HgCdTe Avalanche Photodiode Detector with >2 um Cut-off Wavelength

ESA/ESTEC Contract 21751/08/N/EM

Andrew Ashcroft 23/11/2011

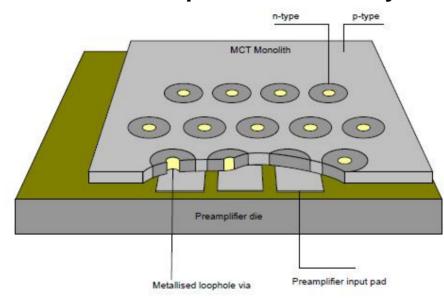
Objectives of Contract

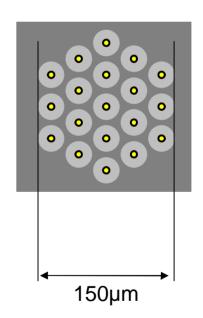
- Design and manufacture a mercury cadmium telluride (MCT) avalanche photodiode (APD) detector that meets a set of performance criteria suitable for a LIDAR receiver
- Design and manufacture a suitable pre-amplifier circuit for the MCT APD such that the MCT APD/Pre-amplifier combination meets a set of performance criteria suitable for a LIDAR receiver
- Test and characterise the MCT-APD and pre-amplifier to an agreed test plan

Why use MCT for Avalanche Photodiodes?

- Near-ideal single-carrier cascade avalanche
 - "almost noiseless" gain in the pixel
- Composition-tuneable bandgap suitable for many IR wavelengths

Introduction – Performance Criteria


Summary of Performance Demands


Parameter	Value
Operating wavelength	2051 nm
Detector quantum efficiency	> 70%
Active area diameter	> 150µm
Excess noise factor (F)	<1.5
Operating temperature	> 200 K
Input signal/dynamic range.	minimum: 8000 maximum: 2E6
Bandwidth	>20 MHz
NEP	< 100 fW/√Hz
Gain stability	0.1% rms.
Linearity	5% rms
Total ionizing dose	5 krad (Si) minimum
Proton irradiation	1E10 p/cm2

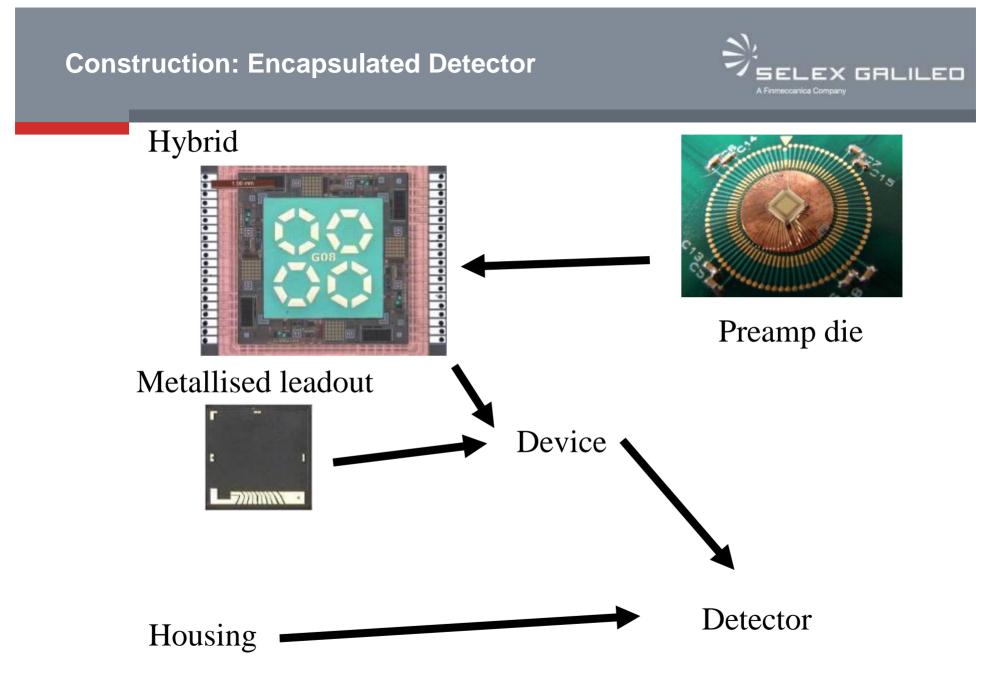
Construction: Avalanche Photodiode

Approach: CMOS TIA hybridised directly with a standard "loophole" diode array

19 Elementary loophole diodes coupled in parallel to form 150um hexagonal pixel

Description and Overview

HOUSING



OUTPUT RIBBON CABLE

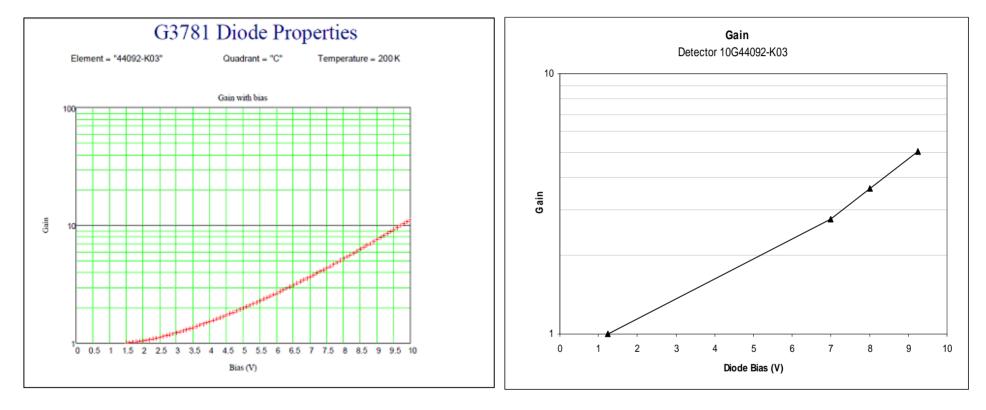
Encapsulated Detector

- APD thermoelectrically cooled to 200K
- Standard "loophole" diode hybridisation
- Military-qualified encapsulation

HgCdTe Avalanche Photodiode Detector with >2 um Cut-off Wavelength

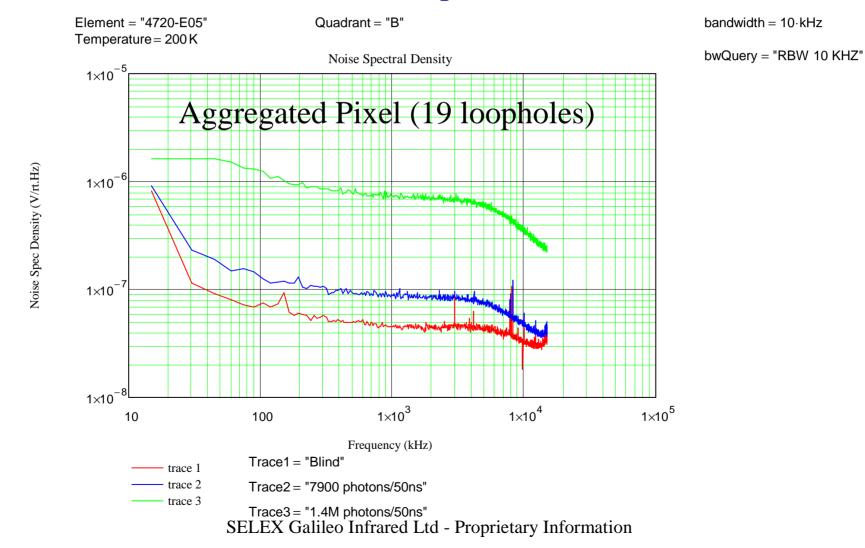
APD Performance Characteristics

Performance Summary



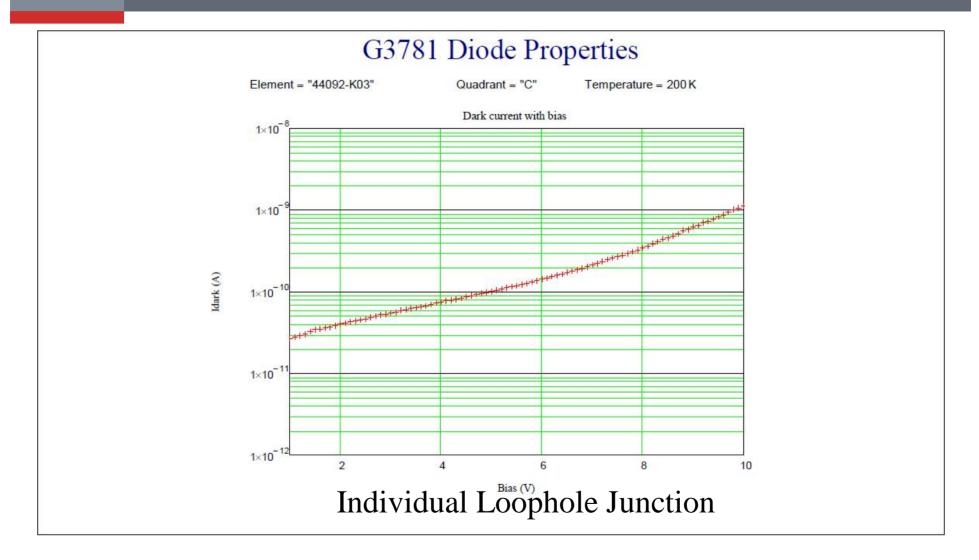
Summary Conditions:

Low flux:	7.9kphotons/50ns/pixel from 1000K Blackbody Source
Avalanche Bias:	9.25 ± 0.05 Volts reverse bias
Signal Frequency:	500Hz (mechanical chopper)
Noise frequency:	500kHz (10kHz measurement bandwidth)

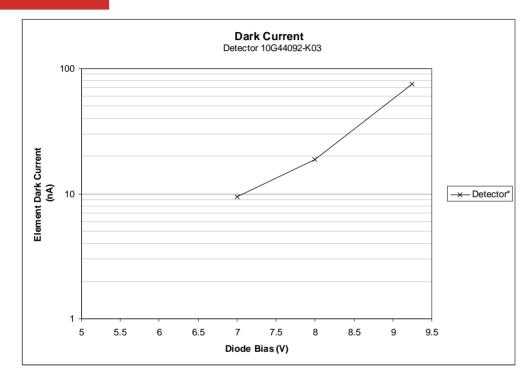

Device Identity	Low Flux Signal	Low Flux Noise	White Noise (No flux)	Low Flux QE*	NEP
	mV	nV/√Hz	nV/√Hz	-	fW/√Hz
4720-Е05	6.84	73	54	1.02	63
4721-G08	6.02	164	70	0.93	87
44092-L01	7.11	112	54	0.89	58
44092-M01	6.63	114	65	0.87	74
44092-I02	9.65	245	150	0.94	120
44092-J02	7.90	161	82	0.83	83
44092-K01	6.20	96	52	0.92	65
44092-K03	7.20	130	62	0.89	69

Individual Loophole Junction

Aggregated Pixel (19 loopholes)


G3781 Diode Properties

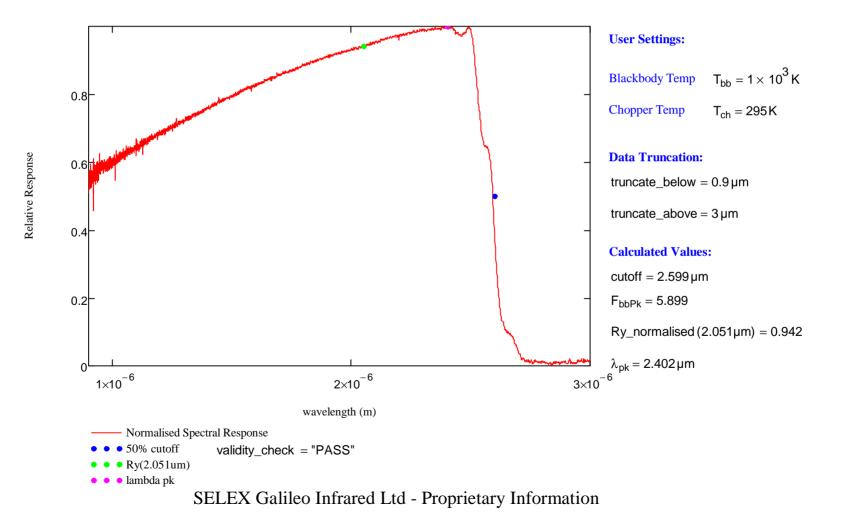
Output Noise

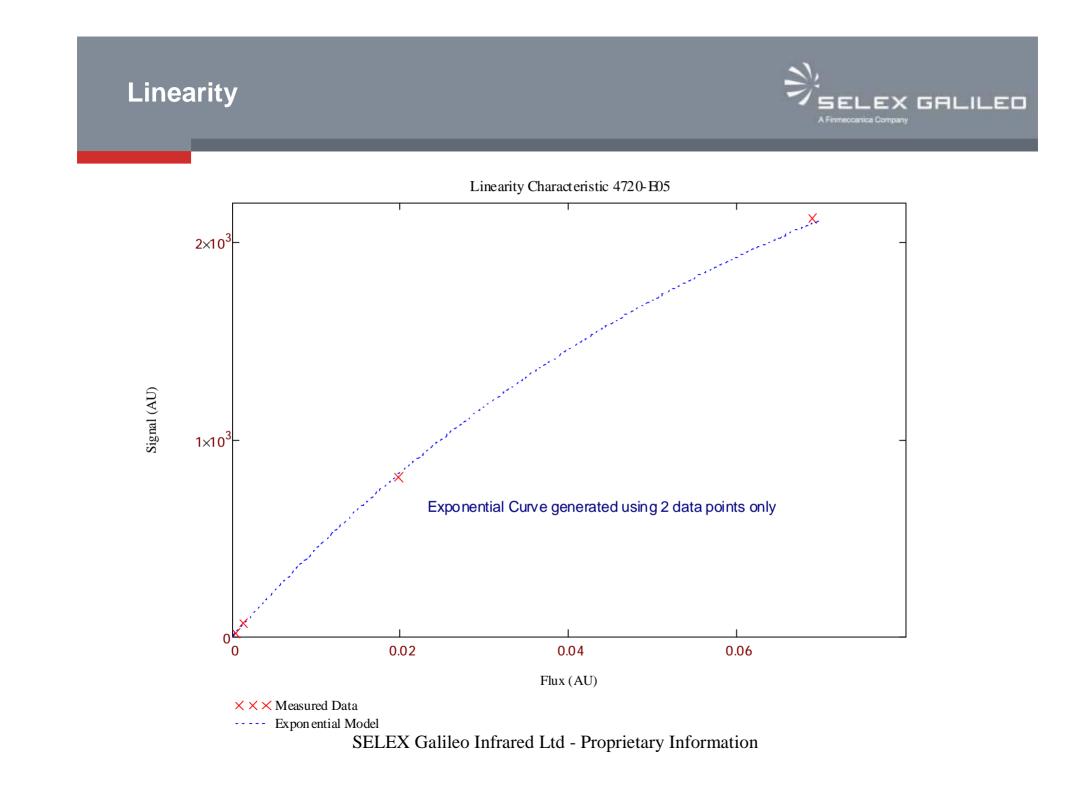

Dark Current: Elementary Junction

Dark Current: Whole Pixel

Aggregated Pixel (19 loopholes)

Element Dark Current at 9.3V bias (nA)	Before Radiation	After Radiation
4720-E05	38	47
4721-G08	160	160
44092-L01	170	170
44092-I02	880	860
44092-J02	500	430


Impact of Radiation Exposure Aggregated Pixel (19 loopholes)


Spectral Response

G3781 Spectral Response

Array_ID = "44092-K01" Quad = "B(Stack)"

Other Characteristics

Parameter	Value	Comments
Noise Factor (of avalanche gain, M)	1.45	At 200K, 9.3V reverse bias. Dependent on frequency. Best estimate from measurement data
Bandwidth	>20MHz at -3dB Max slew rate 55V/µs	At 200K Limited by preamplifier. Adjustable
TIA Input Dynamic Range	0-40µA	At 200K Inclusive of dark current contribution. Adjustable
TIA Output Dynamic Range	3.7V	At 200K
Supply voltages	6V positive supply -8V bias supply	Nominal values

HgCdTe Avalanche Photodiode Detector with >2 um Cut-off Wavelength

Radiation Testing

Total Ionising Dose

Facility:ESTEC Co-60, Noordwijk, NetherlandsDose rate:2.5 krads/hr (approx)Condition:Powered, biased, room temperatureTime between irradiation and test:15 days

44092-L01		5kRad (Si)			4720-Е05		10kRad (Si)		
	Before	After	Change	Units		Before	After	Change	Units
Signal	7.11	6.22	12%	mV	Signal	6.84	6.24	9%	mV
Noise (Low Flux)	112	111	1%	nV/√Hz	Noise (Low Flux)	73	75	3%	nV/√Hz
Noise (Blind)	54	52	4%	nV/√Hz	Noise (Blind)	54	40	26%	nV/√Hz
Gain	6.64	5.85	12%	-	Gain	5.56	5.29	5%	-
Cut-off	2.583	2.574	0.3%	μm	Cut-off	2.618	2.614	0.2%	μm
NEP	58	63	-	fW/√Hz	NEP	63	50	-	fW/√Hz

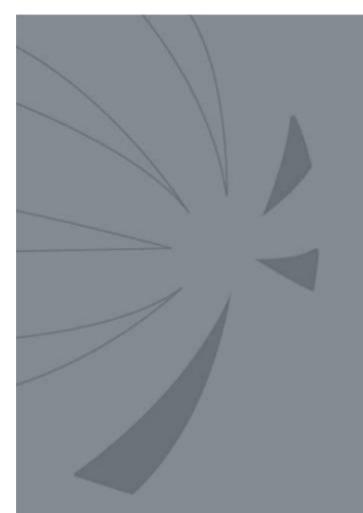
Proton

Facility:	PSI, Villigen, Switzerland
Dose rate:	1×10^{10} protons/cm ² , 3×10^{10} protons/cm ² (10MeV eq.).
Condition:	Unpowered, room temperature
Time between irradiation and test:	57 days

Device ID: 44092-I02

Dose: $1 \times 10^{10} \text{ p+/cm}^2$, 10MeV eq.

Device ID: 44092-J02


		_		
	Before	After	Change	Units
Signal	9.65	12.8	32.9%	mV
Noise (Low Flux)	245	219	10.6%	nV/\sqrt{Hz}
Noise (Blind)	150	94	37.5%	nV/\sqrt{Hz}
Gain	8.49	11.3	33.3%	-
Cut-off	2.57	2.595	1.0%	μm
NEP	124	57	-	fW/√Hz

Dose: 3 >

Dose: $3 \times 10^{10} \text{ p+/cm}^2$, 10MeV eq.

	Before	After	Change	Units
Signal	7.9	11.2	42.1%	mV
Noise (Low Flux)	161	115	28.7%	nV/√Hz
Noise (Blind)	82	54	33.8%	nV/√Hz
Gain	7.9	11.0	39.0%	-
Cut-off	2.611	2.612	0.0%	μm
NEP	83	38	-	fW/√Hz

The study suggests that there have been no detrimental effects to EO performance or dark current. The change in performance is believed to be an artefact of measurement variability and drift.

HgCdTe Avalanche Photodiode Detector with >2 um Cut-off Wavelength

Conclusion

- •"Novel" approach of hybridising diode directly to TIA preamplifier has been successful
- Device is sensitive to primary wavelength (2.051µm) but also suited to other wavelengths (1.3µm to 2.2µm)
- •The device exceeds the key performance criterion (NEP<100fW $\sqrt{\text{Hz}}$)
- •Most other performance criteria achieved (though some not fully demonstrated)
- •Manufacturing method for diode established. Viability of manufacturing demonstrated yields sustainable
- •Encapsulated detector designed (and available for breadboard activities)
- •Exploitation of device in LIDAR system yet to be demonstrated