

STAR CuCo

Space Timing & Advanced Ranging for CubeSat Constellation

Final Presentation

ESA Contract No.: 4000141195/22/NL/GLC/rk

Measurement System DORT

Dynamic Optical Ranging & Timing:

- inter satellite distance measurement (absolute in µm area at >100km distance)
- time distribution (up to 10⁻¹⁵)
- applied for patent Aug 2022

Measurement principle

Ultra-short pulse lasers emit pulses in fs- or ps-area

Oscillator frequency (repetition rate) correlates with distance from one pulse to another

Repetition rate can be monitored/controlled very precisely

Fourier transformed (from time to frequency domain) a 'comb' is generated with multi-harmonics of the repetition rate

Measurement principle

If pulses propagate different optical paths, and are superimposed afterwards, signal in frequency domain varies

the amplitudes of the harmonic change depends on the difference between optical path 1 and path 2 \rightarrow the amplitudes contain distance information

Measurement principle

examples:

the higher the harmonic the higher the oscillation dependent on distance change → best distance resolution at highest frequency

Using special electronic filters (e.g. surface acoustic wave) amplitudes can be separated and measured with high speed (>100kHz)

→ Dynamic movements (e.g. vibrations)
can be measured with high precision and high speed

pace Timing & Advanced Ranging for CubeSat Constellation

Applications for DORT

Reference Mission: Science Project Satellite Gravimetry

Cooperation with:

Technical University Munich (Geodesy) Engineering Minds Munich (electronic development)

Objective:

Study of DORT technology in CubeSat constellations for satellite gravimetry

Mission scenario:

- gravity mission (e.g. GRACE) with CubeSats
- LEO at 400km altitude
- 2 year mission lifetime

GSTP De-Risk Project

Identification of high-risk part of the System

→ Modify and characterize the subsystem to de-risk future developments

Work Breakdown Structure

Requirements definition

Temperature:

Functionality of the optical oscillator defines further requirement for thermal stabilisation

Test environment: [10°C, 40°C]

Vacuum:

Pressure during mission	10 ⁻⁴ Pa
Depressurising during launch	4.5 kPa/s

Mechanical:	Frequency range [Hz]	Qualification	level			
sinusoidal		(0-peak) [g]				
	1-5	0.50				
	5 – 45	1.00				
	45 – 110	1.25				
	110 – 125	0.25				

random:

	1.1	•	
Rar	1121		n
ιλαι	JIA	uo	

Bandwidth	Overall	level	PSD [g ² / Hz]	Time
[Hz]	[g eff]			duration
20 - 2000	12		0.0727	1 min

STAR CuCo pace Timing & Advanced Ranging for CubeSat Constellation

Oscillator design

\rightarrow miniaturization

90mm

STAR CuCo Space Timing & Advanced Ranging for CubeSat Constellation

Increasing mechanical stability

Idea: Oscillator casted in resin \rightarrow resin selection

Name	Space-tested?	Density [g/cm3]	Viscosity @ 25°C [mPa*s]	Pot life	Hardness [Shore scale]	Th. Conductivity [W m-1 °C-1]	Th. Exp. Coeff. [E-6 K-1]	Other	Suitable for the application?
Araldite CY 205 IN	Yes	1.15-1.20	9000-13000	1 day	?	?	31-36	Cured at 80 °C and 130 °C	No
Epikote 828	Yes	1.16	12000-14000	?	?	?	?	Has an extreme viscosity range depending on the temperature	No
Versamid 140	Yes	0.967	8000-12000	2 hrs	?	?	?	Max. exotherm 150°C	No
RTV 566	Yes	1.5	42700	30 mins	>A61	0.3	200	Very high viscosity	Maybe
RTV S695	Yes	?	66	8 hrs	12 (Unkn. scale)	0.21	320	Low mechanical resistance	No
Solitane 113	Yes	1.07	20000	3 hrs	55-60 (Unkn. scale)	?	126-238	Not resistant to solar UV- radiation; has flammability risk; glass transition at -10°C	Maybe
Stycast 2850	Yes	2.3	70000	45 mins	D92-96	1.02-1.28	31.2-39.4	Extremely high viscosity	Maybe
Stycast 1090	Yes	0.88	30000	30 mins	D75-82	0.19	40	High viscosity	Maybe
Appli-Tec 5051-E	Outgas. Tests	1.15	320	8 hrs	D83	?	?	Low viscosity; transparent	Maybe
Appli-Tec 5108-H	Outgas. Tests	1.07	5000	2 hrs	D80	?	?	High viscosity	Maybe
Appli-Tec 7810-G	Outgas. Tests	0.96	6400	1.5 hrs	A65	0.25	200 (above -74°C)	High viscosity	Maybe
R4GB	No	1	?	3-4 mins	D70	?	?	Extremely short pot life, peak exotherm 45+°C	No
E45GE	No	1.1-1.2	low-viscosity	45 mins	D81	?	80	Low viscosity; transparent, peak exotherm 25°C	Maybe
PX700K-1/BK/500	No	1.66	5000-9000	2 hrs	D70-80	1	40-50	High viscosity; peak exotherm 40 °C; flame retardant; operating temperature range: -40 to +150 °C	Maybe
EL116F/GY	No	1.47	5000	25 mins	A70-80	0.6	50-75	High viscosity; relatively short pot life; peak exotherm 60°C	Maybe
EL171LF/BK/270	No	1.51	3500	15 mins	D60	0.55	75-100	Hard to degas; short pot life; relatively low viscosity; non- toxic; flame retardant	No

→ epoxy resin E45GE with similar characteristics is suitable COTS equivalent

STAR CuCo pace Timing & Advanced Ranging for CubeSat Constellation

Castin Process

Non-processed casting

processed casting

STAR CUCO Space Timing & Advanced Ranging for CubeSat Constellation

New oscillator design

Questions:

- survives the oscillator all loads?
- in which temperature range is mode lock possible?

for CubeSat Constellation

Thermal Vacuum Test

Setup allows online measurement during all tests

- Oscillator survives thermal/vacuum loads
- Oscillator in mode lock state all time
- Optical spectrum constant at all time
- output power varies with ±10%(can be compensated with pump power)

- vacuum has no major impact on setup

Since mode lock is during all tests, mode lock is tested by varying the pump power at higher/lower temperatures

- Oscillator survives all tests
- thermal range for full functionality is defined to [5°C, 45°C]
- → Requirements on thermal control (electronic) not challenging
- vacuum has no major impact on system
- space proven resin with similar characteristics exists
- \rightarrow No outgasing issues

Vibration Test

DE-RISK

Preparation:

- mech. adapter for out-of-plane (z) and in plane tests (x,y)
- reference accelerometer on test adapter
- probe accelerometer mounted on oscillator by adhesive mass
- mass of oscillator approx. 150g
- → Shaker with less load applicable

r CubeSat Constellatio

Vibration test

Reference accelerometer

11111

probe accelerometer

Test setup

Vibration test

WP 300

- after each test cycle oscillator is tested for functionality
- no specific behaviour measurable during and after test
- at higher frequencies, adaption would be necessary
- \rightarrow Oscillator survives complete vibration test
- basic mech. design enough to survive vibration test
- → Still space for improvement, if necessary

→ All-in-fibre setup, casted in resin promises large variety of applications in space (compact, robust, low weight)

Radiation test

Test setup

Using PM and SM fibre spools of approx. 1km length online measurement possible

STAR CUCO Space Timing & Advanced Ranging for CubeSat Constellation

Radiation test

- in total oscillator irradiated with 30Gy (3krad)
- output power decreased to 70% of start value
- \rightarrow Can be compensated by increasing pump power
- optical spectrum shows no change
- \rightarrow Pulses are still in the same shape

Radiation test

- Oscillator survives radiation load of 2 year mission lifetime (1 year minimum required)
- power loss can be compensated without major effort
- → Low requirements on electronics and Satellite Shielding (2mm Aluminum)
- no impact on optical output
- \rightarrow No performance loss

Summary

- Oscillator design updated to fit within 80mm x 80mm x 20mm mould
- full in-fibre-setup enables casted in resin
- casting procedure created to ensure proper resin homogeneity
- oscillator in resin shows high mechanical robustness
- thermal loads within [5°C,45°C] possible without losing mode lock state
- vacuum has no impact on fully casted device
- vibration loads on oscillator shows no impact
- radiation impact on power loss can be compensated with increasing pump power

Summary

- De-Risk project completed without major changes

Next steps

- → Satellite gravimetry as most promising mission for demonstration (highest requirements on distance measurement)
- → Further technical development necessary for high precise distance measurement
- → Engineering Model of complete DORT system is the next step
 → INCUBED?
- → Synergy with other projects lowers time and financial investments

STAR CuCo

Space Timing & Advanced Ranging for CubeSat Constellation

DE-RISK

Thank you!