AT

securityandtrust.lu

Applicability of Mutation Testing to Flight Software

(FAQAS)

Executive Summary Report (ESR)

F. Pastore, O. Cornejo, E. Vigano

Interdisciplinary Centre for Security, Reliability and Trust

University of Luxembourg

ITT-1-9873-ESA-FAQAS-ESR
Issue 1, Rev. 2

November 17, 2021

EUROPEAN SPACE AGENCY. CONTRACT REPORT.

(]
The work described in this report was done under ESA contract.
Responsibility for the contents resides in the author or organisation that prepared it.
The copyright in this document is vested in the University of Luxembourg. ®

This document may only be reproduced in whole or in part, or stored in a retrieval system, or transmitted
in any form, or by any means electronic, mechanical, photocopying or otherwise, either with the prior z
permission of the University of Luxembourg or in accordance with the terms of ESTEC Contract No. U N I V E RS I T E D U

4000128969/19/NL/AS. LUXE M BOU RG

Introduction

1 INTRODUCTION

From spacecrafts to ground stations, software has a prominent role in space systems; for this reason,
the success of space missions depends on the quality of the system hardware as much on the
dependability of its software. Mission failures due to insufficient software sanity checks [14] are
unfortunate examples, pointing to the necessity for systematic and predictable quality assurance
procedures in space software.

Since one of the primary objectives of software testing is to identify the presence of software
faults, an effective way to assess the quality of a test suite consists of artificially injecting faults
in the software under test and verifying the extent to which the test suite can detect them. This
approach is known as mutation analysis [8]. In mutation analysis, faults are automatically injected in
the program through automated procedures referred to as mutation operators. Mutation operators
enable the generation of faulty software versions that are referred to as mutants. Mutation analysis
helps evaluate the effectiveness of a test suite, for a specific software system, based on its mutation
score, which is the percentage of mutants leading to test failures. Also, mutation analysis enables
mutation testing, which concerns the automated generation of test cases that discover mutants.

Despite its potential, mutation analysis is not widely adopted by industry. The main reasons
include its limited scalability and the pertinence of the mutation score as an adequacy criterion [24].
Indeed, for a large software system, the number of generated mutants might prevent the execution
of the test suite against all the mutated versions. Also, the generated mutants might be either
semantically equivalent to the original software [21] or redundant with each other [27]. Equivalent
and redundant mutants may bias the mutation score as an adequacy criterion. Finally, test generation
approaches are preliminary and cannot be applied in industrial space context. For example, they can
generate test inputs only for batch programs that can be compiled with the LLVM infrastructure [3].

The FAQAS activity addresses the problems above. It is a joint work between the SnT Centre
of the University of Luxembourg!, which is the prime, Gomspace Luxembourg? (GSL) and OHB
Luxspace® (LXS). FAQAS led to the development of a toolset that addresses the challenges above. It
includes four tools: MASS (Mutation Analysis for Space Software), DAMAt (DAta-driven Mutation
Analysis with Tables), SEMuS (Symbolic Execution-based MUtant analysis for Space software), and
DAMTE (DAta-driven Mutation TEsting). FAQAS last 24 months, with a budget of 500k Euro (360k
to SnT, 70k to LXS, 70k to GSL).

Figure 1 provides an overview of the input and outputs of the FAQAS toolset. It relies on the idea
of generating multiple modified versions of the software system under test (SUT), some are derived
by modifying the implementation of the software (code-driven mutants) other by integrating a
mutation API that alters the messages exchanged by the software components of the SUT (data-
driven mutants). The SUT test suite shall be executed with all the mutants, if it is effective then it
shall fail with each of them. The mutants for which a failure is not observed are said to be live and
indicate a pitfall in the test suite. All the FAQAS tools take as input the software under test (SUT),
its test suite, and a set of configuration files.

MASS generates code-driven mutants. It integrates a pipeline of solutions that make mutation
analysis feasible with large SUT. The three main contributions of MASS are (1) the automated
identification of trivially equivalent mutants using an ensemble of compiler optimization options,
(2) the computation of the mutation score based on mutant sampling with fixed size confidence
interval approach (FSCI), (3) the automated identification of equivalent mutants based on coverage.
MASS reports the set of live mutants, the set of killed mutants (i.e., mutants that are discovered by

https://wwwen.uni.lu/snt
Zhttps://gomspace.com/
Shttps://luxspace.lu/

ITT-1-9873-ESA-FAQAS-ESR Page 2 of 28

Introduction

SUT FAQAS
s Project
Configuration

(MASS I DAMAt]

$ $ $) 2
TSeUSI Execute JCM1 %% v fomin E_’% DM1 %_’% DM2 %_’% v lomn %_'%
Suite @ @ @

4 $ 4 2

3

PASS FAIL PASS PASS FAIL
(LIVE MUTANT) (KILLED MUTANT) | |(LIVE MUTANT) (MUTANT NOT APPLIED) (KILLED MUTANT)
ANALYSIS REPORT ANALYSIS REPORT
statement coverage fault model coverage
mutation score mutation operation coverage
mutation score

(SEMus j I DAMTE]
1

TEST REPORT
New -
Executable 'f'"ed mutants —
live mutants

Test Inputs
Case
[Manual inspection]
Legend:
Improved .
SUT New ! Modified source code statement
Test Cm—— Executable — Probe modifyng components interaction
Suite ZQSt CM Code-driven mutants
a< DM Data-driven mutants

Fig. 1. Overview of the FAQAS toolset

the test suite), and information useful to draft a verification report, which includes the statement
coverage of the SUT test suite and the mutation score (i.e., the percentage of mutants discovered
by the test suite).

DAMAt generates mutants for data-driven mutation analysis. Data-driven mutation analysis is a
research contribution of FAQAS. Instead of mutating the implementation of the SUT, it consists of
altering the data exchanged by software components. DAMALt relies on fault models that specify
how to mutate the data exchanged by software components through data-driven mutation opera-
tors. DAMALt can automatically alter data that is stored in data buffers (e.g., before serialization
on the communication channel). DAMALt enables the simulation of faults that affect simulated
components (e.g., sensors), which is not feasible with traditional, code-driven mutation analysis.
DAMAL generates as output a set of killed mutants (i.e., mutants that, during testing, successfully
alter the data, and lead to test case failures), a set of live mutants (i.e., mutants that, during testing,
successfully alter the data, but do not lead to test case failures), and a set of mutants not applied

ITT-1-9873-ESA-FAQAS-ESR Page 3 of 28

1.1 Objectives

(i.e., mutants that, during testing, could not alter any data because the data they target is never
exercised by the SUT); also, it provides information useful to draft a verification report, which
includes the fault model coverage (i.e., percentage of fault models with at least one mutant applied),
the mutation operation coverage (i.e., percentage of mutants applied), and the mutation score.

SEMuS automatically generates executable unit test cases based on code-driven mutation analysis
results. The generated unit test cases detect mutants not detected by the original test suite. The
generated test cases include test oracles that shall be manually validated by engineers, which
enables detecting faults. The generated test cases can be integrated into regression test suites.

SEMus takes as input the list of live mutants detected by MASS. It generates a set of additional
test cases that can be integrated into the SUT test suite. Also, it reports the list of killed mutants
and the list of mutants that remain live (i.e., for which SEMuS did not generate a test case that
kill them). Live mutants shall be manually inspected by engineers to either determine if they are
equivalent or to manually derive a test case capable of killing them.

DAMTE is a manual procedure supported by an automated symbolic execution toolset; it auto-
matically identifies the test inputs that make software components exchange the data targeted by
data-driven mutation operators. The derived test inputs can then be manually integrated into the
SUT test suite.

1.1 Objectives
The FAQAS activity had the following two main objectives:

O1 Searching for an alternative or complementary method of measuring the effectiveness of a
test suite (i.e., test-suite verification).

02 Searching for an alternative or complementary method to build a test suite (i.e., test cases
generation).

Concerning O1, FAQAS led to the development of tools (i.e., MASS and DAMAL) that enable
the assessment of test suites by simulating different types of faults (implementation errors and
high-level integration problems). Empirical evaluation with software provided by project partners
and ESA has shown that the toolset enables detecting relevant test suite limitations (i.e., lack of
assertions to verify results, relevant inputs not being tested). Also, it showed that the inspection
of mutants enable detecting bugs that affect the software. Finally, preliminary projections made
by consortium partners show that the cost of test suite assessment using the FAQAS tools (i.e.,
engineers’ effort) are justified by the highly-valuable benefits (e.g., detection of test suite and
software limitations during early development stages, potential avoidance of failures in deployed
software).

Concerning O2, FAQAS has shown that tools based on symbolic execution (i.e., SEMuS and
DaMTE) can automatically generate test cases that detect mutants not detected by the test suite
under analysis. However, the research performed in FAQAS has shown that symbolic execution
tools are affected by a number of limitations (e.g., dealing with floating point instructions and
external components) that limit the feasibility of fully automated test generation. Indeed, only unit
test cases not involving complex floating point operations can be automatically generated with
state-of-the-art solutions including the FAQAS toolset.

Below, we report on how FAQAS contributed to address the detailed objectives of the activity:

e Detailed Objective 1: To perform a comprehensive analysis and survey of mutation testing.
FAQAS has delivered a comprehensive survey of the software engineering literature on
mutation testing with the following main findings:

— The literature on mutation analysis/testing mostly focuses on modifying the code of
the software under test (hereafter, code-driven approaches). Some approaches rely on

ITT-1-9873-ESA-FAQAS-ESR Page 4 of 28

1.1 Objectives

modifying models, but they aim to generate test cases not assessing test suites. There are no
approaches that assess test suites by changing the data generated by software components
(hereafter, data-driven approaches).

— The mutation operators widely adopted to perform code-driven mutation analysis are the
sufficient set of operators and the set of deletion operators. Other operators did not receive
the same degree of attention in the literature. For example, higher-order mutation operators
are reported to be easier to kill than the first-order ones (i.e., they are less effective in
assessing test suites limitations); consequently, they had been adopted less in empirical
studies.

— The literature lacks mutation analysis approaches that enable simulating errors in the
presence of simulated components (e.g., sensors).

— Scalable approaches targeting mutation testing (i.e., automatically generating test cases
that kill mutants) are few. The most promising ones rely on symbolic execution based
on LLVM, which might be inapplicable for onboard flight software compiled for specific
architectures.

o Detailed Objective 2: To prototype the mutation testing process to be applied on space software.
FAQAS has conducted a detailed analysis and preliminary experiments to select the existing
mutation analysis, fault injection, fuzzing, and test generation tools that demonstrated to
be reusable for the definition of an automated mutation testing toolset. Some results of the
FAQAS evaluation are reported in the following.

— Most existing mutation analysis tools rely on the mutation of LLVM [20] bitcode, which is
often infeasible with space software projects.

— The most advanced data mutation tool is the Peach fuzzer [23]; however, since it has been
developed for other purposes (e.g., fuzzing web applications or desktop utilities) it presents
an architecture that can hardly be adapted to mutate data in real-time space software.

— The automated selection of test inputs that can kill mutants might be supported by either
bounded model checking (BMC) [19] or symbolic execution [1]; however, existing symbolic
execution tools (e.g., KLEE-SEMu [2]) are more stable and professional than BMC ones.

— Finally, complex test inputs (e.g., sequences of hierarchical structures) might be generated
by model-based approaches; however, advanced academic tools remain in a prototype state.

— The analysis led to the identification of SRCIror [17] and KLEE/SEMu as tools that might
be extended to build the code-driven components of the FAQAS toolset. Data-driven
approaches, instead, need to be built from scratch.

e Detailed Objective 6: To define and develop the mutation testing toolset supporting this method-
ology. The FAQAS project has led to a toolset that includes MASS (Mutation Analysis for
Space Software, TRL 5), DAMAt (DAta-driven Mutation Analysis with Tables, TRL 4), SE-
MusS (Symbolic Execution-based MUtant analysis for Space software, TRL 3), and DAMTE
(DAta-driven Mutation TEsting, TRL 2). Details are provided in Section 2.

e Detailed Objective 3: To empirically evaluate mutation testing by applying it to space soft-
ware use cases. ESA, LXS, and GSL have provided case study subjects that include utility
and networking libraries, support tools, and whole systems. They come with test suites of
different nature (unit, integration, and system-level). The heterogeneity of case studies and
test suites enabled the evaluation of the mutation analysis and testing approaches in a range
of representative scenarios. Details are provided in Section 3.

e Detailed Objective 4: To evaluate the applicability, scalability, efficiency and effectiveness of the
approach in the space domain; and to identify limitations of the approach. The project conducted
an extensive evaluation of MASS, DAMAT, and SEMuS; also, it conducted a preliminary
feasibility study for DAMTE. Our results (details in Section 4) show that

ITT-1-9873-ESA-FAQAS-ESR Page 5 of 28

1.2 Outputs

— MASS enables code-driven mutation analysis in the space context. The most effective
solutions to improve scalability and mutation score accuracy are mutants sampling and
equivalence metrics based on compiler optimizations, respectively. To guarantee a scalable
mutation testing process and the accurate computation of the mutation score, mutants sam-
pling should be based on sequential analysis relying on fixed-width sequential confidence
interval, a research discovery done within FAQAS.

— DAMALt enables an efficient detection of relevant test suite shortcomings with less mutants
to be inspected than MASS. It enabled the detection of a range of limitations including
message types not being exchanged between software components, input partitions not
being tested, imprecise oracles.

— SEMusS shows that symbolic execution can be successfully used to select test inputs that
kill live mutants within unit test cases. However, unsurprisingly, it cannot be adopted
when it is necessary to rely on external components (e.g., networks or simulators), in such
cases, which are common for integration and system test suites, symbolic execution alone
is insufficient to generate test cases.

— DAMTE is largely affected by the problems affecting SEMuS with the consequence that it
requires large manual effort to be used.

Detailed Objective 5: To evaluate how mutation testing can be integrated into a typical verifi-

cation & validation life cycle of space software, and to define the mutation testing methodology.

FAQAS has provided preliminary ideas about the definition of guidelines for the adoption of

mutation analysis and testing strategies within ECSS activities (see Section 6). The proposed

guidelines support both quality assurance activities described in ECSS standards [11, 12] and

Independent Software Verification and Validation (ISVV) practices [13]. Finally, FAQAS has

delivered a method for the assessment and improvement of software based on the results

produced by the FAQAS toolset.

Detailed Objective 7: To foster the use of this methodology among the different software

and independent software verification and validation suppliers. The FAQAS toolset has been

delivered to the project industry partners (i.e., GomSpace and LuxSpace), who validated it

(see Section 5). Also, the description and empirical results concerning some of the tools part

of the FAQAS toolset have been described in papers submitted to top academic venues in the

field of software engineering. A paper concerning MASS has already been published in IEEE

Transactions on Software Engineering [7]. Adoption among practitioners is a longer term

objective that will be targeted during the maintenance phase of the project.

1.2 Outputs
The activity lead to the following tangible outputs:

e Tool: MASS. It reaches TRL 5: it is a configurable tool, with a user manual, that can be
applied to whole software systems to perform mutation analysis. It has been installed on
third party premises (i.e., GSL and LXS development environment) and independently used
by third-party engineers (i.e., GSL and LXS) on relevant cases (e.g., projects not shared with
SnT).

e Tool: DAMAL. It reaches TRL 4: it is a configurable tool, with a user manual, that can be
applied to whole software systems to perform mutation analysis. It has been installed on
third party premises (i.e., GSL and LXS development environment) and independently used
by third-party engineers (i.e., GSL and LXS) on the case study subjects of the project.

e Tool: SEMuS. It reaches TRL 3: it is a configurable tool, with a user manual, that can be
applied to a subset of source files for space software systems to perform test generation. It

ITT-1-9873-ESA-FAQAS-ESR Page 6 of 28

2.1 Code-driven Mutation Analysis: MASS

has been installed on third party premises (i.e., GSL and LXS development environment) and
independently used by third-party engineers (i.e., GSL and LXS) on a subset of source files
belonging to the case study subjects of the project.

e Tool: DAMTE. It reaches TRL 2: it is provided as an extension of DAMAt, manual effort and
scaffolding is needed to apply it to new projects. It has been applied to one case study subject
of the project.

e E40C/Q80C documentation for the FAQAS toolset; it includes SVS, SValR, SUTR, SUTP, SUM,
SSS, SRF, SRelD, SPAP, SDD, SCF, IRD.

e Demonstration videos for MASS, DAMAt, and SEMusS.

e Research paper about MASS methodology published in IEEE Transactions on Software
Engineering|[7].

e Research paper about DAMAt submitted to ICSE’22.

e Research paper about MASS tool submitted to ICSE’22.

2 FAQAS METHODOLOGY

In the following, we describe how the results generated by the FAQAS toolset enable the assessment
and improvement of a test suite.

2.1 Code-driven Mutation Analysis: MASS

Figure 2 provides an overview of MASS. It consists of ten steps described below.

2.1.1 Step 0: Configure MASS. Step 0 concerns the configuration of our toolset. The main config-
uration choices to be made by the engineer before running mutation analysis are: Selecting the
source files to mutate (generally, all the source files of the SUT shall be considered for mutation);
Selecting the sampling strategy (if the test suite of the SUT takes more than one hour to be executed,
we suggest to rely on the FSCI mutant sampling strategy, otherwise, engineers can execute all
the mutants); Enabling test suite reduction and prioritization (this choice enables MASS to further
reduce test execution time by executing only a portion of the selected test cases based on statement
coverage).

2.1.2 Step 1: Collect SUT Test Data. In Step 1, the test suite is executed against the SUT and code
coverage information is collected. More precisely, we rely on the combination of gcov [6] and
GDB [15], enabling the collection of coverage information for embedded systems without a file
system [28].

2.1.3 Step 2: Create Mutants. In Step 2, we automatically generate mutants for the SUT by relying
on a set of selected mutation operators, which are listed in Table 1.

2.1.4 Step 3: Compile mutants. In Step 3, we compile mutants by relying on an optimized compila-
tion procedure that leverages the build system of the SUT. To this end, we have developed a toolset
that, for each mutated source file: (1) backs-up the original source file, (2) renames the mutated
source file as the original source file, (3) runs the build system (e.g., executes the command make),
(4) copies the generated executable mutant in a dedicated folder, (5) restores the original source file.

2.1.5 Step 4: Remove equivalent and redundant mutants based on compiled code. In Step 4, we
rely on trivial compiler optimizations to identify and remove equivalent and redundant mutants.
We compile the original software and every mutant multiple times once for each every available
optimization option (i.e., 00, -01, -02, -03, -0s, -Ofast in GCC) or a subset of them. The outcome
of Step 4 is a set of unique mutants, i.e., mutants with compiled code that differs from the original
software and any other mutant.

ITT-1-9873-ESA-FAQAS-ESR Page 7 of 28

2.1 Code-driven Mutation Analysis: MASS

Configure MASS

/ Augmented SUT
F Test Suite !

Software Under Test
(SuUT)

Sources to Mutate

Create Mutants

4

Remove Equivalent and
Duplicate Mutants Based
on Compiled Code

CTT T i
! Previously Live ,_

) Mutants -: t 1 / ing Strategy /
[o

Executed Prioritized
Subset of Test Cases

Killed Live
Mutants Mutants

J

Test Suite Reduction

and Prioritization

Identify Likely
Equivalent/Duplicate
Based on Coverage

Live, Legend
Non-Equivalent,
" Non-Duplicate S Process
a '

() Input/Output
[) Pipeline step

_ Data flow

'
Live, Live, E
Equivalent Duplicate '
'

! Output to be

! ' .
[Ignore] [Ignore]a ------ ! Suite ! M "\:?:ief'f:::i::r

'
e o= analysis

Fig. 2. Overview of the MASS workflow

2.1.6 Step 5: Sample Mutants. In Step 5, MASS samples the mutants to be executed to compute the
mutation score. Our pipeline supports different sampling strategies: proportional uniform sampling,
proportional method-based sampling, uniform fixed-size sampling, and uniform FSCI sampling. The
strategies proportional uniform sampling and proportional method-based sampling were selected
based on the results of Zhang et al. [29], who compared eight strategies for sampling mutants. The
uniform fixed-size sampling strategy stems from the work of Gopinath et al. [16] and consists of
selecting a fixed number Ny of mutants for the computation of the mutation score. We introduced
the uniform FSCI sampling strategy that determines the sample size dynamically, while exercising
mutants, based on a fixed-width sequential confidence interval approach. With uniform FSCI
sampling, we introduce a cycle between Step 6 and Step 5, such that a new mutant is sampled
only if deemed necessary. More precisely, MASS iteratively selects a random mutant from the set

ITT-1-9873-ESA-FAQAS-ESR Page 8 of 28

2.1 Code-driven Mutation Analysis: MASS

Table 1. Implemented set of mutation operators.

Operator|Description®

[ABS {(v,-0)}

AOR— {(opy, 0p2) [opy, 0p, € {+,= %/, %} A opy # op,}
{(opy. 0py) | opy, 0p, € {+=,-=,%=,/=,%=} A op, # op, }
ICR {i,x)[x e {1,-1,0,i+1,i—1,—i}}

LCR {(opy. 0p,) Topy, op, € {8& T} A op; # op,}
{(opy, op,) | opy, op, € {&=, 1=,8=} A op; # op,}
{(opy, 0p,) | opy, 0p, € {& |,8&} A op; # op,}
IROR {(opy, 0p,) Topy, op, € {>,>=,<,<=,==,1=}}
{(e,!(e)) |e € {if(e),while(e)}}

ISDL {(s, remove(s)) }

[UOIL {(v,-0), (v, v-), (v, ++v), (v, v++) }

IAOD {((thopts), t1), ((t1opts), t2) [op € {+,~, %/, %}}
LOD {((tiop 1), 1), ((t1op 1), 1) Top € {88, T1}}
ROD {((tiop 1), 1), ((trop t2), &) Top € {>,>=,<,<=,==1=}}
BOD [{((tiopt),n1), ((h1opt),f2) [op € {& 1, A1}
SOD [{((tiopt). 1), ((Hrop 55). 1) Top € {»,«}}
‘LVR ‘{(ll, L) [(L,) € {(0,-1), (h,—1h), (h,0),
(true, false), (false, true) } }
*Each pair in parenthesis shows how a program element is modified by the mutation operator on the left; we follow standard syntax [18].
Program elements are literals (I), integer literals (i), boolean expressions (e), operators (op), statements (s), variables (v), and terms (¢;,
which might be either variables or literals).

Sufficient Set

OODL

Othe

of unique mutants and exercises it using the SUT test suite. The result of each mutant execution
(i.e., killed or live) is treated as a Bernoulli trial that is used to compute the confidence interval
according to the FSCI method. To compute the confidence interval for the FSCI analysis, we rely
on the Clopper-Pearson method since it is reported to provide the best results [5].

2.1.7 Step 6: Execute prioritized subset of test cases. In Step 6, we execute a prioritized subset of test
cases. We select only the test cases that satisfy the reachability condition (i.e., cover the mutated
statement) and execute them in sequence. To determine how dissimilar two test cases are and,
consequently, how likely they exercise the mutated statement with different values, we rely on
Cosine similarity.

2.1.8 Step 7: Discard Mutants. In this step, we identify likely nonequivalent mutants by relying on
code coverage information collected in the previous step. A mutant is considered nonequivalent
when the distance from the original program is non null, for at least one test case.

2.1.9 Step 8: Compute Mutation Score and Analysis Output. The mutation score (MS) is computed as
the percentage of killed nonduplicate mutants (hereafter, KND) over the number of nonequivalent,
nonduplicate mutants identified in Step 7):

~ |KND|)
" |LNEND| + |KND| W

The main output of MASS is a file named MASS_RESULTS. An example of the MASS_RESULTS
report is presented in Listing 1. Within file MASS_RESULTS, the first metric to be inspected is
the Statement coverage (i.e., the percentage of statements being covered). Since MASS generates
mutants only for the statements being exercised by the test suite, a high mutation score in the
presence of a low statement coverage cannot indicate that the test suite has high quality.

The second metric to be inspected is the MASS mutation score. It provides an indication of the
quality of the test suite based on mutation analysis results. According to the literature on the
topic, achieving a high mutation score improves significantly the fault detection capability of a test
suite [25]; also, a very high mutation score (i.e., above 0.75) ensures a higher fault detection rate
than the one obtained with other coverage criteria, such as statement and branch coverage [4].

ITT-1-9873-ESA-FAQAS-ESR Page 9 of 28

2.1 Code-driven Mutation Analysis: MASS

#H#### MASS Output #####

Total mutants generated: 28071

Total mutants filtered by TCE: 6918

Sampling type: fsci

Total mutants analyzed: 461

Total killed mutants: 369

Total live mutants: 92

Total likely equivalent mutants: 53

MASS mutation score (%): 90.44

List A of useful undetected mutants: /opt/MLFS/RESULTS/useful_list_a
List B of useful undetected mutants: /opt/MLFS/RESULTS/useful_list_b
Number of statements covered: 1973

Statement coverage (%): 100

Minimum lines covered per source file: 2

Maximum lines covered per source file: 138

Listing 1. MASS output obtained with the MLFS case study subject.

Three additional relevant output files generated by MASS are filtered_live, useful list_a and
useful_list_b. They contain the names of the live mutants. The file useful_list_a provides a list of
mutants that are likely non redundant with each other because when tested by the SUT test suite
they lead to a statement coverage profile (i.e., the set of statements covered during their execution)
that differs. The file useful_list_b provides a list of mutants that are likely redundant with the ones
appearing in the file useful_list_a. The mutants within file useful_list_a are sorted according to their
diversity (i.e., the mutants on top are likely very different from each other. The file filtered_live is
the union of the mutants appearing in the files useful_list_a and useful_list_b.

2.1.10 Step 9: Improve Test Suite. Step 9 can be performed manually or can automated through
SEMuS. Tt consists of deriving test inputs that kill live mutants.

To manually perform Step 9, engineers shall inspect all the mutants appearing in the file use-
ful_list_a. For each mutant, the engineer shall implement a test case capable of killing the mutant
(i-e., a test case that fails with the mutant but not with the original software). In general, since
a same test case may kill more than one mutant, we suggest to derive test inputs for a subset of
the mutants in useful_list_a and then rerun the mutation analysis process. When rerunning the
mutation analysis process, engineers shall focus the mutation analysis on the mutants appearing
in useful_list_a and in useful_list_b. This is done by re-executing mutation analysis from Step 6
(Execute mutants).

When automated test generation with SEMuS is feasible; we suggest to rely on SEMusS to
automatically generate test cases for all the mutants appearing in useful list_a and in useful list b
(see Section 2.2).

When identifying inputs that kill mutants (either manually or with SEMuS) engineers may detect
equivalent mutants. Equivalent mutants shall be removed from the list of mutants considered for
the analysis.

If mutation analysis has been performed through mutants sampling (e.g., with FSCI), after test
suite improvement (i.e., after introducing test cases that kill all the mutants in useful_list_a and in
useful_list_b), it is necessary to re-run mutation analysis to estimate the mutation score for the
whole system.

ITT-1-9873-ESA-FAQAS-ESR Page 10 of 28

2.2 Code-driven Mutation Testing: SEMuS

2.2 Code-driven Mutation Testing: SEMuS$S

Figure 3 provides the workflow of SEMuS. The list of live mutants processed by SEMuS coincides
with the list of mutants appearing in the file filtered_live presented in Section 2.1.

SEMuS consists of five components, which are Test Template Generator, Pre-SEMu, KLEE-SEMu,
KTest to Unit Test, and LLVM.

TTG Configuration:
output variables, initialization
functions for struct, print 4
functions for complex outputs g I SEMuS
Test Template
ST |:,‘>[]E> S =N
Generated
=
G Killed (Executable
Test Case +
¢ J| Mutants a P
. Live
MASS ‘ Live Pre-SEMu E> Meta Meta Mutant
Mutants Mutant Bytecode

=

0| Meta- a
Mutants /
Compiler

Fig. 3. FAQAS-SEMuS Architecture and Workflow

The Test Template Generator (TTG) component automates the generation of templates for the
symbolic execution search. The component receives as inputs the SUT source code and the list
of SUT functions. Listing 2 shows an example of a test template generated by the TTG. The TTG
generates a template for every SUT function. The TTG parses the function arguments and declares
them symbolic through use of the KLEE function klee_make_symbolic. Then, it adds a call to the
function under analysis with symbolic values, and it saves the return value into a support variable
(i.e., result_fagas_semu in Listing 2). Finally, it generates a number of invocations of the printf
function that print the value of the software outputs and adds a return statement with the value
returned by the function under test (e.g., result_fagas_semu in Listing 2).

int main(int argc, char** argv) {
// Declare variable to hold function returned value
_Bool result_fagas_semu;
// Declare arguments and make input ones symbolic
unsigned long pVal;
int pErrCode;
klee_make_symbolic (&pVal, sizeof(pVal), "pVal");
// Call function under test
result_fagas_semu = T_INT_IsConstraintValid(&pVal, &pErrCode);
// Make some output
printf ("FAQAS-SEMU-TEST_OUTPUT: %d\n", pErrCode);
printf ("FAQAS-SEMU-TEST_OUTPUT: %d\n", result_faqas_semu);
return (int)result_faqas_semu;

Listing 2. SEMuS test template.

The Pre-SEMu component includes and compiles all the live mutants (i.e., MASS output) into a
single bytecode file named the Meta Mutant. SEMu will select which mutant to consider for test

ITT-1-9873-ESA-FAQAS-ESR Page 11 of 28

0 N Ul R W N =

10
11

12
13
14
15
16
17
18
19
20
21

22
23
24
25
26

28
29
30
31

2.2 Code-driven Mutation Testing: SEMuS

#include <stdio.h>
#include <string.h>

#include "asnlcrt.c"
#include "asnlcrt_encoding.c"
#include "asnlcrt_encoding_uper.c

"

int main(int argc, char** argv)
{

(void)argc;

(void)argv;

// Declare variable to hold function returned value
_Bool result_faqgas_semu;

// Declare arguments and make input ones symbolic

unsigned long pVal;

int pErrCode;

memset (&pVal, 0, sizeof(pVal));

const unsigned char pVal_fagas_semu_test_datal[] = {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, O
Xx00, 0x00};

memcpy (&pVal, pVal_fagas_semu_test_data, sizeof(pVal)); // Unsigned val is 0

// Call function under test
result_fagas_semu = T_INT_IsConstraintValid(&pVal, &pErrCode);

// Make some output

printf ("FAQAS-SEMU-TEST_OUTPUT: pErrCode = %d\n", pErrCode);

printf ("FAQAS-SEMU-TEST_OUTPUT: result_fagas_semu = %d\n", result_faqgas_semu);
return (int)result_fagas_semu;

Listing 3. Generated test case

generation based on a parameter. The compilation of the Meta Mutant into LLVM bitcode is enabled
by the LLVM compiler infrastructure.

KLEE-SEMu is the underlying test generation component. This component receives as inputs the
LLVM bitcode of the Meta Mutant and the Test Template for the function under test, and proceeds
to apply dynamic symbolic execution to generate test inputs to kill the mutants. The output of
this component are the KLEE tests. A KLEE test is a binary file that contains information about the
execution of KLEE such as the entry point of the analysis, and the generated test inputs.

The component KTest to Unit Test (KTU) converts a KLEE test into a human readable, compilable,
and executable C test case. The unit test case generated by KTU matches the test template generated
by TTG except for the declaration of variables where symbolic variables are replaced with concrete
variables initialized with the values stored in the KTest file. Listing 3 shows an example of a test
case generated for a mutant present in the function T_INT_IsConstraintValid.

The mutants for which SEMuS does not generate a test case* shall be manually inspected by
engineers to determine if they are equivalent to the original software. The test cases generated by
SEMusS can instead be integrated as a regression test suite.

The main output of SEMuS is a report file named AnalysisReport.csv, which includes the number
of mutants that were killed by SEMuS (i.e., the tool has generated an input that kills the mutant),
the number of mutants that were not killed by SEMuS (i.e., the tool could not generate an input to
kill a mutant), and a list showing the status of each mutant (i.e., killed or live).

“In our toolset, such mutants are identified by looking for empty folders within the output folder
direct/TEMPLATE/FAQAS_SEMu-out/produced-unittests.

ITT-1-9873-ESA-FAQAS-ESR Page 12 of 28

2.3 Data-driven Mutation Analysis: DAMALt

Table 2. Data-driven mutation operators

Fault Class

Description

Value above threshold (VAT)

Replaces the current value with a value above the threshold T for a delta (A).

Value below threshold (VBT)

Replaces the current value with a value below the threshold T for a delta (A).

Value out of range (VOR)

Replaces the current value with a value out of the range [MIN; MAX].

Bit flip (BF)

A number of bits randomly chosen in the positions between MIN and MAX are flipped.

Invalid numeric value (INV)

Replace the current value with a mutated value that is legal (i.e., in the specified range) but
different than current value.

Tllegal Value (IV)

Replace the current value with a value that is equal to the parameter VALUE.

Anomalous Signal Amplitude (ASA)

The mutated value is derived by amplifying the observed value by a factor V and by
adding/removing a constant value A from it.

Signal Shift (S9)

The mutated value is derived by adding a value A to the observed value.

Hold Value (HV)

This operator keeps repeating an observed value for V times. It emulates a constant signal
replacing a signal supposed to vary.

Fix value above threshold (FVAT)

In the presence of a value above the threshold, it replaces the current value with a value
below the threshold T for a delta A.

Fix value below threshold (FVBT)

It is the counterpart of FVAT for the operator VBT.

Fix value out of range (FVOR)

In the presence of a value out of the range [MIN; MAX | it replaces the current value with

a random value within the range.

2.3 Data-driven Mutation Analysis: DAMALt

Data-driven mutation analysis aims to evaluate the effectiveness of a test suite in detecting semantic
interoperability faults. It is achieved by modifying (i.e., mutating) the data exchanged by CPS
components. It generates mutated data that is representative of data that might be observed at
runtime in the presence of a component that behaves differently than expected in the test case; also,
it mutates data that is not automatically corrected by the software (e.g., through cyclic redundancy
check codes) and thus causes software failures (i.e., the mutated data shall have a different semantic
than the original data). For these reasons, data mutation is driven by a fault model specified by the
engineers based on domain knowledge.

The DAMAt fault model is a tabular block model. It enables the modelling of data that is exchanged
through a specific data structure: the data buffer. This was decided because it is a simple and widely
adopted data structure for data exchanges between components in CPS. The DAMA¢ fault model
enables the specification of the format of the data exchanged between components along with the
type of faults that may affect such data. We refer to the data exchanged by two components as
message. For a single CPS, more than one fault model can be specified (e.g., one for each message
type). The DAMAt fault model enables engineers to specify (1) the position of each data item in
the buffer, (2) their span, and (3) their representation type. Further, for each data item, DAMA¢
enables engineers to specify one or more data faults using the mutation operator identifiers. For
each operator, the engineer shall provide values for the required configuration parameters. Table 2
provides the list of mutation operators included in DAMAt along with their description.

The DAMAt mutation operators generate mutated data item instances through one or more
mutation procedures, which are the functions that generate a mutated data item instance given a
correct data item instance observed at runtime. For example, the VAT operator includes only one
mutation procedure (i.e., setting the current value above the threshold) while the VOR operator
includes two mutation procedures, which are (1) replacing the current value with a value above the
specified valid range and (2) replacing the current value with a value below the valid range. The
operators VOR, BF, INV, and SS have been inspired by related work [9, 22, 26]; the operators VAT,
VBT, FVAT, FVBT, FVOR, IV, ASA, and HV are a contribution of FAQAS.

DAMAt works in six steps, which are shown in Figure 5. In Step 1, based on a methodology
provided with the DAMAt documentation, the engineer prepares a fault model specification tailored
to the SUT. Our methodology enables the specification of all possible interoperability problems in
the SUT while minimizing equivalent and redundant mutants.

ITT-1-9873-ESA-FAQAS-ESR Page 13 of 28

2.3 Data-driven Mutation Analysis: DAMALt

Test [4 ADCS, -5 ADCS
l Suite ;‘ ,,J‘El handler simulator
ESAT1 4
Legend: Control _
<P Dataflow Software PDHU PDHU
) (SUT) Y- handler simulator
a Mutation probe W

Emulator .

v

SUT Software under test \ _— GPS
Containment indicates P’ GPS r
wich component SVF) handler simulator

runs the others

Fig. 4. Data mutation probes integrated into ESAIL.

H -
iStep1. Prepare ;== [Fauit Model [Step2< Generate Mutation API]
ACTTLTTTTTTITTTP TP TP " SpeCiﬁCatOnS

Step4. Compile Mutants ’ Mutation API;

’ v

{ repeat for every mutation operatio “[<<use>> SuUT
e DI g ¥ L.\

1 H Al H

: EStep3. Insert Mutation Probes:
\, - J

~N

Step6. Step5. Execute Test Suite
Generate "
Mutation FM Mgs%ggg;‘g: Execut
Analysis Coverage
Results . N
! repeat for every mutant
_________________ f
: Execute | }
Coverage Tests Mutant i E
Mutation !
Operations !
Coverage, 1
/')

Mutation
Score Legend:

Fig. 5. The DAMATt process.

In Step 2, DAMAt generates a mutation API with the functions that modify the data according to
the provided fault model. These functions select the data item to mutate and the mutation procedure
to apply based on the mutant under test.

In Step 3, the engineer modifies the SUT by introducing mutation probes (i.e., invocations to the
mutation API) into it. Instead of modifying the SUT the engineer may modify the test harness (e.g.,
the SVF simulator); such choice depends on the software under test, if the test cases are executed
through a simulator, such choice prevents introducing damaging changes into the SUT (e.g., delay
task execution and break strict real-time requirements). The effort required by the engineer is
minimal; indeed, the exchange of data between components is usually managed in a single location
(e.g, the function that serializes the data buffer on the network) and thus it is usually sufficient to
introduce one function call for each message type to mutate.

In Step 4, DAMAt generates and compiles mutants. Since the DAMAt mutation operators may
generate mutated data by applying multiple mutation procedures, DAMAt may generate several
mutants, one for each data mutation operation (i.e., a mutation procedure configured for a data
item). The mutant generation is invisible to the end-user who does not need to modify the source
code further.

ITT-1-9873-ESA-FAQAS-ESR Page 14 of 28

2.4 Data-driven Mutation Testing: DaMTe

In Step 5, DAMAt executes the test suite with all the mutants including a mutant (i.e., the coverage
mutant) which does not modify the data but traces the coverage of the fault model. The information
collected by the coverage mutant enables the execution, for every mutant, of the subset of test
cases that cover the message type targeted by the mutant, thus speeding up mutation analysis.

In Step 6, DAMAt generates mutation analysis results: fault model coverage, mutation operation
coverage, and mutation score. These metrics measure the frequency of the following scenarios: (case
1) the message type targeted by a mutant is never exercised, (case 2) the message type is covered
by the test suite but it is not possible to perform some of the mutation operations (e.g., because the
test suite does not exercise out-of-range cases), (case 3) the mutation is performed but the test suite
does not fail.

Fault model coverage (FMC) is the percentage of fault models covered by the test suite. Since we
define a fault model for every message type exchanged by two components, it provides information
about the extent to which the message types actually exchanged by the SUT are exercised and
verified by the test suites.

Mutation operation coverage (MOC) is the percentage of data items that have been mutated at least
once, considering only those that belong to the data buffers covered by the test suite. It provides
information about the input partitions covered for each data item.

The mutation score (MS) is the percentage of mutants killed by the test suite (i.e., leading to at
least one test case failure) among the mutants that target a fault model and for which at least one
mutation operation was successfully performed. It provides information about the quality of test
oracles; indeed, a mutant that performs a mutation operation and is not killed (i.e., is live) indicates
that the test suite cannot detect the effect of the mutation (e.g., the presence of warnings in logs).
Also, a low mutation score may indicate missing test input sequences. Indeed, live mutants may be
due to either software faults (e.g., the SUT does not provide the correct output for the mutated data
item instance) or the software not being in the required state (e.g., input partitions for data items
are covered when the software is paused); in such cases, with appropriate input sequences, the test
suite would have discovered the fault or brought the SUT into the required state. Both poor oracles
and lack of inputs indicate flaws in the test case definition process (e.g., the stateful nature of the
software was ignored).

Finally, DAMAt generates a file named final_mutants_table.csv, which contains a list of all
generated mutants, the definition of the mutation operator that generated them and their status. It
is used to determine how to improve the test suite; indeed, it specifies which anomalous values
where not discovered by the test suite.

2.4 Data-driven Mutation Testing: DaMTe

DAMTE support engineers in identifying test inputs so that all the mutants are applied (i.e., to have
fault model coverage and mutation operation coverage reach 100%). It is applicable to two common
software architectures: the producer-consumer and client-server architecture (see Flgure 6).

To generate the required inputs we rely on an extended data mutation probe. The extended data
mutation probe invokes a version of the DAMA¢t data mutation API that, instead of performing
mutation operations, includes reachability assertions that can be used to force KLEE to generate a
test input that reaches the assertion. The extended version of the data mutation API includes macro
commands that enable to specify which functionality to trigger, either data-driven mutation analysis
or data-driven mutation testing. It enables test generation by introducing the reachability statement
assert(false) that enforces KLEE to identify inputs that cover the statement. Specifically, the
reachability statement makes KLEE to (1) cover that branch, (2) terminate the symbolic execution,
and (3) to solve the path condition to look for concrete test inputs that cover the branch.

ITT-1-9873-ESA-FAQAS-ESR Page 15 of 28

FAQAS case studies

Producer-consumer

Producer
Input

Encode
Message

Client
Request

Encode
e R R

- Extended FAQAS mutation probe

Fig. 6. Data-driven mutation testing for different architectures.

3 FAQAS CASE STUDIES

The FAQAS toolset has been applied to six case study systems: ESAIL, LIBGCSP, LIBParam, LIBUTIL,
MLFS, ASN1SCC.

ESAIL is a microsatellite developed by LXS in a Public-Private-Partnership with ESA and Ex-
actEarth. For our empirical evaluation, we considered the onboard control software of ESAIL
(hereafter, simply ESAIL-CSW), which consists of 924 source files with a total size of 187,116 LOC.

LIBGCSP, LIBParam, and LIBUTIL are utility libraries developed by GSL. LIBGCSP is a network
protocol library including low-level drivers (e.g., CAN, 12C). LIBParam is a light-weight parameter
system designed for GSL satellite subsystems. LIBUTIL is a utility library providing cross-platform
APIs for use in both embedded systems and Linux development environments.

The Mathematical Library for Flight Software® (MLFS) implements mathematical functions ready
for qualification. In FAQAS, we considered the unit test suite of MLFS (it achieves branch and
MC/DC coverage).

ASN1SCC® is an open source ASN.1 compiler that generates C/C++ and SPARK/Ada code suitable
for space systems. Also, it produces a test suite for the generated code achieving statement coverage
adequacy. For our experiments, we apply the FAQAS toolset to assess the automatically generated
test suite by mutating the generated code.

Shttps://essr.esa.int/project/mlfs-mathematical-library-for-flight-software
Shttps://github.com/ttsiodras/asn1scc

ITT-1-9873-ESA-FAQAS-ESR Page 16 of 28

4.2 SEMuS

For the validation of each tool in the FAQAS toolset, we selected case study systems with
characteristics compatible with the requirements of the tool under test. Table 3 provides the list of
case studies along with an indication of the type of mutation analysis/testing (i.e., code-driven or
data-driven) and the tools they are targeted for.

Table 3. Case studies for the FAQAS activity.

Code-driven Data-driven
Partner Case study MASS SEMuS DAMALt DaMTe
LXS System Test Suite for ESAIL Y N N
LXS Unit Test Suite for ESAIL Y Y N N
GSL Unit Test Suite for libUtil Y Y N N
GSL Integration Test Suite for libgscsp | Y N Y N
GSL System Test Suite for libparam Y N Y Y
ESA MLFS mathematical library Y Y N N
ESA ASN1 Compiler Y Y N N

4 EMPIRICAL EVALUATION

The FAQAS activity has ben evaluated through an extended empirical evaluation; below we sum-
marize our findings.

4.1 MASS

Both GSL and LXS have manually inspected a subset of the live mutants identified by MASS. The
inspection enabled industry partners to identify relevant shortcomings in their test suites:

e 57% of the live mutants are due to missing inputs. Of particular relevance are exceptional
cases not being exercised by the test suite, which shows that engineers are not be able to
determine all the unexpected execution conditions that the SUT shall take care of.

e 23% of the live mutants were due to missing oracles. Such result is particularly relevant
because it indicates that although engineers believe to have tested a relevant scenario, the
absence of an appropriate oracle prevents them from automatically detecting failures that
might be observed when running the test cases.

e The few remaining live mutants had ben reported as either equivalent or not relevant (e.g.,
because concerning third party software).

e One fault was detected. More precisely, the implementation of a test case that detects the
mutant has shown that the SUT provides an erroneous result.

Finally, our results show that MASS helps addressing scalability problems to a significant extent
by reducing mutation analysis time by more than 70% across subjects. In practice, for large software
systems like ESAIL, such reduction can make mutation analysis practically feasible; indeed, with
100 HPC nodes available for computation, MASS can perform the mutation analysis of ESAIL-CSW
in half a day. In contrast, a traditional mutation analysis approach would take more than 100 days,
thus largely delaying the development and quality assurance processes. Also, we demonstrated
that the FSCI sampling approach implemented by MASS leads to an accurate estimation of the
mutation score.

4.2 SEMuS

The empirical evaluation demonstrated the scalability of SEMuS for the case study subjects in which
it can be successfully applied (i.e., ASN1CC, MLFS, and LIBUTIL). Our results also demonstrated
the usefulness of SEMuS. Indeed, SEMuS enabled the identification of two faults in our case studies.

ITT-1-9873-ESA-FAQAS-ESR Page 17 of 28

Industrial Validation Summary

Also, the generated test cases concerned inputs that are relevant (according to specifications) but
not tested by the test suites.

4.3 DAMAt

The empirical evaluation of DAMALt has demonstrated the effectiveness of the approach. Indeed,
LXS has indicated that 57% out of the overall amount of 102 test suite problems detected by DAMALt
were spotting major limitations of the test suite. Also, GSL has confirmed that the approach enabled
the detection of relevant test suite shortcomings. One possible limitation of the approach is that it
may introduce slow-downs that lead to non-deterministic failures when the test suite exercises
brief interaction scenarios in which most of the operations performed concern the encapsulation
of data into the network.

Our results confirm that (1) uncovered fault models (i.e., low FMC) indicate lack of coverage
for certain message types (UMT) and, in turn, the lack of coverage of a specific functionality (i.e.,
setting the pulse-width modulation in ESAIL-ADCS); (2) uncovered mutation operations (i.e., low
MOC) highlight the lack of testing of input partitions (UIP); (3) live mutants (i.e., low MS) suggest
poor oracle quality (POQ).

Based on our evaluation, we observed that live mutants can be killed by introducing oracles that
(1) verify additional entries in the log files (39 instances for ESAIL-ADCS, 1 instance for ESAIL-
GPS), (2) verify additional observable state variables (14 instances for ESAIL-ADCS, 4 instances for
LIBParam), and (3) verify not only the presence of error messages but also their content (2 instances
for ESAIL-ADCS). Such oracles may consist of additional assertions that verify data values already
produced by the software under test (i.e., no modification of the SUT is needed).

4.4 DAMTE

DAMTE aims to address a task (i.e., test generation at system and integration level) that is particularly
difficult to address with state-of-the-art technology (e.g., test generation toolsets based on symbolic
execution). For this reason, FAQAS only concerned the evaluation of the feasibility of DAMTE.

We relied on DAMTE to generate inputs for the LIBParam client API functions. Such inputs
enable the exchange of messages between the LIBParam client and the LIBParam server. Overall, we
conclude that the DAMTE approach may be feasible; however, it requires some manual effort for
the configuration and execution of test cases which may limit its usefulness. The first step towards
its large scale applicability is the improvement of underlying test generation tools and compiler
procedures, such changes will facilitate DAMTE application to large projects without the need for
manually creating test template files with dependencies.

5 INDUSTRIAL VALIDATION SUMMARY

The developed toolset has demonstrated to be useful in industrial contexts. The common limitation
cross the different tools is the usability; indeed, all the tools require relevant effort to be set-up
(however, LXS has reported that if at least 6% of the reported problems spot major limitations the
benefits surmount costs). The need for manual effort mostly depends on the lack of a common
development environment for different case study subjects. The identification of a reference platform
for software development in industry context may facilitate the adoption of the FAQAS toolset.

Other limitations that need further research effort to simplify the adoption of the FAQAS toolset
are the prioritization of mutants to be inspected, the need for a solution to compile whole SUTs
with LLVM, the need for a solution to enable test generation in the presence of floating point
variables, the need for a working solution to enable test generation based on data-driven mutation
analysis results.

ITT-1-9873-ESA-FAQAS-ESR Page 18 of 28

5.2 MASS

Below we report verbatim the positive and negative comments provided in the validation deliv-
erables of the project by our industry partners.

5.1

Overall Comments

POSITIVE COMMENTS

5.2

o Using the FAQAS toolset is for sure cost-effective when more than the 6% of the detected major

problems of the testsuite could have determined a software error would have gone undetected.

e Both these fields of research are considered from LuxSpace worth to be explored in a possible

extension of the FAQAS project: (*) the capability of the toolset to decrease the time of analysis
of the results (*) the capability of the toolset to generate automatically additional/updated test
cases that may patch the current failing testsuite.

MASS

POSITIVE COMMENTS

e The SUM contains all necessary information in a well written style. This includes an explanation
of the library structure and the purpose of contained files, a description of all configuration
variables within those files and instructions for running the toolset. Each important file is
provided with its own subsection, allowing the end-user to get a clear understanding of the
framework configuration.

o The MASS toolset offers many configuration options to the end-user. All these configuration
options and parameters are well described in the SUM.

e The MASS tool is effective at identifying potential defects that are unanticipated by our current
test suites. It is also worth mentioning that closer examination of the code inspired by this
approach did seem to reveal actual defects in the software that were previously unknown.

o The FAQAS team used Singularity as a container system, however it is also possible to create a
Docker image that allows running MASS mutation tests in a docker container.

e Configuration files can be stored together with source code and mounted as volumes. In principle
this makes it trivial to spawn a new instance (horizontal scaling).

o The evaluation showed that the MASS tool would be considered as a useful addition to GomSpace’s
testing processes.

o Applying this approach to other libraries maintained by GomSpace could allow managers to
direct efforts towards improving test suites identified as lower quality. This would lead to an
overall improvement in both test suite and code quality.

NEGATIVE COMMENTS

e The evaluation did identify that many abbreviations and acronyms are used within the SUM,
some of them without explanation in the document. An expansion of the list of abbreviations
and acronyms is recommended to improve the overall user experience.

e Action taken: To address the comment above, SnT has improved the SUM accordingly.

o The large degree of possibility is challenging for a new user to learn and can be overwhelming
for first use. GomSpace recommends providing an interactive script with default values to ease
this process.

o The initial (first-time) configuration process should be simplified to reduce the steep learning
curve

ITT-1-9873-ESA-FAQAS-ESR Page 19 of 28

5.3 DAMAt

e Action taken: To address the two comments above, SnT has modified the MASS installation
step, so that some of the tool configurations are now provided with default values (e.g., use
of trivial compiler optimisations, sampling technique used, prioritized test suite).

5.3 DAMAt

POSITIVE COMMENTS

e The SUM contains all necessary information in a well written style. This includes an explanation
of the library structure and the purpose of contained files, a description of all configuration
variables within those files and instructions for running the toolset. Each important file is
provided with its own subsection, allowing the end-user to get a clear understanding of the
framework configuration.

e The DAMAt toolset offers many configuration options to the end-user. All these configuration
options and parameters are well described in the SUM. The ease of configuring these parameters
has increased compared to the previous MASS tool. For example: DAMAt_FOLDER=$(pwd) and
using this variable further for configuration significantly saves time.

o Analysis of the surviving mutants shows the toolset does identify valid (potential) test cases
that the test suites currently miss. This implies the presence of missing test cases, often in areas
that can be considered as challenging edge cases that are difficult for a developer or dedicated
software tester to anticipate, and in some cases poorly written test cases. Based on the results
generated, the DAMALt tool is effective at identifying potential defects and missing test cases that
are unanticipated by our current test suites.

e DAMALt can be containerized. The FAQAS team used Singularity as a container system, however
it is also possible to create a Docker image that allows running DAMAt mutation tests in a docker
container. Configuration files can be stored together with source code and mounted as volumes.
In principle this makes it trivial to spawn a new instance (horizontal scaling).

o The evaluation showed that the DAMAt would be considered as a useful addition to GomSpace’s
testing processes.

o After checking the output report, GomSpace realised that the test suite of libparam does not
address certain side effects of functions. This already demonstrates the ability of the toolset to
identify improvements that would raise the quality of existing test suites.

o Applying this approach to other libraries maintained by GomSpace could allow managers to
direct efforts towards improving test suites identified as lower quality (i.e., those with more
surviving mutants) or to set certain gateway thresholds (i.e., a certain proportion of mutants
must be caught before a test suite is considered high enough quality to proceed). This would lead
to an overall improvement in both test suite and code quality.

NEGATIVE COMMENTS

e The evaluation did identify that some of the missing steps in the SUM were present in the readme
of the project. Without which it was quite difficult to configure some of the steps, as there is no
explanation in the document.

e Finally, the SUM doesn’t have sufficient information about fault models and how they are
important to the process, analysis, and results. Only an example is present in the SUM. It
would be useful to have some information explaining fault models, their significance, and some
background of its correlation to probes, testcases etc.

e Action taken: To address the two comments above, SnT has improved the SUM accordingly.

ITT-1-9873-ESA-FAQAS-ESR Page 20 of 28

5.4 SEMUS

o To apply DAMAL, we need to manually inject probes into the code, which requires prior additional
knowledge/understanding of inner working of the software under test (SUT). Moreover, the
injected probes should always be used only for tests. In production, they shouldn’t be present and
there is necessity of automated process that handles probes management.

e There is manual intervention of adding lots of probes and building a fault model which can be a
time-consuming process.

e The addition of probes as manual step would make it more difficult to scale especially when it is
the case of microservices when there are large number of interacting microservices.

e Action taken: To address the three comments above, SnT has introduced a feature to the
DAMAL pipeline that enables the user to leave simple comments in the source code that
will be substituted with the mutation probes during the procedure. The new feature also
reinstates the unmodified code once the execution of DAMAL is concluded.

5.4 SEMUS

POSITIVE COMMENTS

e The SEMUS offers many configuration options to the end-user. All these configuration options
and parameters are well described in the SUM. There are also scripts that are used for automatic
generation of JSON files and Test templates.

o Analysis of the generated testcases for the mutants identified valid bug for timestamp.c as well
as missing Test cases. This implies the presence of missing test cases, often in areas that can be
considered as challenging edge cases that are difficult for a developer or dedicated software tester
to anticipate and in some cases poorly written test cases.

e SEMUS can be containerized. The FAQAS team used Singularity as a container system, however
it is also possible to create a Docker image that allows running SEMUS test generation in a docker
container. Configuration files can be stored together with source code and mounted as volumes.
In principle this makes it trivial to spawn a new instance (horizontal scaling).

e However, when it is fully executed it does help with identifying the missing test cases in test suite
and as a side-effect points out to potential bugs.

o After checking the output report, GomSpace realised that the test suite of libutil does not address
certain tests. This already demonstrates the ability of the SEMUS to identify improvements that
would raise the quality of existing test suites

o Nevertheless, beyond the current limitations to the usability, the SEMuS tool seems promising for
its effectiveness: all the generated test cases were correctly designed, in a way that they were
able to detect software errors in the parts of the code whereas it was meant too

NEGATIVE COMMENTS

e However, there are some typos in commands in SUM which can be corrected for error free
configuration.

e Action taken: SnT has improved the SUM.

e If you run it on Windows machine with WSL or vagrant, there are chances you might run in few
troubles with respect to versioning of different libraries/container/virtual env etc.

e Action taken: SnT had not been able to replicate the problems; further investigation will be
taken care of during the maintenance period. However, we recommend to use SEMuS only
on UNIX systems.

o Also creation of JSON file and test template can be it more difficult to scale especially when it is
the case of microservices when there are large number of interacting microservices.

ITT-1-9873-ESA-FAQAS-ESR Page 21 of 28

INTEGRATION WITH ECSS PRACTICES

o But keep in mind that there is manual intervention of generating large amount of JSON and test
templates which can be a time-consuming process in case of large software libraries.

e Action: As detailed in Section 7, the two comments above can be targeted only by a dedicated
follow-on activity.

e However the tool is still in a very prototypical form.

e Due to the complexity of dependencies of E-SAIL software, the tool was able to working on a
limited number of functions (the tool cannot compile files than depends on other files).

e Due to the previous limitation, the tool was able to generate the test cases only from the killed
mutants, but not from the live mutants.

e The tool is not working with floating point variables. All these limitations make the SEMuS tool,
in this preliminary version, inadequate to be deployed in any real development environment.

e Action: As detailed in Section 7, the four comments above can be targeted only by a dedicated
follow-on activity.

6 INTEGRATION WITH ECSS PRACTICES

To discuss applicability of mutation analysis and testing (either code-driven or data-driven) to
different test levels (i.e., unit, integration, system, acceptance), we provide a generic overview of
the interactions typically stressed by different test levels. Unit test cases focus on interactions
within single units (e.g., functions belonging to a same source files) or few units belonging to a
same component. Integration test cases trigger interactions between distinct units or multiple
components. System test cases exercise interactions between all the components of the system.
Figure 7 provides a generic overview of the interactions typically stressed by different test levels

According to ECSS standards, system test cases might be executed on a host system with emu-
lated hardware. Acceptance test cases exercise all the system components but in the operational
environment. For this reason, mutation analysis/testing cannot be adopted in the context of ac-
ceptance testing because the deployment of multiple version of the system (one for each mutant)
might be particularly expensive and may lead to safety hazards.

Unit testing is the typical scenario in which code-driven mutation analysis and testing is adopted
in other contexts, for this reason it should be targeted also in the case of space software. In
addition, code-driven test generation approaches based on static program analysis can be adopted
to automatically generate unit test cases. Data-driven mutation techniques, instead, are unlikely to
be useful in the context of unit testing. Indeed, Unit test cases do not verify the interaction between
units but rely on stubs when the testing of a unit requires the interaction with another component.

FAQAS has also shown that code-driven mutation analysis is feasible also in the context of
integration testing and system testing. Code-driven test generation, instead, is not feasible in such
contexts.

Integration and system test suite should also be the target of data-driven mutation analysis,
which enables determining if relevant scenarios had been exercised (i.e., scenarios where all the
possible message exchanges had been covered).

Depending on the development process, system-level test cases may focus only on specific
features of the system under test; while unit test cases might be used only to cover exceptional
cases. For this reason, each of these test suite may not reach 100% statement coverage. For the same
reason, they may kill distinct subsets the mutants generated for the system. We suggest to compute
the mutation score by considering all the available test suites (i.e., a mutant is killed if at least one
test case of any available test suite fails).

Figure 8 shows the relationships between ECSS software testing practices and the main activities
of the mutation analysis/testing process: code mutation, data mutation, code-driven test generation

ITT-1-9873-ESA-FAQAS-ESR Page 22 of 28

INTEGRATION WITH ECSS PRACTICES

System Integration Integration
Test Test Test

1 1
T
Unit Test : Uit Test Unit Test
A H B c

[—

Unit Test
D

2
I
|
|
|
|
1
1

oAl
A

Componentl: Cantral Software

Unit C

Companent2: Task

Legend

Compaonant unit £ UnitF 2

A Code mutation

[ata mutation

=P Line joining units/interfaces exercised during unit testing 3: Board
-— Line joining unitsfinterfaces exercised during integration testing Unit Test U"‘IFTE“

E

A\

Line joining units/interfaces exercised during system testing

Fig. 7. Mutation Testing Approaches for Different Testing Levels.

(SEMuS), data-driven test generation (DAMTE), and inspection of mutation analysis metrics (to
either evaluate test suite or derive test cases manually. These relationships guide the definition of a
mutation testing process integrated with ECSS standards.

In Figure 8, black arrows show the specifications documents (i.e., Technical Specifications and
Requirement Baselines) used to support ECSS testing activities (i.e., Unit Testing, Integration Testing,
Validation activities with respect to the technical specification and Validation activities with respect
to the requirements baselines). Colored arrows are used to associate ECSS activities to specific
testing methods suggested in the ECSS standard (e.g., mission data is used for ECSS-E-ST-40C-5.6.4).
Triangles are used to indicate which type of mutation testing (i.e., code-driven or data-driven) is
likely applicable when a specific testing method is applied. White triangles are used to indicate
that code mutation can be applied with a certain testing method, black triangles are used for data
mutation.

Concerning the type of mutation activity associated to each testing method, we observe that
code-driven mutation might be used for all the testing methods in use; sampling strategies will
help code-driven mutation scale in the presence of long executions. Data-driven mutation, instead,
is unlikely to be used with coverage based testing which often targets unit tests.

Test case generation based on symbolic execution can be used in the context of unit testing
targeted by code-driven mutation (with SEMuS) and in the context of integration testing targeted
by data-driven mutation (with DAMTE applied in the presence of specific architectures). For code-
driven mutation, integration test suites can be improved only manually (because of the limitations
of KLEE). System test suites can be improved only manually.

In Figure 8, dashed arrows show how the mutation testing procedures can contribute to ECSS
activities. Overall, mutation analysis can be used to verify UT/IT/TS-RB test suites and guide
engineers towards improving them (e.g., by selecting test inputs to kill mutants). Mutation testing
may support the generation of unit test cases. Such support might be provided in both software (SW)

ITT-1-9873-ESA-FAQAS-ESR Page 23 of 28

Toolset Limitations and Open Problems

D
T ECSS Software
Assurance Activities
Feses y‘// \J ------------------- 1
—— — 1
1 | . Validation activities with respect Validation activities with respect 1
I Un(i)lTesli;g "‘Teegsziar::" lotheteczl;\g::l ;p:ciﬂcation to the req:li)rg?esn;sbaselme - I
40C-5.5. -5.6. 5.6
1 400554 {system testing) (system testing) ! 1
Iy — 1 |
I 1 |
1 [1
I | \
r 1 Based 0 1
ased on H
1 Coverage sec Testing |
1 based mission 1
Iy data Methods ! I
I 1 I
[1
I
I 1
Code Dat Code. Data, Code Data 1
1 1 mutation Code mutation mutation mutation mutation mutation 1 1
1 1 mutation 1 |
k g g * 1
I i, - ; : :
I . 'y = . i . o 1 I
1 1 _-' Code-driven g "' . H K ! 1
= Test H 2 = K 1
= | Generation g Q5 H o | I
1 . . HE | |
: - E
: £ Data-driven Mutation R 1
b= o o Test analysis = = = = — = = ————— - ===
5 A K
- Generation metrics 1
r—— Mutation ”, 7\ Mutation 1
analysis analysis ‘o / CEVED | e e 5
- metrics o/ \ metrics Mutation
. \ X
=== % \ Testing
\ =~ *, _ = ,
\ ~ W ="\ Procedures
\ D N A R \ /
\ Verification of code ".‘ \ /
\ (coverage goals) ., /7
80C-6.3.5.2 \
\ 40C-5.8.3.5.b
Unit Test Procedures Integration Test
and Test Data Specification and Test Identification Independent Software
Verification Data Verification of test cases e . . f
VECATS IVA.CAT2 VATL Verification and Validation
Legend: —» Specifications documents required by ECSS activity —__» Testing method used to automate ECSS activity

==uup |nformation flow between mutation testing procedures == ==p Contribution provided by mutation testing to ECSS activity

Test suite evaluation by means of code mutation Test suite evaluation by means of data mutation

Fig. 8. Relations between ECSS activities and activities of the mutation testing process.

and ISVV life cycles. The mutation analysis metrics (e.g., mutation score) might be used to support
SW verification activities; more precisely, they might be used as an additional coverage metric for the
activities described in ECSS-Q-ST-80C 6.3.5.2 and ECSS-E-ST-40C 5.8.3.5.b. Also, mutation testing
(i-e., automated test generation) supports the improvement of test sites. Independent Software
Verification and Validation [13] can benefit from the mutation analysis/testing process as well. The
mutation analysis metrics can support Unit Test Procedures and Test Data Verification IVE.CA.T3

n [13]) and Integration Test Specification and Test Data Verification (IVA.CA.T2 in [13]). Finally,
test generation and mutation score may support ISVV during the identification of test cases (IVA.T1

in [13]).

7 TOOLSET LIMITATIONS AND OPEN PROBLEMS

FAQAS led to developing tools that enable the application of mutation analysis and testing to
space software. FAQAS mainly focused on selecting and extending existing preliminary research
techniques to be applied in the space context. Also, FAQAS led to guidelines for the adoption of
mutation analysis and mutation testing strategies within ECSS activities. However, FAQAS did not

ITT-1-9873-ESA-FAQAS-ESR Page 24 of 28

7.2 FAQAS Limitation 2 — Lack of high-level mutants

address some mutation testing and analysis problems that are out of the scope of the project or can
be considered open research problems:

(1) FAQAS does not include methods to support an efficient integration of mutation analysis and
testing techniques within software development and validation processes, which requires
further research effort.

(2) FAQAS cannot generate high-level mutants representative of errors in the understanding of
software specifications.

(3) The FAQAS test generation approaches require a great deal of manual effort for their config-
uration.

7.1 FAQAS Limitation 1 - Limited integration with software development practices

The integration of FAQAS mutation analysis techniques within space software development prac-
tices is currently limited by two factors: the lack of guidelines to identify a satisfactory mutation
score and the lack of a strategy for the inspection of mutants. Procedures to determine an acceptable
mutation score are necessary because it is unlikely to achieve a 100% mutation score. Indeed, the
generation of new test cases to increase the mutation score has an associated cost, which prevents
achieving a 100% mutation score. Since it is unlikely to achieve a 100% mutation score, defining
guidelines that enable engineers to determine when it is acceptable to stop improving a test suite
is necessary. Also, to adopt mutation analysis within ISVV practices, ISVV officers need similar
guidelines to decide when a software test suite shall be considered adequate. Such guidelines may
consist of threshold values to ensure different quality objectives.

Also, it shall be desirable to prioritize and reduce the live mutants to be inspected. For example,
it shall be reasonable to maximize the diversity among the mutants to be inspected first thus
increasing the likelihood of identifying different test suite shortcomings by inspecting a limited
set of mutants. Also, since mutants may be redundant with each other, implementing a set of
test cases that kill a diverse set of mutants shall likely enable the discovery of other mutants not
selected for inspection — thus further increasing the mutation score. Identifying a diverse set of
problems with a limited number of mutants to be inspected, would also enable ISVV officers to
have a broad understanding of the problems affecting the test suite and help them evaluating the
analyzed software artifacts.

7.2 FAQAS Limitation 2 - Lack of high-level mutants

The validation of FAQAS results performed by industry partners has shown that, frequently, the
errors introduced by mutation operators are fine-grained corner cases, for which the implementation
of a dedicated test case may appear unnecessary to software engineers. Indeed, under the assumption
that software engineers are reliable and avoid simplistic mistakes, some of the faults injected by
code-driven mutation operators (e.g., forgetting a clause in one expression) appear pessimistic and
of little relevance to assessing the quality of test suites. Data-driven mutation analysis partially
addresses the problem by introducing errors at a higher level (i.e., by altering the data exchanged by
components); however, data-driven mutation analysis suffers from the opposite problem, the faults
it simulates are too coarse (e.g., values out of range) and test suites likely discover them. Further,
the literature lacks mutation operators that simulate specification-related errors (e.g., incorrect
understanding of a sentence in the requirement specifications). We believe it is thus necessary to
develop methods to drive mutation analysis based on software specifications. Specification-driven
mutation analysis can be achieved in multiple ways. For example, for code-driven mutation analysis,
it might be necessary to identify mutants that may reflect the misunderstanding of a requirement
or the introduction of an articulate fault concerning multiple statements. For data-driven mutation

ITT-1-9873-ESA-FAQAS-ESR Page 25 of 28

7.5 Future developments

analysis, to increase its effectiveness, it is necessary to augment fault models with additional
information about the system, for example, state-related data constraints. To this end, data-driven
mutation analysis shall be combined with model-based testing artifacts (e.g., statecharts or timed
automata).

7.3 FAQAS Limitation 3 - Limited test generation effectiveness with floating point
instructions and external components

The FAQAS code-driven mutation testing solution (i.e., the SEMuS tool) is limited by some peculiar-
ities of KLEE, the state-of-the-art test generation tool integrated into SEMuS. Indeed, KLEE lacks
support for floating-point computation and external, loosely coupled components. Also, FAQAS
lacks a solution for data-driven mutation testing. Unfortunately, these limitations are open research
problems for which industry-ready solutions do not exist. We briefly describe these problems in
the following paragraphs.

First, KLEE does not properly support floating-point arithmetic; consequently, it cannot generate
test cases killing the mutants for most mathematical functions used by space software. Prototype
extensions of KLEE working with floating-point arithmetic support exist; however, their applicability
to space software — and cyber-physical software more in general — remain to be assessed. Second,
KLEE’s limitations concerning the processing of external, loosely coupled components derive from
the symbolic execution process it relies on. Indeed, to derive the test inputs that kill a mutant,
KLEE generates a symbolic formula that includes all the assignments observed in an execution
path taken by the software under test. The formula is passed to a constraint solver, which looks
for variables’ assignments that satisfy all the constraints in the formula (e.g., path conditions and
assertions). In the presence of external libraries (e.g., calls to network functions or components
without source code), KLEE cannot derive a formula that captures how the software computes its
results; consequently, it may not be able to identify the desired inputs. Since data-driven mutants
target the communication between external components, symbolic execution is inadequate for
data-driven mutation testing too. Concolic execution (i.e., relying on concrete inputs collected
during testing and symbolic inputs to be identified through constraint solving) is a solution that
may help addressing the limitations of symbolic execution; however, for mutation testing [3], it
has been evaluated only when testing opensource, bash programs, while its feasibility with large
space software remains to be explored. Other valid alternatives are model-based test generation
approaches, which are not affected by the limitations of static program analysis and symbolic
execution [10].

7.4 FAQAS Limitation 4 - Limited test generation efficiency

Another limitation of the FAQAS mutation testing solution is the need for the manual inspection
of the generated test cases. More precisely, SEMuS, the FAQAS tool for mutation testing, requires
engineers to verify that structured inputs and oracles are correctly set. This need for manual
inspection depends on the nature of the targeted software (C and C++), which prevents the
automated identification of input and output variables (e.g., a pointer variable might be used to
provide input and outputs). Future work shall explore to possibility of relying on the available
manually written test suites to automatically extract (e.g., through static program analysis) all the
information required to generate executable test cases.

7.5 Future developments

The above-mentioned limitations, might be addressed by a follow-up activity having the following
objectives:

ITT-1-9873-ESA-FAQAS-ESR Page 26 of 28

Conclusion

o Objective 1: Support the integration of mutation analysis into space software development
practices. The activity shall develop a toolset that (1) determines thresholds for the mutation
score that provide software quality guarantees (e.g., absence of severe failures, reduction of
field failures, increased fault detection) and (2) select representative mutants to be inspected
by engineers. The target users for the toolset shall be both engineers for space software
companies and officers performing ISVV.

Objective 2: Specification-driven mutation analysis. The activity shall extend code-driven
mutation operators to generate higher-order errors, possibly simulating mistakes in the
understanding of software specifications. Also, it shall extend data-driven mutation analysis
with model-based support (e.g., to capture valid data ranges for specific program states).
Objective 3: Improve automated test generation effectiveness and efficiency. The activity shall
overcome the limitations of the test case generation tools used in FAQAS. To this end, the
activity shall evaluate solutions available in the literature (e.g., to address floating point
limitations) and leverage characteristics typical for the mutation testing context like the
availability of seeds (e.g., the test cases that cover the mutated code without killing the
mutant).

8 CONCLUSION

The FAQAS activity had been motivated by the need for high-quality software in space systems;
indeed, the success of space missions depends on the quality of the system hardware as much on
the dependability of its software. Before FAQAS there was no work on identifying and assessing
feasible and effective mutation analysis and testing approaches for space software.

The main output of the FAQAS activity had been a toolset that implements three main fea-
tures: code-driven mutation analysis (MASS), data-driven mutation analysis (DAMALt), code-driven
mutation testing (SEMuS).

The empirical evaluation conducted with the aid of industrial case study providers have high-
lighted the practical usefulness of the FAQAS toolset, which led to the identification of relevant
test suite shortcomings (test input partitions not exercised and missing test oracles) and bugs in
the case study subjects. Since all the case study subjects considered in our empirical evaluation
are space software systems that either undergo an extensive testing procedure and are deployed
on orbit, the identification of such shortcomings and bugs indicate that the current procedures
in place are not sufficient to guarantee software quality. Our results thus highlight the necessity
for the adoption of an automated quality assessment toolset into development practices for space
software — the FAQAS toolset has demonstrated to be an effective solution.

REFERENCES

[1] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: Unassisted and Automatic Generation of High-
Coverage Tests for Complex Systems Programs.. In OSDI Vol. 8. 209-224.

[2] Thierry Titcheu Chekam, Mike Papadakis, Maxime Cordy, and Yves Le Traon. 2020. SEMU: smbolic-execution based
mutation testing. https://github.com/thierry-tct/KLEE-SEMu

[3] Thierry Titcheu Chekam, Mike Papadakis, Maxime Cordy, and Yves Le Traon. 2021. Killing stubborn mutants with
symbolic execution. ACM Transactions on Software Engineering and Methodology (TOSEM) 30, 2 (2021), 1-23.

[4] T. T. Chekam, M. Papadakis, Y. Le Traon, and M. Harman. 2017. An Empirical Study on Mutation, Statement and
Branch Coverage Fault Revelation That Avoids the Unreliable Clean Program Assumption. In 2017 IEEE/ACM 39th
International Conference on Software Engineering (ICSE). 597-608.

[5] C.J.Clopper and E. S. Pearson. 1934. The Use of Confidence or Fiducial Limits Illustrated in the Case of the Binomial.
Biometrika 26, 4 (1934), 404-413. http://www.jstor.org/stable/2331986

[6] GNU compiler collection. 2020. gcov?a Test Coverage Program. https://gcc.gnu.org/onlinedocs/gec/Geov.html.

[7] Oscar Eduardo Cornejo Olivares, Fabrizio Pastore, and Lionel Briand. 2021. Mutation Analysis for Cyber-Physical
Systems: Scalable Solutions and Results in the Space Domain. IEEE Transactions on Software Engineering (2021), 1-1.

ITT-1-9873-ESA-FAQAS-ESR Page 27 of 28

https://github.com/thierry-tct/KLEE-SEMu
http://www.jstor.org/stable/2331986

Conclusion

https://doi.org/10.1109/TSE.2021.3107680

R. A. DeMillo, R.]. Lipton, and F. G. Sayward. 1978. Hints on Test Data Selection: Help for the Practicing Programmer.

Computer 11, 4 (April 1978), 34-41. https://doi.org/10.1109/C-M.1978.218136

Daniel Di Nardo, Fabrizio Pastore, and Lionel Briand. 2015. Generating complex and faulty test data through model-

based mutation analysis. In 2015 IEEE 8th International Conference on Software Testing, Verification and Validation

(ICST). IEEE, 1-10.

Daniel Di Nardo, Fabrizio Pastore, and Lionel Briand. 2017. Augmenting field data for testing systems subject to

incremental requirements changes. ACM Transactions on Software Engineering and Methodology (TOSEM) 26, 1 (2017),

1-40.

European Cooperation for Space Standardization. 2009. ECSS-E-ST-40C ? Software general requirements. http:

//ecss.nl/standard/ecss-e-st-40c-software-general-requirements/

European Cooperation for Space Standardization. 2017. ECSS-Q-ST-80C Rev.1 ? Software product assurance. http:

//ecss.nl/standard/ecss-q-st-80c-rev- 1-software-product-assurance-15-february-2017/

European Space Agency. [n.d.]. ESA ISVV Guide issue 2.0, 29/12/2008.

European Space Agency. 2017. ExoMars 2016 - Schiaparelli Anomaly Inquiry. DG-I/2017/546/TTN (2017). http:

//exploration.esa.int/mars/59176-exomars-2016-schiaparelli-anomaly-inquiry/

[15] Free Software Foundation. 2020. GDB: The GNU Project Debugger. https://www.gnu.org/software/gdb/

[16] Rahul Gopinath, Amin Alipour, Iftekhar Ahmed, Carlos Jensen, and Alex Groce. 2015. How hard does mutation
analysis have to be, anyway?. In 2015 IEEE 26th International Symposium on Software Reliability Engineering (ISSRE).
IEEE, 216-227.

[17] Farah Hariri and August Shi. 2018. SRCIROR: a toolset for mutation testing of C source code and LLVM intermediate

representation.. In ASE. 860-863.

Marinos Kintis, Mike Papadakis, Andreas Papadopoulos, Evangelos Valvis, Nicos Malevris, and Yves Le Traon. 2018.

How effective are mutation testing tools? An empirical analysis of Java mutation testing tools with manual analysis

and real faults. Empirical Software Engineering 23, 4 (aug 2018), 2426-2463. https://doi.org/10.1007/s10664-017-9582-5

Daniel Kroening. 2021. Bounded Model Checking for Software. https://www.cprover.org/cbmc/

LLVM. 2021. The LLVM Compiler Infrastructure. https://llvm.org/

Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz Jozala. 2013. Overcoming the equivalent mutant

problem: A systematic literature review and a comparative experiment of second order mutation. IEEE Transactions on

Software Engineering 40, 1 (2013), 23-42.

R. Matinnejad, S. Nejati, L. C. Briand, and T. Bruckmann. 2019. Test Generation and Test Prioritization for Simulink

Models with Dynamic Behavior. IEEE Transactions on Software Engineering 45, 9 (Sep. 2019), 919-944. https:

//doi.org/10.1109/TSE.2018.2811489

Mozilla Foundation. [n.d.]. Peach Fuzzer, Opensource version. https://github.com/MozillaSecurity/peach

Mike Papadakis, Christopher Henard, Mark Harman, Yue Jia, and Yves Le Traon. 2016. Threats to the validity of

mutation-based test assessment. In Proceedings of the 25th International Symposium on Software Testing and Analysis.

ACM,, 354-365.

Mike Papadakis, Donghwan Shin, Shin Yoo, and Doo-Hwan Bae. 2018. Are mutation scores correlated with real fault

detection? a large scale empirical study on the relationship between mutants and real faults. In 2018 IEEE/ACM 40th

International Conference on Software Engineering (ICSE). IEEE, 537-548.

Peach Tech. [n.d.]. Peach Fuzzer. https://www.peach.tech

D. Shin, S. Yoo, and D. Bae. 2018. A Theoretical and Empirical Study of Diversity-Aware Mutation Adequacy Criterion.

IEEE Transactions on Software Engineering 44, 10 (Oct 2018), 914-931. https://doi.org/10.1109/TSE.2017.2732347

Thanassis Tsiodras. 2020. Cover me! https://www.thanassis.space/coverage.html

Lingming Zhang, Milos Gligoric, Darko Marinov, and Sarfraz Khurshid. 2013. Operator-based and random mutant selec-

tion: Better together. In Proceedings of the 28th IEEE/ACM International Conference on Automated Software Engineering.

IEEE Press, 92—-102.

— —
O oo
— =

(10

—

[11

—

[12

—

[13
[14

[l i

[

(18

—

[19
[20
[21

— D

[22

—

[23
[24

[lan it}

[25

—

[26
[27

—

[28
[29

—_

ITT-1-9873-ESA-FAQAS-ESR Page 28 of 28

https://doi.org/10.1109/TSE.2021.3107680
https://doi.org/10.1109/C-M.1978.218136
http://ecss.nl/standard/ecss-e-st-40c-software-general-requirements/
http://ecss.nl/standard/ecss-e-st-40c-software-general-requirements/
http://ecss.nl/standard/ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/
http://ecss.nl/standard/ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/
http://exploration.esa.int/mars/59176-exomars-2016-schiaparelli-anomaly-inquiry/
http://exploration.esa.int/mars/59176-exomars-2016-schiaparelli-anomaly-inquiry/
https://www.gnu.org/software/gdb/
https://doi.org/10.1007/s10664-017-9582-5
https://www.cprover.org/cbmc/
https://llvm.org/
https://doi.org/10.1109/TSE.2018.2811489
https://doi.org/10.1109/TSE.2018.2811489
https://github.com/MozillaSecurity/peach
https://www.peach.tech
https://doi.org/10.1109/TSE.2017.2732347
https://www.thanassis.space/coverage.html

	1 Introduction
	Introduction
	1.1 Objectives
	1.2 Outputs

	2 FAQAS Methodology
	2.1 Code-driven Mutation Analysis: MASS
	2.2 Code-driven Mutation Testing: SEMuS
	2.3 Data-driven Mutation Analysis: DAMAt
	2.4 Data-driven Mutation Testing: DaMTe

	3 FAQAS case studies
	4 Empirical evaluation
	4.1 MASS
	4.2 SEMuS
	4.3 DAMAt
	4.4 DAMTE

	5 Industrial Validation Summary
	5.1 Overall Comments
	5.2 MASS
	5.3 DAMAt
	5.4 SEMUS

	6 INTEGRATION WITH ECSS PRACTICES
	7 Toolset Limitations and Open Problems
	7.1 FAQAS Limitation 1 – Limited integration with software development practices
	7.2 FAQAS Limitation 2 – Lack of high-level mutants
	7.3 FAQAS Limitation 3 – Limited test generation effectiveness with floating point instructions and external components
	7.4 FAQAS Limitation 4 – Limited test generation efficiency
	7.5 Future developments

	8 Conclusion
	References

