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1. About this document 

1.1 Scope of the document 
This Executive Summary provides a comprehensive overview of the scope of the project DeLeMIS, the 

methodology, key findings and recommendations. 
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1.3 Table of Acronyms 
Acronym Description 

AI Artificial Intelligence 

ML Machine Learning 

RL Reinforcement Learning 

MPC Model-Predictive Control 

LBMPC Learning-Based MPC 

CNN Convolutional Neural Networks 

 

2. Introduction 
The project DeLeMIS was funded by  the ESA/ESTEC (ESA 4000136972/21/NL/AS), with e:fs TechHub 

GmbH as prime and DLR institute for robotics and mechatronics as subcontractor, both from Germany.  

Main objective of the project is to demonstrate the improvements in a space system by applying 

Artificial Intelligence (AI) and Machine Learning (ML). For DeLeMIS, planetary exploration missions 

were chosen as use-case and a rover prototype for testing and investigation of the algorithms and 

results. 

In a planetary exploration mission, the rover autonomy shall be possible even though limited 

information is available beforehand about the properties of the terrain. Several challenges arise from 

this problem, especially with regard to the motion control. In general, the physical behaviour of the 

rover, i.e. the motion and interactions with the environment, is very complex and cannot be fully 

captured by equations. Furthermore, the environment in which the rover navigates may be unknown 

and change over time. Therefore, conventional control methods, which require precise models, are 

more likely to fail. To this end, learning methods enabling improvements of the system model seem 

very promising. By learning or intelligence in this context, we understand that the rover is able to 

acquire more information about itself and its environment, change the representation of the 

knowledge accordingly, adapt the search for proper actions and even re-evaluate situations and 

actions through the newly acquired knowledge properties with the long-term goal to increase the 

autonomy of such systems. To obtain more information, the rover is equipped with appropriate 

sensors. 

Figure 1 shows the Phases and the work package breakdown structure within the project. The final 

documentation will be organized according to the structure. 
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Figure 1: Work breakdown structure and responsibilities. 

In the first phase of the project Status Quo e Architectura, the state-of-the-art ML approaches were 

investigated and reviewed. Both methods that were already used in space applications, but also 

methods that were successfully applied in other domains such as automotive were considered. 

Furthermore, a survey on current and future space missions was conducted with a focus on the 

potential application fields for ML for improvement. Based on the results, one or more scenarios were 

chosen to demonstrate the learning effects on an exemplary space mission. Finally, the overall 

architecture of the system-to-be-demonstrated was defined and criteria for verification and validation 

were derived. At the end of this phase, the ML method, the space mission case, the mission scenario, 

as well as the overall system concept and requirements for measuring the success of the 

demonstration were defined. 

In next phase Instrumentum, consolidating the details of the demonstration scenario, the system 

design, and the implementation concept were defined. Different components (SW, HW, GSE) were 

provided, developed, and tested on the unit level. Furthermore, the combination of components was 

tested and validated. After successful testing of the components, the overall system was integrated 

and prepared for system-level testing. Finally, the overall system was tested regarding the chosen 

scenario(s). For the development of the overall system including the ML algorithms, hardware, GSE, 

and component level tests, agile software development approaches were applied. 
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In last phase Demonstratio, the demonstration of the ML algorithm and its application was executed. 

It was shown with the scenario(s) developed in the previous phases, that the machines were able to 

learn without human interaction. Proper presentation material was created, and a final presentation 

was held. Final review and acceptance of the outcome of the project by the agency was initiated. 

2.1.1 Goals for using AI and ML in DeLeMIS 
The first goal of the project was to investigate the combination of methods from control theory and 

AI/ML to improve the solutions to perception and control problems arising in the context of planetary 

rover missions. 

Furthermore, improvement potentials by applying AI/ML methods to the navigation software of the 

rover were supposed to be demonstrated in the runtime. 

2.1.2 Assessment and choice of the demonstration use case scenarios for ML application. 
Potential demonstration use-cases and scenarios 

For the assessment of the demonstration use cases, different rover’s architecture layers were 

considered separately. Possible use cases and relevant scenarios were identified and evaluated 

regarding certain criteria. Table 1 shows the use cases according to the architecture layer, also 

discussed in the following subsections. The considered layers are divided with respect to two different 

aspects. In terms of the abstraction layer the architecture is classified into the three main parts of an 

autonomous system, namely sensorics, the “brain”, and actoric. 

Table 1 – Overview of possible mission cases according to application layer in rover structure.  

Application Layer Abstraction Layer Use cases 

Perception Sensorics Distinguish between different types of terrain 

Localization and 
estimation 

 
The “brain” 

Improve odometry by learning kinetic and 
kinematic properties, e.g., wheel slip 

Motion planning Avoid disadvantageous terrain 
 
Learn unknown terrain properties 

Motion control Actoric More precise and safe tracking 
 
Accomplish challenging trajectories 

 

Proposed mission case scenario for development and demonstration of ML 

The scenario involves one of the testing grounds of the. Basically, the testing ground aims to emulate 

rough terrain. This means, that the terrain features a significant profile of elevation change, impassable 

obstacles, such as large boulders or rocks, and at least two different kinds of soil, regarding their 

friction coefficient. 

As shown in Figure 2, the rover is located at a defined starting position. In addition, there are several 

different target locations within the premises of the testing ground. All target locations are physically 

accessible for the rover by traveling along the a priori determined trajectories from the planning layer. 
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Regarding its ego localization, the rover utilizes the ground truth positioning system of the testing 

ground. This means, that the ego localization does not interfere with the evaluation of the 

improvements for each learning algorithm present below. 

 

Figure 2: Exemplary structural concept of the scenario on the testing ground. The blue marker indicates the starting position 
of the rover, the black markers indicate different target locations. The blue dashed lines indicate the paths of the trajectories 
the rover should follow to reach the desired target location. 

Before a scenario with one of the learning algorithms is started, the rover conducts reference 

measurements by traveling along all available trajectories. Thereby entities such as position, velocity, 

lateral and longitudinal distance to the trajectories, travel time, as well as entities representing the 

energy consumption and locomotion robustness will be gathered. By comparing these measurements 

to the evaluation measurements from the scenario, improvements in the trajectory tracking behavior 

can be identified, depending on the later to-be-defined measures for the improvement. 

How the learning algorithms are implemented in the scenario 

The implementation of each learning algorithm can be divided into three parts or phases. However, 

not every algorithm has to necessarily include all phases. The learning algorithm for the perception 

layer consists of part one and three, the wheel steering and correction algorithm as well as the 

learning-based control algorithm consists of all three parts. 

The first phase involves offline learning from already available data, for instance, from previous space 

missions, other experiments, or data from simulation environments. The aim is to generate an 

educated guess and therefore an initial learning state. 

If a learning algorithm contains the second phase, then this phase is conducted right at the start of the 

scenario. Here, the rover travels within close proximity to the lander to adapt or validate the learning 

algorithm with respect to the current environment. This might be comparable with an installation run 

from a real space mission to check if all systems are running correctly and to validate parameters. 
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The third part is the continuous adaption of the algorithm while following the pre-planned trajectories 

to the target locations. In this context, this concerns the adaptation of some parameters, units or 

functional structures inside the algorithms using the collected data within a ride segment. Here, the 

initial learning state from the offline learning part and the exploration part close to the lander are 

constantly adapted. In addition, ground information from the perception layer may also be taken into 

consideration, if available. During this part, the rover is following all trajectories to visit each of the 

target locations, analogue to the procedure to conduct reference measurements. 

Definition of improvement of the trajectory tracking behaviour 

As implied in the introduction, the aim of the scenario definition is to provide a reproducible procedure 

to demonstrate and to evaluate eventually if a learning algorithm can improve the trajectory tracking 

behaviour of the rover. The evaluation is based on certain criteria which will be defined and detailed 

during the implementation phase of the project. Such criteria might be the accuracy of the path 

tracking of the trajectory. Aspects such as lateral deviation from the trajectory, energy consumed for 

propulsion, or traveling time may be considered. For each learning algorithm, the results of the 

executed scenario are compared to its previously conducted reference measurements.  As mentioned 

before, the planning layer uses a priori calculated trajectories to the different target locations. This is 

needed, to ensure that the same challenging trajectory is used during the reference and the scenario 

measurement. For example, a trajectory with less elevation change is likely to be less energy 

consuming. 

3. System Design 

3.1. System Requirements 
To accomplish the tasks leading to the project objectives properly, a requirements engineering 

approach will be applied to ensure the fulfilment of all technical requirements, both those from SoW 

and those agreed on within the Tasks 1-4. A first iteration of the requirements engineering approach 

as state in the contractor’s proposal is given below. Table 2: Definition of requirements’ categories 

gives the definitions of different requirement categories. 

Table 2: Definition of requirements’ categories 

ID Requirement category Definition 

MSN-xxx Space Mission Case 
requirements 
 

Requirements regarding the space mission case for 
demonstration of the machine learning potentials in 
space applications. The chosen space mission, or a 
mission inspired by that, will be taken as the baseline 
for the demonstration scenario. 

SCN-xxx Demonstration Scenario 
requirements 

Requirements regarding the scenario(s) within a space 
mission for which machine learning methods 
demonstrate an improvement in some yet to be 
defined sense. 

SYS-xxx System and architecture 
requirements 

Requirements regarding the overall system design and 
architecture of the prototype for the demonstration. 
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The overall structure of the requirements engineering approach is given in the diagram in Figure 3. The 

overall approach for the requirements engineering in the project however is designed in an iterative 

manner. As illustrated Figure 4, the current document will be extended and updated along with the 

project timeline. The first version of the requirements will be defined and delivered with Review 1. 

During the detailed design phase, the requirements for the system and the algorithms will be 

concretised and updated. Furthermore, during the phase of the agile implementation the 

requirements will be reviewed and updated if necessary. The final version of these documents will be 

used for the validation and verification at the end of the project. The requirements presented in this 

documents are in the first phase of the project more on a high level. During the development phase 

and approaching the final presentation as well as the demonstration phase, more detailed 

requirements will be added, especially for the purpose of V&V. 

3.2. Hardware Architecture 
The Lightweight Rover Unit LRU from DLR–RMC is a new innovative rover tailored to the needs of 

future planetary exploration missions but also for terrestrial applications like search and rescue 

scenarios. The rover is designed to safely operate on moderate to challenging terrain as often 

encountered in exploration tasks. It allows the exploration of large areas in a fast and efficient manner. 

The rover is also capable of manipulating or evaluation objects.  

MTD-xxx Methodical requirements 
for the demonstrated ML 
algorithm 

Requirements regarding the methodical approaches 
and algorithms of machine learning to be 
demonstrated on the prototype hardware. 

HDW-xxx Instrumental and 
Hardware Requirements 

Requirements regarding the hardware and 
instruments for the proper execution of the 
demonstration. 

GSE-xxx GSE requirements Requirements regarding the GSE for the proper 
execution of the demonstration. 

Figure 3: The requirements engineering approach Figure 4:  Iterative approach to requirements engineering. 
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Figure 5: LRU Rover with JACO2 Arm and science cam operating in lunar analogue environment on Mt. Etna 

The design of the rover system is based on DLR’s long experience in designing lightweight actuator 

units and robotic systems. The LRU rover locomotion subsystem (LSS) and its potential suitability for 

space applications have been given highest priority. The LSS and all relevant robotic components (e.g. 

including sensor setup) have therefore been designed in a space qualifiable manner and a future 

upgrade to a fully space qualified version has been considered from the very beginning respectively. 

The four wheeled LSS system is fully steerable. In addition to the four wheel and steering actuators 

two serial elastic bogie actuators allow to actively control the front and rear bogie joints. This allows 

e.g. controlling the load distribution to the wheels and the body orientation while maintaining the 

advantages of passive suspension. The wheels design, also a combination of rigid (e.g. tire tread) and 

flexible (spokes) elements, is additionally supporting fast and efficient driving in rough terrain. The 

lightweight design, the advanced kinematics and the unique combination of active and passive chassis 

elements result in a very high traffic ability, terrainability and overall mobility performance. [1] 

The rover body and related remaining subsystems like power electronics, battery and communication 

are designed for terrestrial applications and based on reliable and cost-efficient commercially available 

components-off-the-shelf (COTS) as development time and performance have been the main design 

drivers. In order to fully exploit the capacity of the mobile system, an appropriate navigation algorithm 

and autonomy is implemented. Such high level control algorithms, e.g. the implemented autonomous 

way point navigation, are key elements for future exploration missions. As they strongly rely on 

perception sensors like cameras, the rover system includes a novel PanTilt Unit incorporating a stereo 

camera. The PanTilt Unit has been designed and optimized for the requirements of this mobile system 

operation in rough terrain. During the overall design process, the space application of different 

components and modules has been given highest priority and the related future space qualification 

process has been considered from the very beginning.  

Currently two Light weight rover units (LRU) are available. One unit is equipped with a robotic arm 

(JACO2 robotic arm Payload 1,5 kg / 2,5 kg) whereas the second unit features a scientific camera and 
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a landing platform. The science cam is very similar to the one foreseen for the ExoMars rover and 

include e.g. additional spectral cameras, IR camera and a high-resolution camera. 

LRU Sensor integration 

The LRU actuators are based on the DLR-RMC Space Drive Unit series based on the robotic joints 

developed at DLR, a series of Light-weight actuators for space applications have been developed. They 

have been adapted to the special need of typical planetary rover and mobility systems. Currently the 

LRU makes use of two actuator sizes are available: The standard ILM38 Space Drive Unit (LSS) for wheel 

and steering actuators and the smaller LM25 Space Drive Unit is mainly used for the PanTilt actuators. 

ILM is the shortcut for the german wording of  internal-rotor motor. The following number specifies  

the diameter of the stator (mm). The drive units have been continuously further developed and a space 

qualifiable unit is available. In general the units comprise the same design structure and are based on 

a Robodrive ® BLDC motor in combination with a single gear stage formed by a Harmonic Drive ® gear 

with a gear reduction ratio of 1:100. 

System software and interfaces 

The architecture of the overall system and the interfaces is given in Figure 6. The overall system from 

a software point of view consists of four main parts interfacing each other. The block “System Sensors” 

contains all sensors used in the scenario. This may contain camera systems, IMUs, any localisation and 

external positioning system. External sensors send the measurements and raw data to the main 

computer.  

The main computer which uses a Linux OS implements advanced algorithms for localisation, mapping, 

motion planning etc. A framework, such as ROS, is used to host the algorithms and data exchange 

among different code components. The light grey box illustrates the components already available on 

Figure 6: SW architecture: System and interfaces. 



DeLeMIS Executive Summary, ESA 4000136972/21/NL/AS 

 

 

 

public   02.05.2024   Page 10  

the rover. Blue boxes show the software components that will be extended or created within DeLeMIS. 

On one hand, code for semantic segmentation of the ground using image data will be included that 

uses an artificial neural network. On the other hand, the Learning-Based (LB) control algorithm is 

applied to the motion of the rover. Furthermore, the cinematics of the overall vehicle is also subject 

to developments since the cinematics model of the wheel steering affects the motion control. All code 

units in the main computer use the internal system states determined on the on-board real-time 

hardware of the rover. The results created by the algorithms are trajectories for the motion as well as 

system-level commands sent to the rover. 

Beside algorithms and code for housekeeping of the rover, low level actuator control algorithms run 

on the real-time on-boards hardware. Any extension of the real-time and low-level control algorithms 

for the rover motion will be implemented here and data is exchanged directly through the code 

structure on the hardware. This unit sends low level actuator commands and receives data from the 

sensors embedded in the actuators. 

Planetary Exploration Lab (PEL): Indoor Soil Testbed 

The PEL is located in rooms K315 and K317 in the RMC basement. The facility features a control 

room overlooking the testing area separated by a windowed wall that faces the soil bin. The room 

K317 houses the test area (soil bin) and a preparation area next to the soil bin. The control room is 

located next to the test area people must stay during. During the scenario execution and the 

operation of the facility (e.g. slope, crane), people must stay in the control room or outside the 

facility. At any time, people must not stand under suspended loads or the slope. 

The DLR-RM PEL indoor test facility consists of a 5.5 m x 10 m indoor soil bin. It is used for testing 

planetary locomotion systems as well as navigation algorithms independent of weather conditions. 

The terrain can be composed by different materials, e.g., soft soil or stones and rocks of different size 

and shape, to investigate the mobility for different terrain set-ups. A wide variety of planetary soil 

Figure 7: Tilting Platform – PEL with LRU  
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simulants as well as obstacles and rocks are available. The PEL is currently used for a validation test 

campaign for a planetary exploration mission (MMX) any may be adapted to the mission needs. This 

may include exchange of soil or enhancement of sensor setup. The terrain will be remodelled according 

to the needs of DeLeMIS. It shall be mentioned that it is assumed that exchanging the soil is out of the 

scope of DeLeMIS project as it is very labour and time intensive and most likely the soil type has to be 

used as it is. A part of the soil box can be tilted up to 30° to model steep slopes. Furthermore, the 

facility is equipped with an optical position tracking system and a fully automated Digital Surface Model 

(DSM) device.  

DLR Outdoor Test Facility 

The DLR-RM outdoor test facility consists of a large area with a planetary surfaces analogue section. 

This terrain consists of different surface materials such as sand, gravel, and rocks. Furthermore, a 

crater formed, as it can be found on lunar surfaces, allows testing, navigation, and planning algorithms 

in analogue environment. Currently, the testbed is over-worked and enlarged. The new and much 

larger outdoor test facility will be operational in 2024. 

Simulation 

The simulator OAISYS is used to generate image data, which can be expected on another planetary 

body. Therefore, OAISYS needs a set of textures, which can be used to create basic terrains. These 

tenures were carefully chosen in order to create realistic scenes. For some training procedures it is 

important to create as many versatile data as possible. In these cases the quality of realistic rendering 

might be less important than the quantity of used semantic classes. Therefore, we adapted the 

simulator to also render many terrains, but with a lower quality. With that it is possible to create 

datasets in the order of multiple thousands in a very fast manner.  

 

Figure 8:Basic Flow Diagram of OAISYS [2] 

A detailed description of the OAISYS simulator and the link to the open-source repository can be found 

in [2] 
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Rover Gazebo Simulation  

To simplify and accelerate development during the project, a simulation environment has been created 

that includes a model of the LRU rover, a model of the DLR test environments, and a flexible interface 

architecture for integrating the of the various algorithms. This gazebo simulator 

(https://gazebosim.org/), which is integrated into the ROS framework (https://www.ros.org/), also 

serves as a data generator for the ML-based methods and as a test and verification platform for first-

phase algorithm development. Although the simulator is not able to reproduce the exact behaviour of 

the sand subsurface, a certain degree of sliding some degree of sliding and submergence of the rover 

can be observed so that nonlinear behaviour can be reproduced. At order to increase the 

representativeness and reliability of the simulation, data from DLR facilities will be Data from DLR 

facilities will be collected and used to verify the behaviour of the simulated rover in relevant and 

comparable scenarios. For this purpose, the rover will follow predefined trajectories in DLR's test 

facility using a new lunar simulant, the Lunar Ground Simulator. Lunar simulant, which will also be used 

in the new DLR/ESA lunar test facility "LUNA" in Cologne. "LUNA" in Cologne will be used. The resulting 

trajectory data are then compared with those of the simulator and the simulation parameters are 

adjusted accordingly. 
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Figure 9: Gazebo simulation of the LRU in the PEL 
environment 

 
Figure 10: Real LRU rover in the PEL during test drives 

 

3.3. Software Architecture 
Learning algorithms investigated in this project are used to approach 3 different problem settings. Each 

problem is considered isolated as a stand-alone task. This will help isolating the effects of the learning 

algorithms and enables detailed analysis of the results. 

The blue blocks Figure 11 indicate the learning algorithms: 

• ML-based perception, 

• ML-based kinematics adjustment, and 

• ML-based motion control. 

In the following sections, each problem setting, and possible algorithms to solve them are described. 

Figure 11: Overall structure of the software. 
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3.3.1 Learning-based perception 
For this module, we aim to develop a perception method which can segment an image input based on 

predefined terrain classes. 

• Rendering and generating data sets in OAISYS 

• Plug-In OAISYS Object mode 

For this module, we aim to develop a perception method which can segment an image input based on 

predefined terrain classes. The used neural network to perform that task is based on a transformer 

architecture as illustrated in Figure 12. The developed network can be spitted into an encoder and 

decoder part. The encoder part extract semantic features from the provided image. The decoder uses 

so-called queries, which are attended to these features. The outcome is an image prediction of 

semantic classes. In the following we give more detail explanation about the structure of the encoder 

and decoder. In order to get the most information from the provided image the developed network 

uses a pyramid level transformer encoder. Instead of splitting the image into multiple patches, which 

are fed into the network, the entire pixel map is provided. After each encoder block the resulting image 

features are down-scaled and fed to the next encoder block. Transformer are using usually so-called 

Multi-Head Attention Layers in order to extract image features. However, such layers cannot directly 

be applied on the entire image, since the needed memory is too large for most hardware. Therefore, 

spatial reduction attentions (SRA) are used, which can handle such input tensors. The decoder of the 

network consists of a transformer architecture, which taking the image features from the encoder and 

learnable queries as input. The learnable queries are vectors, which can be used to store the 

information of a particular class. In the end of the training procedure each query represents one of the 

semantic classes. These queries are attended to the input features. If the input features are matching 

with a particular query, the query will be activated and therefore shows if a semantic class is present 

in the image. The output of the decoder and with that the network is the semantic segmentation 

prediction. 

Figure 12: Transformer DNN architecture for image segmentation 
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3.3.2 Learning-based wheel kinematics adjustment 
The wheel kinematics adjustment module implements a learning algorithm, that adapts the control 

output of the baseline nonlinear controller with an additive term. This changes the input of the wheel 

steering controller and consequently impacts the rover movement. For this purpose, an approximation 

function is designed, that is trained online on tracking data to improve the tracking behaviour. Due to 

implementation reasons, we chose to use Gaussian Process Regression (GPR), which utilizes Gaussian 

Processes (GP) [3], [4]  𝑔(𝑧)~ 𝐺𝑃 (𝑚(𝑧),  𝑘(𝑧,  𝑧′)). Such a GP model can then be utilized to build a 

regression model by treating the model as a prior, defined only by a covariance function, also known 

as kernel function 𝑘 . In our case, we use the common squared exponential kernel function. By adding 

observation data, 

 

where 𝑛𝑧 denotes the number of features in the observation vector 𝑍  and 𝑁  the number of data 

points (𝑧𝑘 ,  𝑦𝑘), the GP model can be used as a posterior distribution. This posterior distribution can 

then be used to predict output values 𝜇𝑑(𝑧∗) and its probability Σ𝑑(𝑧∗) for a desired data points 𝑧∗ 

(test points), 

 

where 𝑑  denotes the “d-th” dimension of the output. 𝐾 , 𝐾∗, and 𝐾∗,∗ are defined as 𝑘(𝑍, 𝑍), 𝑘(𝑍, 𝑍∗), 

and 𝑘(𝑍∗, 𝑍∗), respectively. 

The features of the observation vector 𝑧  in the proposed approach consists of the current trajectory 

dynamics, described by the curvature and the velocity, and the roll angle of the bogie axles of the 

rover. The corresponding output (additive yaw rate for the nonlinear controller) of the observation is 

determined by the current tracking performance, the lateral deviation and heading error, according to 

the trajectory dynamics. The number of data points 𝑁  of the observation data is limited, due to 

increasing computational costs with every data point.  

The selection of observation data is currently handled with a First In – First Out (FIFO) method. Other 

methods, such as covariance-based ones, must be further investigated and might be applied during 

the demonstration as well.  

At the current state of the approach, the hyperparameter of the GPR are continuously optimized via 

the log marginal likelihood method [3] after a new data point is added to the observation data. 

Unfortunately, this method comes with a high computational cost, which might lead to a fixed set of 

hyperparameter from the simulation for the demonstration. 

3.3.3 Learning-based motion control 
Several learning approaches build on top of Model Predictive Control (MPC), e.g., [5], [6]. MPC provides 

a set of advanced control methods for the computation of control inputs to a system such that some 

optimal behaviour, specified by a cost function, is achieved. The basics of the general nonlinear 

approach of MPC is well explained in [7]. Authors of [8], who are among the top researchers in this 

area for decades, explain the mathematical concepts and tools required for understanding and 
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application of MPC and its different variants in detail. The system is usually given by (nonlinear) 

difference (discrete in time) or differential equations (continuous in time) and may be subject to 

constraints on its states and inputs. MPC uses this system description to forecast the behaviour of the 

controlled system. Then it solves an optimization problem, based on current state and these 

predictions, to find an optimal sequence of inputs that also ensure that the constraints are satisfied. 

The desired behaviour and the nominal path-following functionality provided planning layer. The 

learning-based motion control will be implemented by an iterative learning MPC. Its task is to improve 

the overall system behaviour despite the unknowns and uncertainties and, at the same time, to make 

sure that optimality, constraints, and safety criteria are satisfied. A particularly interesting method, 

that will be investigated, adapted, and implemented was presented in [9]. In [10], the method was 

used to minimise the lap time of a race car by learning a better model for the car in each lap. In our 

setting, we will use this method to achieve a better path following than by the nominal system alone. 

A introduction to this method is given in the following section. It is important to note that the phrase 

“LBPC” is used commonly in the control engineering literature to describe an data-based online-

adaptive control algorithm that uses past measurements and given data to adapt some aspects of the 

optimization problem embedded in the controller. Below, more details are presented on the approach 

planned for this project. 

This problem setting, we assume that a realizable path is provided by a trajectory planner. We also 

assume a nonlinear tracking controller and a static wheel steering function that are suited to let the 

rover track the given trajectory under ideal circumstances. However, there will be deviations due to 

unknown aspects in the physical model as well as uncertain interactions with the environment. To 

reduce these deviations, an iteratively learning model predictive control (MPC) framework will be 

employed.  

In our approach, the system is first linearised in combination with a non-linear controller and then 

controlled with a learning-based MPC as illustrated in Figure 13. This approach simplifies the 

optimization problem and reduces the dependence on an iterative process. To be more specific, the 

chosen system architecture enables that the MPC only receives the error states of the system, i.e. the 

deviations from the specified trajectory. Therefore, it is no longer necessary for the learning algorithm 

to repeatedly run the same trajectory as in many other approaches. To address additional performance 

goals beyond constraint satisfaction and leverage the advantages of learning-based model error 

prediction for the trajectory tracking task, a learning-based MPC is synthesized in the outer-loop to 

gain the optimal control input. 

Figure 13: Closed-loop error system framework. 
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The DNN used for the approximation and prediction of the system dynamics is a Feed Forward Neural 

Network (FFNN) with ReLU activation features and linear activation features in the output layer. The 

width of the DNN was three times the number of input features in each layer with a depth of 5 layers. 

For training the DNN in the Keras framework, datasets with iterations are generated in the Gazebo 

simulation environment. One iteration consists of a chosen length of 200 time steps. The feature 

vectors used are the deviations from the reference trajectory, the current and desired velocities, the 

inclination and pitch of the rover and the last control inputs. The DNN then predicts the expected error 

in the state prediction for the next time step and is repeated for the whole horizon. For faster 

prediction and use in optimization, the mesh is stored as a frozen graph, achieving a prediction time 

of 10 µs for one time step. An even more detailed description of the method can be read in [11]. 

 

Figure 14: DNN for the system dynamics error prediction. 

As an alternative and advanced network architecture, an recurrent neural network (RNN) is used. This 

is a bi-directional network architecture with internal states. This architecture offers the possibility, for 

example through Long short-term memory (LTSM) layers, to consider past inputs or sequences in order 

to make a better prediction of the future system states. The goal of this architecture is to use the RNN 

part of the network to perform feature selection and prediction of the system behaviour. This part of 

the network should be trained offline with collected data sets, since the training of this layer takes a 

lot of time. The second part of the architecture consists of an FFNN and takes over the scaling of the 

fault prediction to the current environment of the system. This part will then be adapted online during 

runtime. 

4. Testing and demonstration results 

4.1. Demonstration: Perception – Semantic Segmentation 
To test the trained terrain segmentation network on real data collected by the rover LRU, we collected 

a dataset of LRU driving in the DLR outdoor lab. The network was than applied on the collected images. 

The following images show the results of the network. One can see that the terrain segmentation 

network is achieving quite good results on the collected data. It is also noticeable that different 

subclasses are correctly distinguished. For instance, different types of gravel, with fine or coarse gravel 

is separated. One notes that the network has some problems indefinitely the different classes in the 

distance. In further research it might therefore be interesting to incorporate the depth images or other 

modalities. Nevertheless, the segmentation network performs quite well in the near field, which is the 

most important for traversability analysis of a rover unit.  
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Figure 15: SegNet applied to recorded rover data. 

The terrain segmentation was deployed on the ML device of the LRU system. The LRU features a Jetson 

TX2. The terrain segmentation takes about 2.19 seconds for one inference pass. This value was 

calculated by averaging 100 forward passes. The network shows that it almost uses the entire GPU 

efficiently in performance capability as well as usable memory. Taking the velocity of the LRU into 

account, the segmentation network shows an appropriate performance. Future project may focus on 

reducing the necessary memory in order to run potential multiple ML tasks next to each other. 

4.2. Demonstration: Learning-based MPC 
The example Demonstration of the Learning-based MPC already shown in the Detailed System Design 

takes place in a defined scenario and procedure to isolate the improvement due to the implemented 

algorithm. The Demonstration is performed according to the setup already used and explained during 

the test campaign with the same Rover system and test facility configuration.  

The demonstration can be subdivided into the following steps: 

1. Ground truth drive with figure of eight trajectory and nominal MPC (Drive 1) 
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2. Train the RNN in the LB-MPC with data from Drive 1 

3. Open loop LB-MPC drive with a new trajectory (Drive 2) 

4. Closed loop drive with LB-MPC and the new trajectory (Drive 3) 

5. Train RNN with new data from latest drive  

6. Closed loop drive with the Newly trained RNN in the LB-MPC (Drive 4) 

4.2.1 Drive 1: Ground truth drive with figure of eight trajectory and nominal MPC. 
In the first test drive we used the nominal MPC without the learning-based part in the test facility to 

drive a simple figure of eight trajectory as reference and logged the data for training of the learning-

based module.  

 

Figure 16: Test of the learning-based motion controller module in overall system. With the commanded high-level velocities 
from the LB-MPC (blue, pink and purple), the commanded velocities of the low-level controller to the wheels (red, green and 
orange) and the estimate odometry from the rover (green, pink and cyan). The reference path provided from the planner (blue) 
and the measured path of the rover by the tracking system (yellow). The lower right figure shows the tracking errors calculated 
during the test drive, with the error in x-direction (red), in y-direction (green) and the overall absolute error (purple) compared 
to the reference path. 

After the successful test drive of 3 rounds, we trained the RNN with the recorded data. The training 

history of the RNN in Figure 66 shows the mean squared error loss during the training epochs of the 

training data set (with dropout) and of the validation dataset.  With the R2-Score for the training data 

set of 𝑅2 = 0.9149 and for the validation data set of 𝑅2 =  0.8967. This score indicates that the 

trained model is able to replicate the observed outcomes very well. The training of the RNN took about 

3 minutes on the rover hardware. 
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Figure 17: Training history of the RNN showing the mse on the training (with dropout) and validation data set over the 
training epochs. 

4.2.2 Drive 2: Open loop LB-MPC drive with a new trajectory. 
In the second test drive we used the learning-based MPC in open-loop configuration to drive another 

trajectory then in the first drive under same environment conditions. In the open-loop configuration 

of the controller, the RNN predicts the internal error states  𝑥̃ online, but the predictions are not used 

in optimisation problem. 

 

Figure 18: Prediction of the MPC error states 𝑥̃. The prediction is computed by the DNN for the next step in the prediction 

horizon. Including the prediction of the MPC 𝜉 error (red) and the measured 𝜉 error (blue) on the left side and bzw. the 
prediction of the MPC 𝜂 error (green) and the measured 𝜂 error (purple) on the right side 
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Figure 19: Test of the learning-based motion controller module in overall system with the open loop prediction of the RNN.  

 

4.2.3 Drive 3: Closed loop drive with LB-MPC and the new trajectory. 
In this test drive we used the learning-based MPC in closed-loop configuration to drive another 

trajectory then in the first drive under same environment conditions. In the closed-loop configuration 

of the controller, the RNN predicts the internal error states  𝑥̃ online and the predictions are used in 

optimisation problem. 

 

Figure 20: Test of the learning-based motion controller module in overall system with the closed loop prediction of the RNN.  
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4.2.4 Drive 4: Closed loop drive with the Newly trained RNN in the LB-MPC  
In the last test drive we used the learning-based MPC in the closed-loop configuration to drive the 

trajectory but with a new trained RNN with the data from drive 3. 

 

Figure 21: Test of the learning-based motion controller module in overall system with the closed loop prediction of the new 
trained RNN.  

Table 3: Root mean squared error of the test drives 2-4 in [m] with the RMSE calculated from the measured positions by the 
tracking system.  With the RMSE in x-direction (driving direction of the rover, the error in y-direction (lateral deviation of the 
rover from the desired trajectory and the overall error. 

 Ground truth  
(drive 2) 

Closed loop  
(drive 3) 

Closed loop trained  
(drive 4) 

RMSE x 0.3062 0.2075 0.1802 

RMSE y 0.0920 0.0335 0.0305 

RMSE Overall 0.3197 0.2102 0.2031 

 

In summary, it can be said that the overall trajectory tracking error improves by approx. 34% in relation 

to the reference (ground truth) drive and improves by 36% with additional online training. 

5. Final Review and Closure 

5.1. Conclusion and lessons learned. 
Robots have a great potential to realize future planetary exploration missions. However, with the use 

of robotics, new challenges emerge when deployed in distant planets. High communication delays, and 

direct controllability of the robot is impossible are some of the major problems. Autonomous 

navigation by using methods from the AI/ML field can be utilized for making a complex robotic system 

to move on an uncertain terrain win an unpredictable and kaleidoscopic environment. 

Main objectives of DeLeMIS were on one hand, Investigating AI/ML techniques for autonomous 

navigation and control of a planetary Rover on unknown terrain. Another main objective was the 
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assessment of added value by AI/ML in different modules of the software toolchain of a rover 

prototype. 

Main achievements of the project are listed as 

• Implemented developed software on a rover prototype and tested in closed loop including GSE. 

• Developed a simulation environment including relevant features such as wheel ground interaction to a 

satisfying degree. 

• Implemented AI/ML algorithms in the simulation as well as on the rover prototype and tested in laboratory 

environment.  

• Minimizing the tracking error despite unknowns and uncertainties by utilization of AI/ML for model 

knowledge improvement. 

• Improved perception and motion control of an autonomous planetary Rover by using advanced control 

methods combined with AI/ML techniques. 

In conclusion, the project was a success and the main objectives were reached. From the results, it can 

be stated that AI-enabled algorithms have a great potential to increase autonomy for space missions, 

especially for planetary exploration. It was demonstrated that such complex algorithms are able to be 

implemented on a relevant hardware setup and contribute to the performance of autonomous 

systems. It was also demonstrated that the online adjustments of the parameters using data, often 

referred to as online-learning, is possible and leads to improvements in the robot behaviour. The most 

significant effect, however, comes from the offline learning that is the tuning of the parameter using 

known information and simulations. Also, utilizing AI-enabled methods requires more resources 

onboard and may increase the calculation time for parts of the software. Considering the possible 

increase in the autonomy for a mission, usage of AI-based algorithms can be highly beneficial. This 

requires a proper development to higher TRLs, especially involving requirements engineering, testing 

and V&V, as well as FDIR.   

Some of the results created during this project were published in different peer-reviewed conferences 

[12] [13] [14]. 

5.2. Outlook and future work 
The path to the usage of AI-enabled algorithms in a real space mission to handle the autonomy is al 

ready outlined. On one hand, algorithms need to be further developed and improved for specific 

scenarios. Most importantly, methods for formal performance and robustness analysis shall be 

implemented and used.  

On the other hand, existing algorithms and the corresponding software shall be improved, tested, 

verified, and validated excessively. Analysis of the robustness as well as the V&V for such algorithms 

requires dedicated methods. There are already different approaches in the literature to testing and 

V&V for AI algorithms, which need to be investigated. 

Furthermore, as a future work and evolutionary progress is recommended introducing causal-AI to 

achieve a fault-tolerant and robust autonomous robotic system. The modern method of Causal-AI is 

already gaining attention in many branches of engineering and computer science and could offer a 

proper tool to approach formal analysis of complex and AI-enabled systems.  
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