

NIRCA Prototype ASIC Development for Large Format NIR/SWIR Detector Array

4000107615/12/NL/EL/fk

Final Presentation December 4, 2015

Integrated Detector Electronics AS Alf Olsen, Head of ASIC design group (CTO) alf.olsen@ideas.no

Content

Introduction NIRCA overview Achievements and validation Design tools and technology Project progress Next step

IDEAS

More than 100 different designs of integrated circuits for high energy, nuclear and astrophysics research.

We own all IP used in our circuits

Main market segments

- Space
- Science (Nuclear/High Energy Physics)
- Environmental monitoring
- Medical and biomedical

Number of Employees: 20

Technical team

- ASIC design: 7 team members
- System design & test: 7 team members

4

Products Solutions for radiation detection and imaging

Introduction

OEM Modules (OEM = Original Equipment Manufacturer)

We develop customized solutions for use with our ASICs, including embedded processors and systems.

Self contained R/O for the H8500C multi-anode photomultiplier tube

Data acquisition card used in a gamma camera for medical diagnostics. Reads 12280 CZT pixels for gamma ray spectroscopic imaging in a camera for medical use.

Application Example, Space ASIC Development

The PLAsma and SupraThermal Ion Composition (PLASTIC) experiment on the STEREO mission.

Customer: NASA IDEAS delivered ASIC for read out of detectors of the spectrometer. Launched 2006

SuperAGILE an X-ray monitor of AGILE

Customer: Italian Space Agency (ASI) devoted to observations for astrophysics in the

gamma ray energy range 30 MeV-50 GeV.

Application Example, Space ASIC Development, NASA, AMS2 on ISS

The Alpha Magnetic Spectrometer on the International Space Station

Launched on the last NASA Endeavour Space Shuttle mission to the ISS in 2011.

IDEAS delivered about 2000 ASICs for the readout of the silicon charged particle tracker. In total several 10000 channels of preamplifiers.

The experiment is visible above the truss on ISS.

In orbit operation since summer 2011

Space missions

Mission	Operator	Launch	Instrument utilizing IDEAS ASICs
SWIFT	NASA	2004	BAT gamma-ray telescope and spectrometer
CREAM	NASA	2004-2010	Several balloon flights
AMS/AMS02	NASA	1997 / 2011	Charged particle tracker
PAMELA	INFN	2006	Charged particle tracker
STEREO	NASA	2006	PLASTIC, Particle and ion Spectrometer
Super AGILE	INAF-IASF INFN	2007	Gamma ray spectrometer
Chandrayaan-1	ISRO	2008	HEX, High Energy gamma and x ray spectrometer
FOXSI	NASA	2014	X ray telescope/spectrometer
ASIM	DNSC	2016	MXGS, Miniature X- and Gamma-Ray Sensor, an X and gamma ray spectrometer
CALET	JAXA	2015	CALorimetric Electron Telescope
ASTRO-H	JAXA	2016	SDG Soft Gamma Ray Imager HXI Hard X-ray Imager
BepiColombo	ESA/JAXA	2016	MPPE instrument on MMO, BERM radiation monitor ELENA instrument
EDRS-C	ESA	2016	NGRM, Next Generation Radiation Monitor, electron and proton spectrometer. This instrument is also under consideration for MetOp-C, EuroStar and Euclid.
DAMPE	CAS	2016	DArk Matter Particle Explorer. High energy calorimeter and tracker.
JUICE	ESA	2022	Rad-Hard Electron Monitor for JUICE. Electron and proton spectrometer.
Polar	CAS	na	Gamma ray spectrometer using multi-anode photomul- tipliers.

NIRCA

Project purpose and objective

Integrated Detector Electronics AS (IDEAS) has in Contract No. 4000107615/12/NL/EL/fk,

"Prototype ASIC Development for Large Format NIR/SWIR Detector Array",

developed an Application Specific Integrated Circuit (ASIC) for data acquisition and control of Mercury cadmium telluride focal plane arrays.

This development was part of a series of developments that aims to culminate in the availability of a flight quality 2k×2k large-format NIR detector hybrid with a single chip controller.

The ASIC is fabricated in AMS 0.35 μm CMOS process.

Programmable Sequencer

Custom instruction set.

- 8192 instructions (ECC-RAM).
- 8 nested loops.
- 8× Digital inputs.
- 32× Digital waveforms and 8x control outputs. 256x32b wave vector table (ECC-RAM).

Interfaces

SPI programming interface.SPI direct bridge to remote unit.2×200 Mbps upstream LVDS (8b/10b).IRQ for exception, sequencer messages.

Analogue Acquisition

4× 12-bit, 2 Msps SAR ADCs.
Programmable gain.
3× direct single-ended analogue inputs.
4× muxed single-ended analogue inputs.
Simultaneous ADC sampling.

Analogue monitoring

1× 12-bit, 2 Msps SAR ADC.
Programmable gain.
4x differential or
8x single-ended inputs (muxed).
Internal temperature sensor.
Ext. resistance measurement capability.

Bias and supply generation

16× ext. voltage output (16× 10-bit DACs).
2× 1.8V LDO regulators for ext. use.
2× 3.3V LDO regulators for ext. use.
Internal temperature stable V & I reference.

Analogue inputs (image data)

- 3 channels with single-ended inputs
- 1 channel with 3 muxed single-ended inputs
- Reference to VDD, VSS or programmable value from a 10 bit DAC (0.65 V 1.65 V)
- References and signals are interchangeable
- Programmable gain: 1x, 2x, 4x, 8x, 16x

Analogue inputs, auxiliary channel (monitor signals)

- 4 muxed differential inputs: Any combinations of TEMPP[3:0], TEMPN[3:0]
- Internal monitor signals: Temperature, BIASO
- Reference to VDD, GND or programmable value from a 10 bit DAC (0.65 V 1.65 V)
- References and signals are interchangeable
- Programmable gains: 1x, 2x, 4x, 8x, 16x

Each TEMPP[3:0] can source 25 µA current Each TEMPN[3:0] can sink the return current - while sensing the voltage

Analogue inputs

Switch Capacitor preamplifier

- Voltage gain = C_{FB}/C_{IN} $\Delta V_{out}(t_n) = -C_{FB}/C_{IN}[\Delta V_{in}(t_n-T/2)]$
- Multiplexing do not add serial resistance.

Analogue to digital converter

- Resolution: 12 bit
- Type: Successive approximation register (SAR)
- Feedback DAC is a weighted capacitor charge redistribution (MSBs) in combination with thermometer coded resistor string (LSBs)

Analogue to Digital Converter

IDLE	User contr.	The ADC is inactive
PRG	1 tclk	Removal of charge of all internal capacitors in the signal paths
AZ	1 tclk	Auto zero offset cancellation is performed. VCM is established
SAMP	1-8 tclk	Sampling of the input signals is performed
CONV	12 tclk	Bit decisions and converging up on the correct digital value
EOC	1 tclk	Indication of when the digital output is valid

Voltage references and biases

- 8 Voltage references
- 8 now noise voltage biases

Programmable output voltage by individual 10 bit DACs.

Power supply for ROIC

- Two 3.3 V low dropout (LDO) regulators
- Two 1.8 V regulators

Input: Unregulated voltage from 3.4 V to 3.6 V

Output: Low ripple and low noise 3.3V and 1.8V

Internal power regulators

- Four low dropout (LDO) regulators
- Input: Unregulated voltage from 3.4 V to 3.6 V
- Output: 3.3 V, Low ripple and low noise
- Internal power to onchip voltage reference

Voltage regulators

- Programmable output range: 3.0 V 3.4 V
- Inactive states
 - High-Z: Output transistor is turned off. High output impedance. Regulator is powered down
 - Bypass: Output transistor is fully on without regulation. Low resistive path from input to output.

Sequencer architecture

Sequencer instructions

			Bit-fields								
Short	Code		Parameters/Values	5	Comment						
LDC	000	[11:0] = Loop	Counter Value		Load Loop Counter (LC)						
n.u.	001x				Reserved, Current effect is NOOP						
CALL	0100	PCYCLE	[9:0] = ADDR		Store IP&LC on stack + Jump.						
JUMP	0101	n.u.	[9:0] = ADDR		Jump to address						
JUMPC	0110	n.u.	[9:0] = ADDR		Conditional jump to address						
РОР	0111	n.u.	n.u.		Restore IP&LC from stack						
LOOP	1000	n.u.	[9:0] = ADDR		Loop to ADDR, or continue if LC==0						
LOOPP	1001	n.u.	[9:0] = ADDR		Loop to ADDR, or return (restore IP&LC from stack) when LC==0						
LDV	1010	SYNC	[9:8] byte-sel	[7:0] value	Load Vector Register with value.						
LDREG	1011	[10:8] REG#		[7:0] value	Load internal register with value, see Table 24.						
MOVV	1100	SYNC	[7:0] = INDEX	•	Move 32-bit vector from Vector RAM to Vector Register. INDEX is row-index in Vector RAM.						
MOVD	1101	n.u.	[7:0] = Data		Bus Write. Moves Data to BAR:AR (Base-Address, Address)						
NOOPC	1110	SYNC	[7:0] = Counter		Do NOOP (Counter+1) times. Using Sync means that the NOOPC counter runs on the SYNC-counter frequency.						
NOOP	1111	n.u.	n.u.		No operation. Single cycle.						

Registers

REG	# Name	Width	Comment
0	BAR	4:0	Upper byte of address for MOVD command.
1	AR	7:0	Lower byte of address for MOVD command.
2	CR	7:0	8 bit compare register for JUMPC command.
3	ACQR	7:0	Analogue and digital acquire sample commands. Accessible on system bus at address 0x0016.
4	ASELR	1:0	ADC3 source selection. Accessible on system bus at address 0x0017.
5	Reserved	5:0	Reserved. Not used. Not connected. Writable from sequencer, may be used for debug. Accessible on system bus at address 0x0018.
6	USERIRQ	5:0	Set User IRQ flags (Flag IRQ message to external system)
7	SP	2:0	Stack pointer (set/reset of stack pointer as clean-up)
	LC	11:0	Loop counter value.

Digital sampler

Two test-cards

- Interconnection to instruments and signal conditioning (LAB-FEC)
- Interface NIRCA (ACB)

Connectors to a ROIC on the ACB enable testing of the entire IR detection chain.

Channel gain and full input scale

- ADC histogram at the output
- Presicion DMM at the input

Gain Setting	Measured Gain	Measured Gain	Gain Drift	
	@ 110 K	@ 300 K	(ppm/K)	
1	0,942	0,952	60	
2	1,639	1,655	50	
4	2,822	2,841	35	
8	4,495	4,525	35	
16	6,615	6,651	29	

Preamp and ADC

Upper plot: DNL vs. ADC code at low sample rate

Lower plot: Max DNL vs sample rate. Parameter is the duration of the ADC sampling phase.

("max" and "min" refer to positive and negative errors)

Preamp and ADC

Upper plot: INL vs. ADC code at low sampling rate.

Lower plot: Max INL vs sample rate. Parameter is the duration of the ADC sampling phase.

3.5 LSB is < 0.1 % of full scale

Preamp and ADC

Frequency response

Gain 1 (top right

Gain 16 (bottom right)

ENOB vs sample rate (below)

ADC results form test vehicle

Sample rate: 642 ksps

INL and DNL starts to increase above 1 Msps

3.3 V LDO

2015/12/04

NIRCA - Final Presentation

The 3.3 V LDO transient response shows a small overshoot, but no ringing.

Green trace: Load current 150 mA step

Blue trace: Resulting 4 mV drop at the LDO output.

Power dissipation vs. System clock

Top: 30 °C to 35 °C

Bottom: 92 K to 100 K

0

10

20

30

40

50

60

SYS_CLK (MHz)

70

Current drain per power domain

Top: 30 C to 35 C Bottom: 92 K to 100 K

Instruction SRAM tests

Algorithm	# R/W	SYS_CLK	DVDD	VDDIO	Value, Lab	Value, Crvo	Value, Crvo
						(Room)	$(77^{\circ}K)$
Random	10000	40 MHz	3.4 V	3.4 V	N/A	PASS	N/A
Random	10000	40 MHz	3.35 V	3.35 V	N/A	FAIL	N/A
Random	10000	40 MHz	3.35 V	3.3V	PASS	N/A	N/A
Random	10000	40 MHz	3.3 V	3.3 V	FAIL	FAIL	FAIL
Random	10000	40 MHz	3.25 V	3.25 V	N/A	N/A	PASS

DVDD [V]												300) K	DVD	D											77	7 K	
3,6	PASS	FAIL	FAIL	FAIL	FAIL	FAIL	FAIL	[\ 2																				
3,55	PASS	FAIL	FAIL	FAIL	FAIL	FAIL	FAIL	3												/ /								
3,5	PASS	FAIL	FAIL	FAIL	FAIL	FAIL	FAIL	3,5			/ /		//							/ /								
3,45	PASS	FAIL	FAIL	FAIL	FAIL	FAIL	FAIL	3			/ /		/ /							/ /								
3,4	PASS	FAIL	FAIL	FAIL	FAIL	FAIL	FAIL	3,4 2			//		//			//				/ /								
3,35	PASS	FAIL	FAIL	FAIL	FAIL	FAIL	FAIL	3		DASS	DASS	DACC	EAU	EAU	EAU	DASS	EAU	EAU	EAU									
3,3	PASS	FAIL	FAIL	FAIL	FAIL	FAIL	FAIL	3,3 2		DV22	DVCC	DASS	DASS	DASS	DASS	DV22	DASS	DASS	FAIL									
3,25	PASS	PASS	PASS	PASS	FAIL	3.2	5 PASS	FAIL																				
3,2	FAIL	3,2	2 PASS	FAIL																								
3,15	FAIL	3 1	5 PASS	FAIL																								
3,1	FAIL	3,-	1 PASS	FAIL																								
3,05	FAIL	3.0	5 PASS	FAIL																								
3	FAIL	0)0	3 FAIL	FAIL	FAIL	FAIL	PASS	PASS	FAIL	FAIL	FAIL	FAIL	FAIL															
2,95			/	/	/	/	/	/	/		/	/		2.9	5 FAIL													
2,9			/	/	/	/	/	/	/		/	/		_/-	9 FAIL													
2,85				/			/		/			/		2.8	5 FAIL													
2,8					/	/	/	/	/			/		2	8 FAIL													
2,75				/	/		/	/	/		/	/		2,7	5 FAIL													
2,7														2	7 FAIL	/	/											
	10	15	20	25	30	35	40	45	50	55	60	65	70	SYS_CLH												/	/	SYS
															10	15	20	25	30	35	40	45	50	55	60	65	70	[MH

Vector SRAM tests

Algorithm	# R /W	SYS_CLK	DVDD	VDDIO	Value, LAB	Value, CRYO (Room)	Value, CRYO (77°K)
Random	10000	40 MHz	3.3 V	3.3 V	PASS	PASS	FAIL
Random	10000	40 MHz	3.25 V	3.25 V	N/A	N/A	PASS

DVDD [V]											30	00	Κ		dvdd [v]												77	К	
3,6	PASS	FAIL	FAIL	FAIL		3,6																							
3,55	PASS	FAIL	FAIL	FAIL		3,55		./	./		./		./	./		./		./											
3,5	PASS	FAIL	FAIL	FAIL		3,5																							
3,45	PASS	FAIL	FAIL	FAIL		3,45																							
3,4	PASS	FAIL	FAIL	FAIL		3,4																							
3,35	PASS	FAIL	FAIL	FAIL		3,35	PASS	PASS	PASS	FAIL	FAIL	FAIL	FAIL	PASS	FAIL	FAIL	FAIL	FAIL	FAIL										
3,3	PASS	FAIL	FAIL	FAIL		3,3	PASS																						
3,25	PASS	FAIL	FAIL	FAIL		3,25	PASS																						
3,2	PASS	FAIL	FAIL	FAIL	FAIL		3,2	PASS																					
3,15	PASS	FAIL	FAIL	FAIL	FAIL	FAIL	FAIL		3,15	PASS																			
3,1	PASS	PASS	PASS	PASS	PASS	FAIL		3,1	PASS																				
3,05	PASS	PASS	PASS	FAIL		3,05	PASS																						
3	FAIL		3	PASS																									
2,95												/	/		2,95	PASS													
2,9		./	./							/	./	./	/		2,9	PASS													
2,85									/		/	/	/		2,85	PASS													
2,8					/		/					/	/		2,8	PASS													
2,75									/			/			2,75	PASS	FAIL	FAIL											
2,7		/	/	/	/	/	/	/	/	/	/	/	/		2,7	PASS	FAIL	FAIL	FAIL	FAIL									
,.	10	15	20	25	30	35	40	45	50	55	60	65	70	SYS_(10	15	20	25	30	35	40	45	50	55	60	65	70	S١

Internal reference voltage vs temperature for R_{REF} 18k Ω

Bias voltages

Comments Range less than 3 V / 1024

Bias Voltages

Reference voltages

DAC 7 and 8 have about 2x gain

Missing power routing to 6 out of 8 reference modules (DAC and buffer), and the Vref generator creates IR drop for these.

2 of the modules get higher VDD than the Vref generator and higher current which reach max output with a low input code.

The 6 get VDD via guard ring - the missing power was therefore not detected by LVS.

Refrence votages INL and DNL at 300 K and 77 K

Radiation tests

Triple modular redundancy (TMR) data Flip-Flops (DFF) on test vehicle 200 bit shift registers.

Radiation tolerance

SEL LETth > 135 MeVcm²/mg SEU LETth 50 MeVcm²/mg

Operating temperature

-196°C to +50°C

HIF beam at Universitè Catholique de Louvain

Non-compliances

- 2 of the 8 Bias voltage has limited code range
 Missing power routing, "powered" via latch-up guard rings.
- Channel gain lower than expected
 Parasitic capacitance and low loop gain in preamplifier.
- ADC DNL 1 bit
 - Caused by a parasitic capacitance connected to the 7th bit.
- 1.8 V regulator outputs rises to input voltage (3.6 V) in reset state
 Missing clamp on output transistor gate.
- Internal regulator cannot power the digital core running at clock rates above 25MHz
 New rate specs was not followed by updated regulator specs.
- Low digital power tolerances
 - Tight voltage adjustments compensates for small time margins during RAM read.

Analogue Design

 Tanner EDA S-Edit v16.2 for schematic design : Synopsys Hspice for simulation: Tanner EDA L-Edit v16.2 for manual layout: 	Good Good Good
 Tanner HiPer DRC LVS v16.2 for verification: Tanner HiPer PX v 16.2 for parasitic extraction: 	OK, but too slow for full chip verification. Did not work with AMS 0.35
 Modelling NanGate Library Characterizer for standard cell charact 	rerization: Good
, Digital simulation	
Mentor ModelSim DE 10.1 d for functional verification	a: Good
Synthesis	
 Incentia DesignCraft for synthesis including DFT: T 	OK, but likely not with the best result. wo critical bugs, quick response fixed these bugs.
Place & route, and verificationTanner EDA Place and Route:	Not Good, but could be used on small modules. Caused delay.
We sub-contracted the P&R and post-layout verification of The subcontractor used Cadence Encounter EDI for P&R. a	^t the digital core. nd Conformal for Equivalence checking.
Mentor Calibre DRC, LVS:	Very efficient and easy to use.
PCB Design	
• Zuken Cadstar EDA for board level design:	Good

New ASIC design flow

ASIC manufacturer: Austria Microsystems (AMS), AG located at Tobelbader Strasse 30, A-8141 Unterpremstaetten, Austria

Process: C35 B4O1 **0.35µm** process at Austria Microsystems, AG.

- Our experienced very good support with regard to design documents.
- Flexibility regarding process options.
- The lead time is guaranteed to 8 week, we received the chips after 7 weeks.

Project progress

Milestones

Milestone	Planned	Achieved
Kick off	01.03.2013	01.03.2013
Preliminary design review (PDR)	29.09.2013	27.09.2013
Detailed design review (DDR)	20.01.2014	25.03.2014
Test readiness review (TRR)	16.06.2014	16.04.2015
Tape out review (TOR)		16.06.2014
Test review board (TRB)	01.09.2014	07.10.2015
Final presentation (FP)	01.11.2014	04.12.2015 (Planned)

Phase 3

	Sofradir NGP	Sofradir Jupiter MW	Selex ME930 ROIC	CEA LETI CL103 ROIC	ESA AO8295 NIR/SWIR
Number of pixels	1024*1024	1280*1024	2056*2048	648*520	2048*2048
Nominal readout rate	30Hz	120 Hz	30FPS?	2.5 Hz	40FPS
Number of video channels	4/8 Pseudo-diff.	4/8	16/32	8	32
Required sampling speed	8Msps	20Msps	8Msps/4Msps		6Msps
Datarate (bit/s) per output	1.10E+08	5.51E+08	1.11E+08		7.34E+07
Datarate (bit/s) total	4.40E+08	2.20E+09	1.77E+09		2.35E+09
Num. of required control signals	5	?	4+SPI	13	
Number of digital output signals (from ROIC to ASIC)	3	?	4	?	
Number of references/biases required (to ROIC)	5	?	1	15+6	<24
Digital signal voltage	VIL: 0V VIH: 2.75V	?	VIL: 0V VIH: 3.3V VOL:0.4V VOH: 2.65V	VIL: OV VIH: 1.8V	
Supply voltages	VSS: 0V VDD[1-3]: 2.75V VREF: 1V VAB: 2.75V	?	VDD[1-4]: 3.3V	AVDD: 3.3V VDD_IO: 3.8V DVDD: 1.8V	

A question mark indicate that the information is not available to IDEAS.

Proposed architecture

- Samplings rate: 12 Msps
- 16 channels:
 16 differential inputs at full rate
- 2:1 input mux: 32 differential inputs at ½ rate
- ADC resolution: 14 bits
- Analogue reference outputs: 8
- Power outputs: 6
- Digital inputs: 8
- Digital control signals and clocks: 8
- 6 high speed data channels
- SPI control interface

High speed data channels to be considered.

NIRCA-V2 requires 2.4 Gbps in total (2k x 2k, 30 fps, 16 acquisition channels, 8 Msps) Propose 6 TX channels at 400 Msps

For further discussions

- 8b/10b encoding
- SpaceWire
- SpaceFibre

SPI interface

SPI is not required if SpaceWire of SpaceFibre is selected (2-way)

Might want to implement an SPI bridge to ROIC.

► DESIGN CONFERENCE ADC Pipe line ADC 2013 Architectures, Applications, Resolution, Sampli 202202202202 ng Rates principle 24 INDUSTRIAL MEASUREMENT 22 DATA ACQUISITION Σ-Δ HIGH SPEED 20 INSTRUMENTATION, RESOLUTION VIDEO, IF SAMPLING, 18 SOFTWARE RADIO 16 SAR 14 PIPELINE APPROXIMATE STATE-OF-THE-ART (2013)Residue S/H 100k 10M 100M 10 100 1k 10k 1M 1G DAC SAMPLING RATE (Hz) ADC ANALOG DEVICES V Stage 2 Stage M Stage 1 n+m+_+k Digital encoding and correction Out

Other input to specifications

Band gap reference Well defined temperature voltage reference. Absolute temperature .

Internal PLL ?

TX-clock provided by the ASIC requires a PLL (upscaling system clock). Radiation tolerance is maybe relaxed due to the communication system EDAC algorithms.

Control signal and fine tuning?

Delay line made from a chain of inverters can provide fine tuning of the clock phases during readout of i.e. CCDs.

Thank you for your attention

BACK-UP

Voltage references and Biases

