QinetiQ Proprietary

Contract 4200022947/10/NL/CP Near Infrared Large Format Sensor Array

Final Presentation Meeting European Space Agency 3 November 2010

Agenda

Introductions

Progress on Actions

Contractual Matters

Review of Technical Progress

WP1 Detector Requirements Analysis WP2 Test Plan Development WP3 MCT Material Demonstration WP4 Thinning Development Review of Deliverables Review of Project Plan Risks Any Other Business Summarise Actions and Decisions Approval and Sign-off of Minutes

Update on Emerging Technologies Future

QinetiQ is still exploring opportunities for some or all of the capabilities of the Emerging Technologies Group to continue in some other form

Bids have been received formally and are being reviewed

The consultation period is due to complete on 18 November

It is probable that work on this and other projects can continue until then subject to facilities remaining in place and operational

Actions from Review Meeting – 22 September 2010

No	Action	Action on	Target Date	Status
3.1	Contact ESA Contracts Officer to notify change of PM.	QinetiQ (JB)	30/09/10	Complete
3.2	Contact ESTEC about the advance payment	QinetiQ (JB)	30/09/10	Complete

Review of Technical Progress

- WP1 Detector Requirements Analysis
- WP2 Test Plan Development
- WP3 MCT Material Demonstration
- WP4 Thinning Development

Technical Progress - Introduction

- Based on QinetiQ's hybrid technology
 - Design and fabrication of reticle-stitched ROICs
 - MBE growth of buffer layers onto silicon
 - MOVPE growth of MCT doped layers
 - Mesa pixel formation
 - Flip-chip bonding
 - Phase 1 & 2 low temperature testing at QinetiQ
- Phase 2 testing performed at RAL
 - Experience of testing NIR Detectors

QinetiQ Proprietary

WP1

Detector Requirements Analysis

WP1 – Introduction to Requirements Analysis

Aims of work package

- Record requirements in Detector Requirements Specification Document (TN1)
 - Inputs from Statement of Work and Kick-off Meeting
- Generate Detector Development Plan 2 Part Document
 - Based on review of requirements relative to current status
 - Generate preliminary detector design elements
 - Part 1 development required to meet goals of phase 1 of programme
 - Part 2 development required to meet goals of phase 2 of programme

WP1 - Initial Design Elements 1

Photon Energy (eV)

Sze, S. M., *Physics of Semiconductor Devices*, John Wiley and Sons, N.Y., 1981.

QinetiQ

WP1 - Initial Design Elements 2

Effect of Cadmium Telluride Absorption

- Absorption coefficient appears to be less than 100 cm⁻¹ over range of temperatures
- Suitable for window layer in structure
 - Ideally this should be conducting
- Buffer layers of a few µm should not be a problem

W.C Dash and R. Newman, "Intrinsic Optical Absorption in Single-Crystal Germanium and Silicon at 77 K and 300 K", Phys. Rev. 99(4), 1151-1155, 1955.

WP1 - Pixel Design

Layer structures (see next slides)

- Standard design for n-on-p structure
- Alternative design using grades

Pixel layout

- Mesa structure
- Minimum etch depth
 - Maintains high fill-factor

WP1 - Ungraded n-on-p Device

Ideally conducting x=1: p-type layer for common

• Shallow mesa etch to maintain quantum efficiency

WP1 - Graded n-on-p Device

Main advantage: lower composition material is needed, easier doping

Main disadvantages: greater complexity: longer diffusion distance

QinetiQ

WP1 - Field-assisted diffusion

$$l_{diff} = \sqrt{\frac{kT}{q} \frac{w}{\xi_{eff}}}$$
$$\xi_{eff} = \frac{\partial E_{cb}}{\partial x}$$

Carriers can diffuse sideways during the time taken to reach the junction

- Maximum lateral diffusion estimated from bands
- Effective fields
 - Window region: 1400 Vcm⁻¹
 - Absorption region: 160 Vcm⁻¹
- Lateral diffusion
 - Window region: 0.4 μm
 - Absorption region: 1.1 μm

May be useful to include small grade in standard structure

 Growth of graded structures is discussed in growth section

QinetiQ Proprietary

WP1 - Dark Current

Linear model suggests most of the current will be generated in the depletion region

- Current depends on trap density and properties
- Dark currents will be measured and compared with model and used to monitor progress towards target current

QinetiQ Proprietary

WP2

Test Plan Preparation

WP2 – Test Plan Preparation

Aims of work package

- Record test plan in MCT Demonstration Test Plan Document (TN3)
 - Inputs from Statement of Work, Kick-off Meeting and review meeting

WP3

MCT Material Demonstration

- Material Growth
 - MBE Buffer Growth
 - MOVPE MCT Growth
- Detector Fabrication
- AR Coating
- Testing

WP3 - Material Growth

- From modelling have 2 options for materials structure
- Single x layers only

1.E+18

1.E+17

1.E+16

1.E+15

1.E+14

Concentration (cm⁻³)

• Incorporating x grade

n-type dopant

Depth (µm)

2

QinetiQ

0

QinetiQ

WP3 – 3" Buffer Growth MBE process

- Growth of buffer layer between Si and MCT
- Ultra high vacuum process
- Source materials evaporated from heated crucibles contained in cells
- CdTe, ZnTe, Zn, Cd, Te used as source materials
- Shutters turn beams on and off

WP3 - Buffer Growth Tasks

- Write a specification and order buried oxide (BOX) releasable Si substrates
 - Complete
- Grow a stock of standard II-VI buffers on standard Si
 - Complete
- Grow standard buffer layer on BOX Si substrates
 - Complete
 - Start with method for growth on standard Si and modify as necessary to achieve good growth
 - Complete, no modification necessary
 - Build up a stock of buffers on BOX substrates suitable for CMT growth
 - Complete
- Grow II-VI buffers on GaAs as risk mitigation should Si removal be difficult
 - In progress

QinetiQ Proprietary

WP3 – Buffer Growth on BOX Si substrates

- Quality of Si substrates readily revelled by growth of buffer layer *
- BOX substrates were variable in quality
 - Best are excellent (right) (~70% are of this standard)
 - Worst one (left) was awful

QinetiQ

- Several had been thinned too much (centre) in some areas but were otherwise OK

Hails, J.E., Keir, A.M., Graham, A., Williams, G.M., Giess, J. (2007) Journal of Electronic Materials, 36, 864

WP3 – Transmission of Buffer Layer on BOX Substrate

- Layers on Si show regular fringes
- BOX substrate and buffer on BOX show uneven fringing
- Modelling allows fit of MBE on BOX...
 - fringe spacing to Si thickness of ~11040nm
 - beats to a SiO₂ thickness of 3400nm
 - buffer layer to 2.7 2.8 um

QinetiQ

Transmitance

WP3 - Modelled Transmission of Buffer on BOX Si Substrate

QinetiQ Proprietary

MCT growth on II-VI buffered Si

WP3 - 3" MOVPE MCT Growth

II-VI buffer on Si

QinetiQ

WP3 - MOVPE MCT Growth

WP3 - MOVPE MCT Interdiffused Multilayer Process (IMP)

- Grow thin HgTe and CdTe layers
- Layers interdiffuse during and at end of growth
- Total number of layer pairs controls total thickness
- Composition controlled by relative thickness of HgTe and CdTe
- QinetiQ patented process

Ref: J. Tunnicliffe, S.J.C. Irvine, O.D. Dosser and J.B. Mullin, J. Cryst. Growth 66, 245, (1984).

WP3 - MCT Growth Tasks

- Grow individual layers of proposed device structure for 0.8 2 µm operation separately onto standard buffered Si substrates
 - Demonstrated that the composition is correct for the individual layers
 - Dopant activation assessed by comparing SIMS and electrical results
 - Growth conditions have been modified to improve activation at the correct composition for all individual layers
- Grow MCT device structure to the requirements of the device design on standard buffered Si substrates
 - Assessed using SIMS and FTIR spectroscopy for doping profiles, composition and uniformity
 - Modified growth process to achieve good control of the growth of the device structure
- Grow the CMT device structure on buffered BOX substrates, including wafer assessment and modification of process as necessary
- Supply standard and BOX wafers for fabrication
 - Complete

QinetiQ

WP3 – MCT Growth Composition

- X-ray measurements based on average lattice parameter of the layer.
- x-value calculated from x-ray assuming Vegard's law and end-point lattice parameters
 - HgTe: a0 = 6.4615Å , CdTe: a0 = 6.4810Å.
- Samples with x from 0.39 to 0.68 agree with Chu equation to better than error in x (+/-0.02)
- Significant difference for the highest x sample
- The second highest x sample looks slightly shifted.
- Critical cut-off part of the structure is quite close to the Chu curve.

WP3 – MCT Growth Doping Activation – p-type (Arsenic)

- Dopant activation is approximately 50% in the absorbing layer
- Not possible to make good electrical contacts to the layers with higher x

Sample	M504(B573)	M533(B622)	M536(B624)	M548(B677)	M550(B673)
x	0.220	0.654	0.748	0.850	1.000 (CdTe)
Hall carrier conc (cm ⁻³)	6x10 ¹⁶	2x10 ¹⁶	3x10 ¹⁶		
SIMS conc (cm ⁻³)	1x10 ¹⁶ to 4x10 ¹⁶	3x10 ¹⁶ to 8x10 ¹⁶	6x10 ¹⁶	~ 2x10 ¹⁸	
Activation	>100%	25 - 67%	54%		
		Approx x of absorbing layer		contacting difficulties	Awaiting results

QinetiQ Proprietary

WP3 – MCT Growth Doping Activation – n-type (Iodine)

 Dopant activation is approximately 100% in the contact layer

Sample	M505(B588)	M519(B605)	M520(B607)	M525(B611)
x	0.310	0.450	0.400	0.530
Hall carrier conc (cm ⁻³)	9.7x10 ¹⁵	4.0x10 ¹⁶	5.8x10 ¹⁶	7.5x10 ¹⁵
SIMS conc (cm ⁻³)	1.1x10 ¹⁶	4.5x10 ¹⁶	6.8x10 ¹⁶	7.5x10 ¹⁵
Activation	88%	89%	85%	100%
				Approx x of contact layer

QinetiQ Proprietary

WP3 – MCT Growth of Ungraded Structure

QinetiQ

WP3 – MCT Growth of Individual Graded Layer

- Designed structure may require use of composition grades with constant doping level
- Demonstrated MOVPE system can be used to deliberately grade alloy composition

WP3 - MCT Growth of Graded Structure

WP3 - MCT Growth of Graded Structure

WP3 - MCT Growth of Graded Structure

• Device results indicate junction involving 0.74 material (corresponds to nucleation layer)

WP3 - MCT Growth Wafer Summary

	Graded structure	Ungraded structure
Standard	M538 (SIMS)	M549 (SIMS)
SI	M546 (fabrication development)	M554 (lowest x = 0.6)
	M556	M557
BOX Si	M547	M555 (lowest x = 0.6)
substrates	M564 and M565 (graded	M558
	undoped nucleation layer)	M563
	NI566 (graded As doped nucleation layer)	

WP3 - Detector Fabrication Tasks

- Photomask design Complete
 - Includes 128 "leadout" arrays with 18µm to 400µm device sizes
 - Includes a 1280x1280 18µm pitch array
- Mesa etch depth defined in modelling (2µm) calibration Complete
- Wafer run to test and amend process flow Complete

"leadout" part of the photomask design

Mesa etch depth calibration

WP3 – Detector Fabrication Wafer Summary

	Graded structure	Ungraded structure
Standard Si	M556 – In Progress (due 8 th Nov)	M554 - Complete
		M557
BOX Si	M547 – Complete and Testing	M555 – In Progress (due 8 th Nov)
substrates	M564	M558
	M565	M563
	M566	

2x wafers to be chosen to fabricated without passivation (start 8th Nov)

WP3 - Anti-Reflection Coating

WP3 - Anti-Reflection Coating

- QinetiQ AR coating facility has now been closed down
- External company identified
 - Their modelling data looks good
 - Test samples sent
 - Expect test deposition w/e 12th November 2010
 - Evaluate test samples
- Plan for 2x hybrid sample runs

WP3 – Testing

Parameter	Value
Operating Temperature	80K to 140K
Cut-on Wavelength	< 0.8µm
Cut-off Wavelength	> 2.1µm
Dark Current	0.5 fA/cm ²
Quantum Efficiency	≥80%

This test plan has been designed to demonstrate that the MCT material meets the Phase 1 requirement specification

WP3 - Phase 1 MCT Detector Test Set Up

MCT detector performance will be evaluated using leadout hybrid arrays

- MCT detector test chip is bump bond hybridised to a silicon leadout substrate
 - Test chips have a range of detector sizes
- Hybrids are glued to a ceramic carrier and fitted into a liquid nitrogen cryostat
- Individual detectors characterised over the required temperature range of 80K to 140K

Detector size (μm x μm)	Capacitance (fF at 0.5V)
18	32
30	89
50	247
100	988
200	3951
400	15802

QinetiQ Proprietary

WP3 - Cold Finger Components

QinetiQ Proprietary

WP3 - Cold Finger Assembly

WP3 - Ceramic Carrier

Wire bond configurable ceramic carrier

- Direct connection to detectors for radiometric measurements
- MOSFET buffer circuits for dark current measurement
- Up to four MCT detectors can be characterised at a time
- Thermal drift measurement using dummy channel with 15pF ceramic capacitor

WP3 - Test Equipment Setup

Sample mounted in low noise liquid nitrogen cryostat with sapphire window

WP3 - Radiometric Characterisation

- Detector wavelength response will be characterised using a Fourier Transform Infra Red (FTIR) spectrometer
- Absolute response will be measured using a calibrated black-body source
- Measured values will be used to generate quantum efficiency data as a function of wavelength
- Data will be used to measure cut-on and cut-off wavelength at 50% QE max

WP3 - Dark Current

Test circuit has the same configuration as a SFD pixel circuit

Built using chip MOSFETS assembled on a ceramic carrier with metal / wire bond interconnects

Reconfigurable by changing bond out so that different measurement techniques can be assessed

WP3 – Test Summary

Test arrays are characterised over a temperature range of 80K to 140K using a liquid nitrogen cryostat

Measurement include

- Cut-on and cut-off wavelengths (50% QE max)
- Quantum efficiency
- Dark current

Ceramic is initially configured for radiometric measurements

 Radiometric measurements will be carried out using a calibrated Perkin Elmer spectrometer and calibrated blackbody sources

Ceramic is then reconfigured for dark current measurements

 Calibrated source-measurement units (SMU) together with on cold finger MOSFET circuits will be used to measure dark current

UNCLASSIFIED

Initial results showed that cut-off was approximately correct.

Colours correspond to different elements

Measurements to 1.0 µm

- Massively increased response in SW region
- Signal in SW region is opposite polarity from signal near cut-off
- Signal changes sign at 1.3 µm
 - Corresponds to composition x~ 0.74

Location of Inverse Signal

- Composition in design is mainly < 0.71
- The growth is started with a nucleation layer of higher x material which is nominally undoped
 - However, this could be ntype giving a npn transistor-like structure

Suspected Cause of Negative Signal

n-type nucleation layer accidentally forms part of structure

- Photons with wavelength shorter than 1.3µm will get absorbed in this layer.
- Photo-generated holes will diffuse into common layer from full area of device – very large area detector.

Possible solutions

QinetiQ

- Add p-doping to nucleation layer
- Etch off nucleation layer + passivate

Initial circuit configuration for dark current measurements

- External voltage source used to charge detector
- Voltage discharge monitored using MOSFET source follower
- Identical channel with capacitor instead of detector is used for reference

- Detector and capacitor channel are charged up to ~2V and allowed to discharge
- Plot shows voltage on detector and reference capacitor
- Detector/capacitor voltage derived from output voltage and MOSFET source follower transfer characteristics

WP3 - Conclusions on First Device QC796

Spectral results

- Main junction is approximately at the correct wavelength
- However, SW results are being confused by the presence of an unintentional second junction in the structure
- Plan to repeat with p-doping in nucleation layer

Dark current results

- Still being assessed but may be leaky due to shorting from passivation
- Layer without passivation is in progress to test this

QinetiQ Proprietary

WP4

Thinning Development

WP4 - Thinning Development Tasks

- Decide on the best etch chemistry Complete
 - Initial etchant was TMAH
 - Confirmed that the buffer layers were not etched
 - The room temperature etch rate was too slow
 - KOH identified as a better etchant
 - Demonstrated a reasonable etch rate
- Establish a "leadout" protection process Complete
 - A glue/wax combination has been developed to protect the hybrid
 - Further development would be required for larger detectors
- Confirm whether BOX substrates are required Complete
 - Buffer layers are readily etched
 - Buried oxide layer confirmed as an etch stop
- Thin final hybrids In Progress

QinetiQ Proprietary

Review of Project Plan

Revised Gantt Chart

ID	Task Name											
0		Feb '10	Mar '10	Apr '10	May '10	Jun '10	Jul '10	Aug '10	Sep '10	Oct '10	Nov '10	Dec '10
0												
1	WPU Management											
2	Meetings and Deliverables											
15	Management											
16	Project and Technical Management					1	1		:	;	ļ	
17	WP1 Detector Requirements Analysis											
22	WP2 Test Plan Preparation											
24	WP3 MCT Material Demonstration											1
25	Device Design			30/03				1				
26	Risk 2 Design does not meet detector performance							09/08				
27	MCT Growth											
28	Buffer Growth and Analysis on Standard Si Substrates x15	8	-						31/08			
29	Buffer Growth and Analysis on Releasable Si Substrates x15	8							31/08			
30	CMT Growth and Analysis on Standard Si Substrates x10	8								14/	10	
31	CMT Growth and Analysis on Releasable Si Substrates x10	8	<u></u>								29/10	
32	Risk 1 Mitigation Use GaAs substrates as alternative to Si										19	9/11
33	MCT Device Fabrication	1		—		1						
34	Mask Design and Process Flow	·				9 07/06						
35	Array Fabrication x10	1				Ā	.			<u> </u>	19	9/11
36	Anneal x20	1									1!	9/11
37	Hybridisation	1				I	1	-	:	1		
38	Leadout Fabrication	1								<u> </u>	08/11	
39	Hybridisation	1								_	1!	9/11
40	AR Coating	<u> </u>			:		1	-		1		1
41	Coating Development		11	3/03								
42	Hybrid Coating EM supplier											26/11
43	Testing	<u> </u>	-			1		-		1	·	1
44	Setup Test Equipment				0	04/06			<u> </u>			
45	Testing			L		-				-		26/11
46	Write MCT Material Demonstration and Test Report TN4	1										26/11
47	Update Detector Development Plan TN2	1										26/11
48	WP4 Thinning Development		1	1		1		-		-		
49	Set up Equipment		1	16	/04							
50	Thinning Experiments							<u> </u>		23/09		
51	Thinning hybrids										19	9/11

Phase 1 Deliverables

Documents

Identifier	Document Title	Delivery Date	
TN1	Detector Requirements Specification	REV-2 weeks	Complete
TN2	Detector Development Plan	REV-2 weeks	Complete, to be updated
TN3	MCT Material Demonstration Test Plan	REV-2 weeks	Complete
TN4	MCT Material Demonstration Design and Test Report	FP1-2 weeks	Still to write
SR1	Phase 1 Summary Report & Abstract & Technical Data Package	FP1-2 weeks	Still to write
PR1-PR8	Progress Reports	Monthly	Complete

Hardware

Item identifier	Description	Delivery Date	Quantity
HW1	MCT Material Demonstration Test Structures	FP1	1 off

To be delivered

Payment Plan

Milestone	Description	Date	Payment in EUROs	%age
MS1.1	Kick-off Meeting	TO	€104,673	35
MS1.2	Project Review	T0 + 4 months	€164,486	55
MS1.3	Completion	T0 + 10 months	€29,907	10

QinetiQ Proprietary

Update of Risks

Revised Risk Table

Risk	Mitigation			
MCT dark current requirement cannot be achieved.	Use previous QinetiQ NIR data in the device modelling.			
	Feed experimental results back into the model.			
Degradation of MCT material quality when growing	Initially use standard silicon substrates to verify MCT quality.			
on substrates with buried oxides.	Use buried oxide substrates manufactured from the QinetiQ standard silicon starting materials.			
The substrate thinning process degrades the MCT.	Use QinetiQ standard protection process. Grow on GaAs substrates			
Insufficient uniformity of MCT material quality over the FPA size when using the buried oxide substrates.	Use buried oxide substrates manufactured from the QinetiQ standard silicon starting materials.			
Scaling the detector size down from the bulk material value to 18 µm degrades the dark current.	Modify the passivation process to improve any surface leakage effects.			
Scaling the silicon substrate thinning process to the size of the FPA.	Modifications to the glue protection and multiple etch phases are anticipated to achieve the uniformity.			
	Use alternative silicon etching options e.g. XeF ₂ .			
A ROIC design or manufacturing failure.	Extensive modelling and verification.			
	Hold part-finished batches at the foundry to allow problems to be identified and corrected.			
	Consider reticle stitching throughout the design process.			

QinetiQ Proprietary

www.QinetiQ.com

