

IABG - Final presentation

"Assessments to Prepare and De-Risk Technology Developments – Powder Characterisation"

Industrieanlagen-Betriebsgesellschaft mbH Einsteinstraße 20 D-85521 Ottobrunn

Scope of work

Evaluation and correlation of powder characteristics with the processability of the powder within the additive manufacturing process and with the respective part quality

Establish a correlation between powder properties and test specimen quality

IN718 powder landscape for additive manufacturing

Three major powder production methods:

VIGA

Vacuum Induction Melting combined with Inert Gas Atomization

PIGA

Plasma Melting Induction Guiding Gas Atomization

EIGA Electrode Induction Melting Gas Atomization

IN718 powder landscape for additive manufacturing

- Worldwide survey of powder suppliers
 - Europe: 29
 - North America: 10
 - Asia: 11
 - No suppliers found in Africa, Australia, Central and South America
 - 50 potential companies identified
- Supplier trade-off analysis was performed with the following criteria:
 - powder quality: max. 30 points
 - price: max. 25 points
 - responseness: max. 20 points
 - delivery time: max. 20 points

I IN718 powder landscape for additive manufacturing

Result of the supplier trade-off analysis:

anking	PIGA Manufacturer	Powder Quality	Price	Respon- seness	Delivery Time	Total Result
Å	Max. Points	35	25	20	20	100
1.	TEKNA (CA)	27	7	10	20	64
2.	AP & C (CA)	25	19	10	5	59

Tekna, AP&C, Praxair and VDM were chosen as supplier

anking	VIGA Manufacturer	Powder Quality	Price	Respon- seness	Delivery Time	Total Result
Ř	Max. Points	35	25	20	20	100
1.	Praxair (US)	22	25	20	20	87
2.	VDM (DE)	27	22	20	15	84
3.	Hoeganaes (SE)	16	24	15	20	75
4.	CNPC-POWDER (CA)	13	21	10	15	59
5.	Carpenter Additive (GB)	17	9	10	20	56
6.	Heraeus (DE)	17	17	15	0	49
7.	Sandvik (GB)	13	22	10	0	45
8.	Oerlikon metco (DE)	22	18	0	0	40
9.	TLS-Technik (DE)	10	13	10	5	38
10.	Eramet (FR)	17	0	5	0	22
11.	NMD (DE)	13	0	0	0	13
12.	EOS (FI)	9	0	0	0	9
13.	Voestalpine (AT)	8	0	0	0	8

Powder Procurement Specification

- 1. Production ProcessVIGA or PIGA
- Material Composition
 Ni-Alloy IN718 / 2.4668

Element	Minimum in wt-%	Maximum in wt-%
Ni	50.0	55.0
Cr	17.0	21.0
Fe	Balance	Balance
Nb	4.70	5.50
Мо	2.80	3.30
Ti	0.60	1.20
AI	0.30	0.70
Cu	-	0.30
С	0.02	0.08
Si	-	0.35
Mn	-	0.35
В	-	0.006
Со	-	1.00
Р	-	0.015
S	-	0.015
All other Elements each	-	0.05
Higher density particles*	-	0.005
Hollow spaces inside the particles**	-	0.07

Powder Procurement Specification

3. Particle Size Distribution

D-Values of the cumulative volume	Minimum in µm	Maximum in µm
D10	12	24
D50	24	36
D90	36	54

- Determined by: Light diffraction, Light scattering or Image analysis with more than 100000 particles analysed
- Determination by sieving is not accepted
- 4. Morphology
 - Sufficient spherical, sufficient few agglomerates and satellites for the SLM process
 - Verified by scanning electron microscope (SEM) images of the powder.
 - Optional: sphericity has to be higher than 0.85 (mean value) described by image analysis

Powder Procurement Specification

5. Delivery

- To Fraunhofer-IGCV in Augsburg
- within suitable sealed transport container
- breakage of the seal or entrance of moisture will lead to rejection

6. Certificate of Conformity

- Contains the proof of points:
 - 1. production process
 - 2. material
 - 3. particle size distribution
 - 4. morphology

7. Other agreements

IBL-M sample no.	Powder Manufacturer	Batch number with quantity	Comment
19-210-01	Praxair (VIGA)	Lot# 133 8 containers each 10 kg	Tropagel Desiccant inside; Sealed and numbered by identification number
19-210-02	Tekna (PIGA)	Lot: 39596-MG19019 16 containers each 5 kg	Tropagel Desiccant inside; Sealed and numbered by identification number
19-210-03 Batch 1	AP&C (PIGA)	Lot: 201-J0073 13 containers each 5 kg	No sealing No identification number
19-210-03 Batch 2	AP&C (PIGA)	Lot: 201-J0092 3 containers each 5 kg	No sealing No identification number
19-210-04 Batch 1	VDM (VIGA)	Charge # P10218 2 containers: 19.90 kg and 20.25 kg	No sealing Identification number
19-210-04 Batch 2	VDM (VIGA)	Charge # P10220 2 containers: 19.85 kg and 19.00 kg	No sealing Identification number

Powder was stored at IGCV in a safety cabinet

Characterization of powder batches by PowderGenetics

Powder manufacturers provided material certificates

Tested Powder Properties	19-210-01 Praxair (VIGA)	19-210-02 Tekna (PIGA)	19-210-03 AP&C (PIGA)	19-210-04 VDM (VIGA)
Chemical composition	\checkmark	\checkmark	\checkmark	\checkmark
Particle Size Distribution	\checkmark	\checkmark	\checkmark	\checkmark
Morphology	×	\checkmark	\checkmark	×
Hollow space in particles	×	×	×	B1: 0.03 % B2: 0.08 %
Apparent density	4.21 g / cm³	4.59 g / cm³	B1: 4.57 g / cm ³ B2: 4.58 g / cm ³	×
Tap density	5.01 g / cm ³	5.2 g / cm ³	×	×
Flow rate	14 s	11 s	B1: 2.64 s B2: 2.2 s	×
Addition feature	Visual inspection	-	LOM picture	SEM pictures

Characterization of powder batches by PowderGenetics

- Template of sampling was created and used for each powder batch
- Sampling was performed according to EN ISO 3954
- Powder batches were analysed by the IABG-PowderGenetics-method
 - Macroscopic investigation
 - Chemical analysis
 - Scanning electron microscopy
 - Computed tomography

Macroscopic investigation

- Description of the appearance of the powder
 homogenous grey colour
 no observed colouring or obvious contamination
 - no abnormal colouring or obvious contamination
 - Differ in smoothness, rippleness and dispersion

Chemical analysis

- IABG used CGHE, XRF and ICP-OES to determine the elemental composition
- Chemical analyses performed by the powder manufacturers and at IABG yield comparable results.
- All powder samples meet the PPS requirements
- Oxygen was analysed by Praxair and Tekna
 - IABG measured 40 % higher oxygen contents
 - Praxair: 0.013 % to 0.018 %
 - Tekna: 0.008 % to 0.011 %

Transport / Storage due to container material

Scanning electron microscopy

- Description of the appearance of the powder
- Presence of non-spherical particles, satellites, shells and agglomerates
- Topography of particles at different sizes

less	Amount of	more		
AP&C Batch 2 19-210-03-02	VDM Batch 2	Praxair 19-210-01	VDM Batch 3	VDM Batch 1
AP&C Batch 1 19-210-03-01	19-210-04-02	Tekna 19-210-02	19-210-04-03	19-210-04-01

Computed tomography

Determination of:

- Particle size
- Particle size distribution
- Morphology
- Morphology distribution
- Higher dense particles
- Hollow spaces

The requirements of the PPS:

- not respected by AP&C Batch 2 and VDM powder Batch 2 and 3
- All other powder samples comply with the particle size distribution specified.

Prediction

The results of the PowderGenetics investigation led to the following predictions:

Specimen property	Best result	2 nd best result	3 rd best result	Worst result
Processability	Tekna (PIGA)	AP&C (PIGA)	VDM (VIGA)	Praxair (VIGA)
Roughness - Ra	Praxair (VIGA)	AP&C (PIGA)	Tekna (PIGA)	VDM (VIGA)
Roughness - Rz	AP&C (PIGA)	Tekna (PIGA)	Praxair (VIGA)	VDM (VIGA)
Pore content	Tekna (PIGA)	AP&C (PIGA)	VDM (VIGA)	Praxair (VIGA)
Tensile strength Depends on the respective specimen position in the			en position in the rea	action chamber
PIGA			VI	GA

Manufacturing process

Final setup for all specimens used at EOS M290:

Process Parameter	Description
Laser power	285 W
Scan speed	960 mm / s
Lane spacing	0.11 mm
Layer thickness	0.04 mm
Built plate	30 mm steal plate (C45)
Built plate temperature	80 °C
Recoater	Build job # 1 to 3: HSS Blade Build job # 4 to 8: Carbon Brush
Shielding gas	Argon $O_2 < 0.1$ % (measured) $N_2 < 0.4$ % (predicted)
Laser strategy	1. Hatch (285 W, 960 mm / s) 2. First Contour (138 W, 390 mm / s) 3. Second Contour (80 W, 800 mm / s)
Change of the scanning orientation between two consecutive layers	67 °

Specimen geometry

- A) Cylinders (even numbers) diameter of 9 mm and length of 75 mm Heat treatment and machining
- B) Cylinders (uneven numbers) diameter of 9 mm and length of 75 mm Machining
- C) Net shaped
 B 5 x 50 tensile strength specimens no post-processing
 - Reference cylinder tensile bar

Manufacturing templates were created and filled-in for each build job

Fraunhofer-Einrichtung für Gießerei-, Composite- und Verarbeitungstechnik IGCV

Build job number	Start Date of additive manufacturing	Powder used	Interruption of build job	Remarks
1	26.08.2020	19-210-01 Praxair (VIGA) usecycle #1	Yes	Recoater contact with 3 specimens
2	07.09.2020	19-210-01 Praxair (VIGA) usecycle #2	No	Specimens are not used for the following WP
3	08.09.2020	19-210-02 Tekna (PIGA) usecycle #1	Yes	Recoater contact with one specimen
4	15.09.2020	19-210-03 AP&C (PIGA)	No	Specimens are used for the following WP
5	16.09.2020	19-210-04 VDM (VIGA)	No	Specimens are used for the following WP
6	17.09.2020	19-210-02 Tekna (PIGA) usecycle #2	No	Specimens are used for the following WP
7	18.09.2020	19-210-01 Praxair (VIGA) usecycle #3	Yes	Pressure drop; due to automated filter cleaning process
8	21.09.2020	19-210-01 Praxair (VIGA) usecycle #4	No	Specimens are used for the following WP

<u>Praxair</u>

Received Praxair specimen by IGCV

Tekna

Received Tekna specimen by IGCV

Received Praxair specimen by IGCV

Received Tekna specimen by IGCV

<u>AP&C</u>

Received AP&C specimen by IGCV

Received VDM specimen by IGCV

Received AP&C specimen by IGCV

Received VDM specimen by IGCV

20 mm

Density measurement

All specimens are in the range of 99.5 % of the theoretical density of 8.2 g / cm³

IBL-M Sample No.	Mean value ρ in α / cm³
19-210-01 Praxair (VIGA)	8 22
19-210-02 Tekna (PIGA)	8.17
19-210-03 AP&C (PIGA)	8.17
19-210-04 VDM (VIGA)	8.21

Roughness measurement

All specimens have a comparable roughness

Specimen property	Best result	2 nd best result	3 rd best result	Worst result
Roughness - R _a predicted	Praxair (VIGA)	AP&C (PIGA)	Tekna (PIGA)	VDM (VIGA)
measured	Praxair	ΑΡ&C	Tekna	VDM
	4.6 μm	5.2 μm	5.3 µm	5.7 μm
Roughness - R _z predicted	AP&C (PIGA)	Tekna (PIGA)	Praxair (VIGA)	VDM (VIGA)
measured	Praxair	ΑΡ&C	Tekna	VDM
	35.8 µm	39.0 μm	40.0 μm	41.3 µm
D50 particle size of the powder used	Praxair	AP&C	Tekna	VDM
	31.3 µm	32.2 μm	34.5 µm	37.0 μm

Prediction of R_a values was correct

Computed tomography

porosity analysis (Pore) and target / actual comparison (TAC) have been performed with 10 microns resolution

24 CT-scans(6 per powder sample)

Computed tomography

porosity analysis

IBL-M Sample No.	Edge porosity Mean value in %	Core porosity Mean value in %	Predictions
19-210-01 Praxair (VIGA)	0.034	< 0.0001	Worst result
19-210-02 Tekna (PIGA)	0.027	0.0002	Best result
19-210-03 AP&C (PIGA)	0.032	0.0001	2 nd best result
19-210-04 VDM (VIGA)	0.032	< 0.0001	3 rd best result

Results of the edge porosity corresponds to the prediction

Computed tomography

target / actual comparison

or in absolute values: 4860 μm to 4910 μm

WP 6000 – Post-processing of test specimen

Heat treatment

- Heat treatment process for condition B:
 vacuum oven at 650 °C
 - Holding time of 1 hour

Machining

Condition A and B specimens were machined to round tensile specimens with the geometry B 5 x 50

M8 threads were machined into all specimens

Roughness measurement

All machined specimens (condition A and B) show comparable roughness values

IBL-M Sample No.	R _a in μm	R₂ in µm	R _{z1max} in μm
19-210-01 Praxair (VIGA)	0.6	3.5	4.3
19-210-02 Tekna (PIGA)	0.6	3.5	4.5
19-210-03 AP&C (PIGA)	0.7	3.7	4.8
19-210-04 VDM (VIGA)	0.7	3.6	4.4

Residual stress measurement

- Net shaped specimens (condition C) contain tensile stress on the surface with similar values.
- Surface stresses (condition A and B) differ between compressive and tensile stresses after machining

Residual Stress - Surface

Residual stress measurement – Depth profile for VDM specimen

Condition C: constant residual stresses to a depth of 0.6 mm

- Condition A and B have similar values
- surface starts with a stress free state

compressive stress to a depth of 0.15 mm

followed by tensile stress to the last measuring point

Metallographic investigation

Light microscopical images of transverse and longitudinal sections:

Condition	19-210-01 Praxair - VIGA	19-210-02 Tekna - PIGA	19-210-03 AP&C - PIGA	19-210-04 VDM - VIGA
А	A CAR	and have been	And Land	Nelle
Longi- tudinal sections	- Com			
В		·ADEK	KARD BY	AN COM
Longi- tudinal sections				
С		XX-KD	XXXX	RICK
Longi- tudinal sections				

Microstructure between conditions and samples is similar

Hardness test by Vickers

Condition A (machined) has the highest hardness values followed by condition B (machined and annealed) and condition C (net-shaped)

tensile strength was converted from the hardness values

Parameter / Specimen	19-210-01 Praxair - VIGA	19-210-02 Tekna - PIGA	19-210-03 AP&C - PIGA	19-210-04 VDM - VIGA
Condition A Mean value in HV1	391	386	381	393
Respective tensile strength in MPa	1254	1238	1222	1260
Condition B Mean Value in HV1	313	316	311	308
Respective tensile strength in MPa	1004	1013	997	988
Condition C Mean Value in HV1	306	302	306	309
Respective tensile strength in MPa	981	968	981	991

Condition	mean grain diameter in μm	
Condition A machined	25.3	
Condition B machined and annealed	28.9	
Condition C net shaped	27.7	

WP 8000 – Tensile strength tests

Condition A (machined) has the highest tensile strength values followed by condition B (machined and annealed) and condition C (net-shaped)

Depends on position of the specimen

Specimen property	Best result	2 nd best result	3 rd best result	Worst result
Predicted Processability	Tekna (PIGA)	AP&C (PIGA)	Praxair (VIGA)	VDM (VIGA)
Predicted Tensile strength	Depends on t	he respective specim	en position in the reac	tion chamber
Condition A	Tekna	AP&C	Praxair	VDM
R _m measured	1143 MPa	1138 MPa	1138 MPa	1123 MPa
Condition B	Tekna	AP&C	Praxair	VDM
R _m measured	960 MPa	953 MPa	950 MPa	945 MPa
Condition C R_m measured	Tekna	Praxair	AP&C	VDM
	942 MPa	930 MPa	929 MPa	926 MPa

Results of the tensile strength corresponds to the prediction

Conclusion

PowderGenetics describes the elemental powder properties at the highest possible information depth.

holistic powder characterization

Detection of smallest deviations and the evaluation of their effect on both the manufacturing process and the correlated part quality.

process stability

Determination of powder processability by evaluation and correlation of qualitative and quantitative information of powder properties.

powder processability

IABG successfully established a correlation between IN718 powder properties and the resulting part quality

> prediction of part quality before printing

Your Contact

Marion Eiber

Head of Department Material- and Failure Analyses

 Tel:
 +49 89 6088-2441

 Email:
 eiber@iabg.de

Tom Näke

Project Leader Material- and Failure Analyses

Tel: +49 89 6088-4153 Email: <u>naeke@iabg.de</u>

IABG mbH Einsteinstrasse 20 85521 Ottobrunn Germany

