

(Thinkeed ned company

NIR Large Format Sensor Array

5

Final Presentation

3rd April 2014 (updated 24th April 2014)

OUTLINE OF PRESENTATION

- Phase 1 Review
 - Programme aims
 - Phase 1 results
 - PV work prior to phase 2
- Phase 2 Objectives
- ROIC

Selex ES A Finmeccanica Company

- Design
- Characterisation
- Radiation test
- MCT
 - Thinning
 - MCT design
- Test results
- Summary

PROGRAMME AIMS

Phase 1

Selex ES

- Demonstration of MCT with:
 - Spectral response 0.9 2.0 µm
 - High QE
 - Low dark current
- Using an existing small read out IC

Phase 2

- Extension of MCT to large area and fine pitch
 - <0.1e- /pixel/s dark current at 100K
- Design and fabrication of a large area readout IC including
 - >512 x 512
 - 15µm pitch
 - Low noise
 - High gain/low well capacity

MCT DESIGN CHALLENGE

At the start of phase 1

Selex ES A Finmeccanica Company

- Standard detector design is:
- Narrow band absorber layer, defines cut-off wavelength
- Viewed through a wide band electrical common layer, defining cut-on
- Effective for cut-on down to ~1.4-1.5µm
- At wider band gaps, dopant is electrically inactive, becoming a trap
- As-grown MCT layer design illustrated
 - Designed to be etched after hybridisation to the ROIC
 - Etch through the MCT common layer
 - Etch stop within one diffusion length of the absorber
 - Low doping in the common layer, for longer carrier lifetimes
 - Composition gradient in the common, to produce an in-built field, to aid carrier collection

Selex ES

PHASE 1 RESULTS

Parameter	Target Value	Comments	Achievement	
			Iteration 1	Iteration 2
Operating temperature	$80 \le T \le 140 K$			
Cut-on wavelength	0.8 µm		1.45 μm	1.7 μm
Cut-off wavelength	1.9 – 2.0 μm	50% QE max.	1.9 µm	2.1 μm
Dark current	0.5 fA/cm^2	Over operating	0.09 e/p/s	0.34 e/p/s
	(0.018 e/p/s)	temperature range.	(80K, with mux	(80K, with
			glow)	mux glow)
Quantum efficiency	$\geq 80\%$	Over wavelength range.	Н 74%	H 21%
		With AR coating.	J 4%	J 1.7%
Persistence	(no target)	Double saturation	3 mins	

- 24µm pitch, 320X256
- High QE in H-band (~1.6µm)
- QE degrades at shorter wavelengths (J-band is ~1.25µm)
 - In iteration 1 the shorter cut-off leads to H band absorption nearer the junction, hence the higher QE values;
 - Major issue going forward into phase 2 was how to improve response at the shorter wavelengths;
 - Thinning of MCT necessary to bring absorption to within a diffusion length of the junction.

SELEX-ES FUNDED PV WORK BEFORE PHASE 2

• Two layers grown

Selex ES A Finmeccanica Compan

- Investigate shallower ramp compared to phase 1
- Note H-band is absorbed at x < 0.55, J-band at x < 0.76
- Higher x-contact layer to reduce generation at contact and volume of lowest x region
- Design for low dark current
- Dry vs wet etched mesas
 - Phase 1 used wet etch, dry required for LFNIR
- Spectral assessment on test arrays see next slide

Growth 2

STATUS AT START OF PHASE 2 Summary of PV work before phase 2 start

- Best result from further thinning of a phase 1 test array
 - But we are very close to etching down to the edge of the mesas

© 2014 Selex ES Ltd All rights reserved

Selex ES

© 2014 Selex ES Ltd All rights reserved

PHASE 2 OBJECTIVES

ROIC

Selex ES

- Design
- Procure
- Characterise

MCT

- Develop necessary processes:
 - Large area thinning trials
- Materials design aimed at improving diffusion lengths:
 - Reducing Cd mole fraction by using a shallower ramp
 - Reducing dopant concentrations
- Provide arrays for test at ATC
 - Preliminary screening at SELEX

Large Format Near Infrared ROIC – Key Features

Features:

Selex ES

- 1280 x 1032 format pixel array (1276 x 1024 active pixels)
- 4 reference rows top & bottom
- 2 reference columns left & right
- 15 μ m pixel pitch
- Internal or external pixel array reset control
- User programmable readout regions
- User programmable reset regions
- Reference output
- On-chip array reset current limiting circuit
- Radiation hardened digital standard cell library developed specifically for space applications
- -3v3 CMOS SPI digital interface

Large Format Near Infrared – Operating Modes

Readout modes:

Selex ES A Finmeccanica Company

- Non-destructive readout, Rolling Reset readout, Read-Reset-Read readout
- Rolling Reset Readout
- Read-Reset-Read readout
- Image capture modes:
 - Snapshot
 - Rolling shutter

Typical non-destructive readout operational flow diagram

A Finmeccanica Company

ROIC Performance Summary

	PARAMETER	DESIGN	TEST	SPEC	COMMENTS/CONDITIONS
	Active array size	1276 x 1024	-	512x 512+	4 reference rows top and bottom 2 reference columns left and right
	Power	<120mW <40mW	55mW 35mW	Low	32 output mode (80K) to 4 output mode (80K)
	Linearity	<1%	0.8%		Across maximum available pixel dynamic range (2.1V) at 80K. ROIC only
	Noise	40e- input referred, <8e- excluding kTC	<7e- <20e-	<18e- (CDS), <7e- (UTR)	25 non-destructive reads (80K) Single CDS (80K)
	Conversion gain	4.5µV/e-	6µV/e-		At 80K, including MCT
	Transfer gain	0.85	0.853		Single Source Follower readout chain (80K)
	Useful Pixel Dynamic Range	1.5V typical	1.4V		PRV = 2V (80K)
	Available Charge Handling Capacity	266ke-	235ke-	>60ke-	1.2V output dynamic range and 6μ V/e-conversion gain (80K)

100kHz readout frequency, PRV=2V, nominal supply voltages (3.3V & 5.0V)

Large Format Near Infrared – ROIC Characterisation

0.8% across available pixel dynamic range (2.1V)

Selex ES

A Finmeccanica Company

100kHz readout frequency, PRV=variable, nominal supply voltages (3.3V & 5.0V)

© Copyright Selex ES. All rights reserved

Large Format Near Infrared ROIC – Radiation testing

- This work was carried out under Selex ES funded PV
- Useful to help debug the test set-up
- ✤ Heavy ion test campaign

elex FS

Finmeccanica Compa

- No latch-up observed on digital supplies
- Analogue supply drew excessive current but this is expected to be due to increased leakage, not SEU effects.
- Test set-up did not allow for fast current transients on supplies to be accurately monitored
- ✤ Validated the digital library
- Testing will be repeated within the next 6 months

MCT LARGE AREA THINNING TRIALS

Used Merlin (1028 x 768 array at 16 μ m pitch, 16.4 x 12.3 mm active area) and Falcon (1920 x 1080, 12 μ m pitch, 23 x 13 mm active area)

Selex ES A Finmeccanica Company

LARGE AREA THINNING TRIALS

L= SE1 DHT= 20.0 KV MD= 27 mm 7HG= X 2.80 K PH010= 1

Good uniformity achieved

DESIGN

Selex ES

MCT Baseline Design

- $X \le 0.51$ throughout:
 - attempt to improve lifetimes;
 - H-band absorbed throughout structure.
- Reduced x at contact:
 - Ensure good dopant ionisation for reliable contact;
 - Barrier between contact and active part reduces influence of contact generation;
- 2 layers provided for processing
 - 5vg260 and 5vg292

5vg292

© 2014 Selex ES Ltd All rights reserved

TEST

Selex ES

Test capability

- Selex ES
 - ROIC transfer function;
 - Spectral response;
 - Functional temperature range;
 - Operability.

- The UK ATC
 - System gain;
 - Detector conversion gain;
 - Full well capacity;
 - Non-linearity;
 - Read noise;
 - Inter-pixel capacitance;
 - Dark current;
 - Reset effect;
 - Readout glow;
 - Persistence;
 - Electrical crosstalk;
 - Intra-pixel sensitivity measurement;
 - Modulation transfer function;
 - Quantum efficiency.

Selex ES

Spectral response and Thinning – small area test array

- As expected, initial response only from bottom of x-ramp;
- Thinning still required to $\sim 7\mu m$ to achieve shorter wave response.

5vg260 test array at various stages of thinning

Selex ES

Spectral response and Thinning –corner diodes of full sized arrays

- Initial results showed insufficient thinning
 - Misinterpretation of thinning guides
 - Thinning assessment by FTIR interference fringes developed
- 02605-04 supplied to ATC. Response after thinning to $\sim 7 \mu m$

- ATC array assessment:
 - 12.6% H-band,
 - 7.6% J-band;
- Possibly enhanced thinning near corners

Selex ES

Spectral response and Thinning –corner diodes of full sized arrays

• Array 02925-4 was returned from ATC for further thinning, target 6µm;

- These arrays aimed at detecting radiation from 0.8um to 2.1um. Need to thin the CMT down to ~7um by ferric chloride etching to get SW response.
- EBIC carried out to see if p-diffusion length is consistent with this CMT thickness.

• EBIC and SIMs plot scales adjusted to match.

- Junction location from EBIC coincides with that expected from SIMS plot.
- Diffusion length in p-region consistent with CMT thickness removal required to get short wave response.

Selex ES A Finmeccanica Company

Summary of Array Assessment at the ATC

Array	2605-05	2605-03	2605-04	2925-04	2925-04 reworked
QE K (%)	241			36 ¹	55 ²
QE H (%)	0.55	Low	12.6	1.2	33
QE J (%)			7.6	0.4	36
QE Z (%)					14
80K ldk (e/p/s) ³	0.02		0.43	0.1	
ldk (e/p/s) at (T)	230 (150K)			0.25 (100K)	
C (fF) ⁴	37		30	26	23 (13 ⁵)

^{1.} Estimate 1.95 – 2.15μm;

 $^{2.}$ Estimate K-band filter and 2.17 μm cut-off;

^{3.} Screening test, stray light potential;

^{4.} Ballast capacitors enabled;

^{5.} Ballast capacitors disabled

- Insufficient thinning given to 2605 -03 and 05;
- 2605-04 was thinner;
- 2925-04 returned for further thinning.

- Mid-band quarter wave coating;
 - Becomes reflective near cut-off

RESULTS - ISSUES

Single raw read

Selex ES

A Finmeccanica Company

- Subtracted out in CDS
 - Not integrated signal
 - Not glow
- Effect ~35ke⁻

© 2014 Selex ES Ltd All rights reserved

RESULTS - ISSUES CDS

• Noise levels

Selex ES A Finmeccanica Company

- O/p1, 21DN (61 e rms)
- O/p2, 12 DN (35 e rms)
- O/p3, 102 DN (296 e rms)
- O/p4, 15 DN (44 e rms)
- 2605-04 for comparison had 14, 112, 8 and 9 DN respectively.

2925-04

RESULTS - ISSUES

CDS noise

Selex ES

This variation between outputs has been investigated further:

- Exchanging outputs has shown that it is not an effect in the proximity electronics
- Different devices have shown different patterns, but none have had 4 quiet outputs
- This effect has been seen in the test array supplied to the ATC, which was a ROIC with no MCT hybridised
- There is some spatial non-uniformity on all four outputs, suggesting that the effect is present on all 4 outputs, but with a different characteristic frequency, as well as amplitude
- 2605-04 which showed a similar variability between columns had significant noise reduction associated with multiple non-destructive reads (at least on its 3 quieter outputs)

Selex ES A Finmeccanica Company

Deliverables - status

- Reports:
 - TN5 Preliminary design report issued;
 - TN6 Detector Test Plan issued;
 - TN7, TN7a Detailed Detector Design Report issued;
 - TN8 Detector Test Bench Description to be issued;
 - TN9 Detector Manufacturing Report draft;
 - TN10 Detector Test Report draft.
- Hardware
- Software

Selex ES

Successes

- Low nodal well capacitance, ~25fF with ballast capacitors on, ~15fF off
- High pixel yield almost all pixels are responsive
- Linear well capacity target met (75ke- compared with >60ke- target) with ballast capacitors enabled.
- Low dark current measured (<~0.1e⁻/pixel/s at 80K, 2.1µm cut off)
 - Possibly degraded by straylight
- CDS noise only slightly above specification (22e- cf 18e-) on best measurement, higher on other outputs. Some reduction is expected from a measurement with the ballast capacitance disabled. The excess low frequency noise from the ROIC may also be having an impact, even on the quietest channel.
- Non-destructive reads can reduce the noise of the best channels to below 5e-
- A new method of monitoring the etch depth, by FTIR, has been demonstrated and it gave the best results in terms of QE
 - Thinned structures have survived several cryogenic temperature cycles
- Flatter response in J-, H- and K- bands than achieved in phase 1

Issues

Selex ES

- A mask design issue, that connects device supplies via the MCT common, fixed for future devices by a mask change. A 'corner fix' has been used to break this connectivity on two of the existing devices
 - A revised ROIC processing mask design is already complete
- Excess low frequency noise on the ROIC outputs, varying greatly between ROIC outputs
 - New work package for ROIC noise to understand and identify the noise source
- Non-uniform output level on a single raw read. It isn't present in forced reset or after CDS
 - New work package to understand and identify cause
- Variable level and duration of a temporary drift following reset, in the opposite sense to the dark current. This measurement has not been made with the corner fix in place
 - New measurements will be undertaken as part of the CCN test programme
- Levels of QE achieved are at best about half the specification level in the Jand H-bands and lower in Z-band and achieving these levels requires very precise control of etch depth and uniformity
 - The main objective of the CCN is to improve the QE see separate presentation
- Although dark current result is above the specification, an alternative test method can be used to minimise straylight for tests at 100K
 - Testing at 100K is included in the CCN programme of work

Selex ES

Approach to Industrialisation

- Growth on large area low cost substrates
- Wafer scale MCT processing:
 - Up to 8 die per 75mm wafer;
 - Potential for 150mm processing in future.
- 150mm ROIC processing:
 - 30 die.
- Bump bonding individual die up to 10/day
- Batch processing for GaAs substrate removal (x5)
 - MCT thinning currently as individual die, could develop batch process;
 - Look at alternative structures which do not require MCT thinning for response down to 0.8 μ m. Morphology and interface issues to be resolved.
 - Option for Multi-Layer AR coating by external supplier in large batches
- Packaging
 - In a separate collaboration with e2V, we have demonstrated a development of their assembly approach for close-packed CCDs suitable for use with our detector chips
 - <3mm gaps between active areas on 3 sides

Selex ES

A Finmeccanica Company

Approach to Industrialisation

• Three-side close-buttable array packaged and assembled on a test card

Contract Change Note Work

<u>MCT</u>

Selex ES

- Growth and processing of $0.8\mu m$ to $2.1\mu m$ devices
 - Alternative approach proposed to remove the MCT thinning step
 - First wafer grown, processed and tested no improvement in QE
- Growth and processing of 0.8µm to 2.5µm devices
- Thinning of 2.5 um devices for response down to 0.4 um
- Screening and characterisation testing at the UKATC
- Option for growth and processing of a 24um on Saphira ROIC <u>ROIC</u>
- ROIC noise investigation