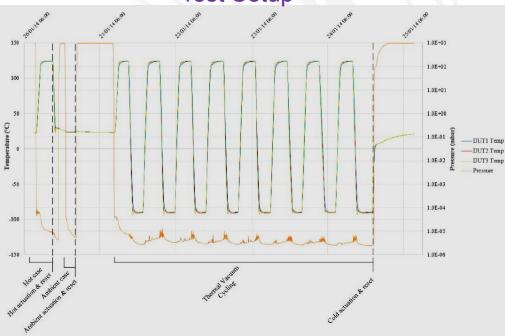
Shock Generated for 50-N-Pin Puller

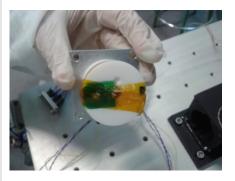
Page 17

Shock Generated for 100-N-Pin Puller

www.arquimea.com

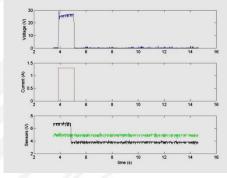

THERMAL VACUUM TESTS (Setup, Pressure, Temperature and Cycling)

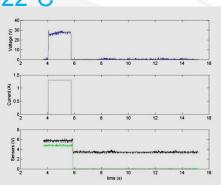

Test Setup



Stroke Measurement

Page • 18

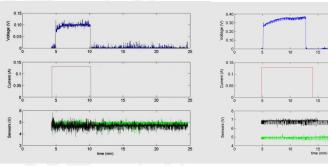

External Sensors


Time Evolution of Temperature and Pressure

www.arquimea.com

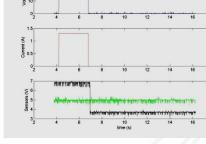
THERMAL VACUUM TESTS (TVAC at Ambient and Maximum Temperatures)

TVAC @ 22°C



50-N-Pin Puller

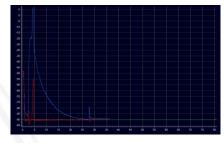
No Fire TVAC @ 125°C


50-N-Pin Puller

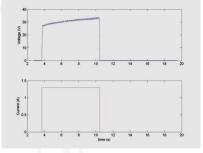
TVAC @ 125°C U-0.5

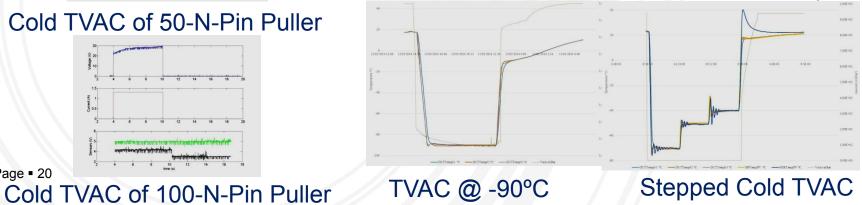
Page = 19 50-N-Pin Puller

E

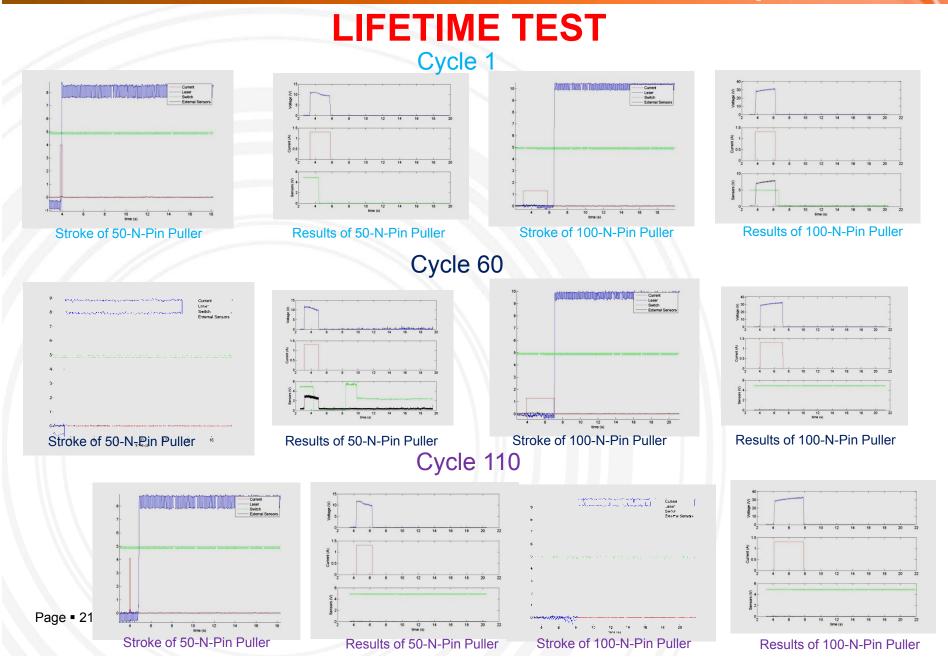

100-N-Pin Puller

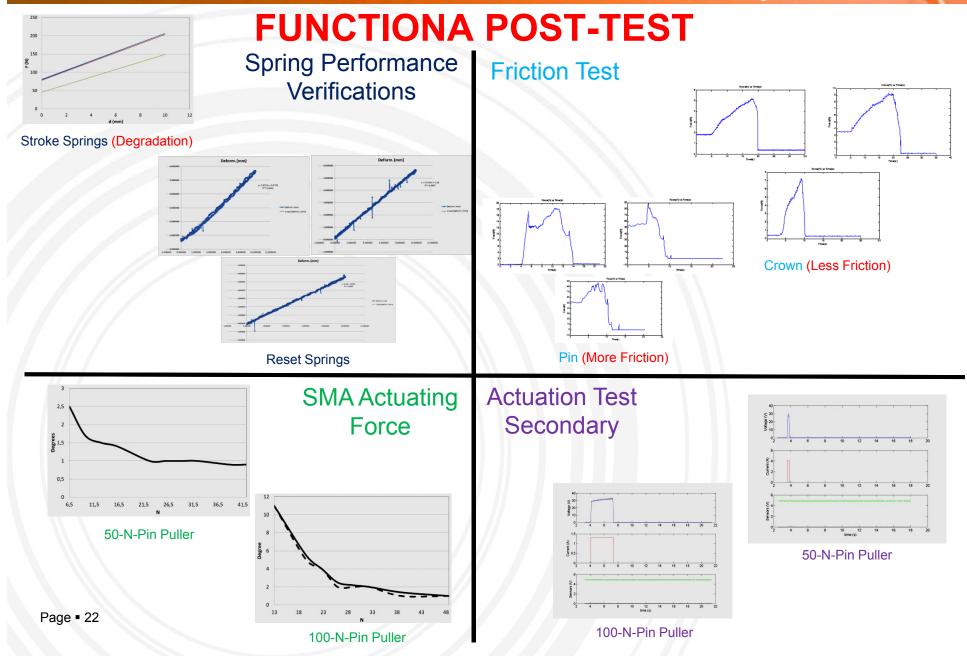
www.arquimea.com


THERMAL VACUUM TESTS (TVAC at Minimum Temperature)


Cold Actuation in Inert Atmosphere

Temperature Evolution


Result Plots in Inert Atmosphere



Cold TVAC of 50-N-Pin Puller

June os-

Page = 20

VERIFICATION OF CONFORMITY OF QM AGAINST REQUIREMENTS

Parameter	ESA ITT		ARQ Pin Puller		Achieved?		
	PP100N	PP50N	PP100N	PP50N	PP100N	PP50N	
Recurring Price [k€]	< 7.0		< 7.0		Yes		
Pin Stroke [mm]	10.0	90	10.0	90	Ye	Yes	
Min. Axial Pull Force [N]	100	50	100	50	Ye	Yes	
Max. Shear Force (No-Actuation) [N]	1800	450	1800	450	Ye	es	
Max. Shear Force (Actuation) [N]	300	90	300	90	Ye)S	
Mass [kg]	0.075	0.057	0.0965	0.0752	N	0	
Envelope [mm]	60 x 60	60 x 60	53.1 x 49.5	51.4 x 38.8	Ye	es	
Operational Temperatures [°C]	-150 to +125	-90 to 70	- 50 to +125	- 50 to +70	N	0	
Redundancy	Redundant	actuation	Redundar	it actuation	Ye	s	
Electrical Interface	Pyre	Pyro		Pyro adaptable		Yes	
Voltage [V]	26 - 4	10	28		Yes		
Power [W]	< 40'	N	36.4	13	Ye	Yes	
Current [A]	3.5 to	5.2	1.3	4	Yes		
No fire current [A]	1		0.130 @ 5 min		No)	
Resistance [Ω]	1 ± 0	.2	20	8.2	No		
Actuation Time max [s]	< 1		< 6	< 5	N	0	
Insulation [MΩ]	< 1()	<	10	Yes		
Dielectric [C]	< 50x1	< 50x10 ⁻¹²		< 50x10 ⁻¹²		es	
Grounding [mΩ]	> 10		> 10		Yes		
Actuation Time Repeatability Error [%]	< 1()	25	< 10	N	0	
Low-Shock [g]	< 100	00	< 300	< 200	Ye	es	
Lifetime (Cycles)	> 10	0	> 25 (tested for > 110 cycles)		N	0	
ITAR free	Yes	Yes		Yes		es	
Based on European components and processes	Fully		Fully		Ye	es:	
Pin Puller Technology	Non exp	losive	Non Explosive		Ye	es	
Reusable	Yes, without re		Yes, without refurbishment		Ye	es	
Resettable	Yes, via manu	al operation	Yes, via manual operation.		Ye	es	
Pin Positions (i) retracted (ii) deployed		Pin positions cted	Only 2 possible Pin positions (i) retracted (ii)deployed		Ye	÷S	
Position monitoring	Possible Position Sensor		Limit Switch		No		

www.arquimea.com

CONCLUSIONS AND LESIONS LEARNED

- Using a one single SMA fibre with enough output force is more feasible than using several fibres.
- Small SMARQ fibres do not increase the electrical resistance enough, so indirect heating is the best solution.
- Reduction of SMA output force has been measured with the fibres in curve respect to the fibres in straight.
- The stroke springs of 100-N-Pin Pullers have presented degradation after test campaign.
- The frictions measured in the crowns was reduced after test campaign.
- The frictions on pins have been increased in 23% because wear have been recognized in the 100-N-Pin after test campaign
- The mechanical parts have been mechanized and good external appearances have been presented.
- The total weight of the assembly exceeds the required mass of the device.
- The measured values of enveloped, dielectric, grounding and insulation fulfil the project requirements.
- The measured value of the SMARQ actuator resistance is compatible with Pyro interface.
- The Pin Puller structure has presented a successful resistance to the application of these external forces.
- The QM has presented more than 9 mm of pull stroke.
- Successful actuations have been performed with half SMA actuator.
- No self actuations and degradation have been recognized after the environmental test and thermal vacuum cycling.
- The shock generated by the Pin Puller actuation has been measured obtaining values below 1000g.
- Thermal vacuum actuations have been obtained at 125 and 22°C.
- The influence of just cold temperature has been checked by testing the devices at -90°C in inert atmosphere with successful actuations.
- The combination of cold and vacuum is a worst condition that has not been overcame below -50°C.
- Two factors have been recognized, which directly affect the actuations at cold temperature:
 - > The pull forces measured with the SMA actuators in curve is less than the forces measured in straight.
 - > The pull force of SMA in curve fulfils the motorization equation considering 1.5 as friction factor of uncertainty, but not considering 3.

Lifetime has been validated since the Pin Puller has actuated for a total of 110 cycles.

Page 24

Passion for Technology

Many thanks!!

Questions?

ESA ESTEC Contract No. 4000103964-11-NL-RA

Mechanisms' Final Presentation Days 2014

12-13/06/2014