

Final Presentation AEPD2: IOM Activities

C. Bundesmann, C. Eichhorn, F. Scholze, D. Spemann, H. Neumann

Leibniz Institute of Surface Engineering (IOM)

Introduction

Outline

- Introduction
 - Tasks
- Diagnostic tools
 - Design
 - Performance characterization
- Results of test campaigns
 - 🖊 RIT-μX
 - SPT-100ML
- Summary

Tasks

- Design, manufacturing, performance characterization of diagnostic tool
 - Telemicroscope
 - Triangular laser head
 - Pyrometer
 - Thermocamera
 - Retarding potential analyzer
 - Faraday probe
- Design, manufacturing, performance characterization of diagnostic system
- Perform and analyze test campaigns
 - Thrusters: RIT-µX (ArianeGroup), SPT-100ML (ICARE)
 - Facilities: Jumbo (JLU), MVTF

AO/1-7077/12/NL/EM Final Presentation, ESA/ESTEC, December 14, 2017

3

4

Telemicroscope: Design

- Housing with graphite front plate and sapphire window
- 4 LEDs for object illumination
- Dimension 60 x 70 x 214 mm³
- Øperational test in air and in vacuum was performed successfully
- NOT specified for in-vacuum operation:
 Electronic parts had to be replaced
- Status: Ready for test campaigns

Telemicroscope

Telemicroscope: Performance characterization

Microscope image (lens 12.5x)

10 µm / 15 µm

Microscope images (lens 3.5x)

50 µm / 50 µm

20 µm / 20 µm

100 µm / 100 µm

- Calibration with test structures
 - Laser scribed line structures: characterization of lateral resolution
 - Graticule structure: image size and quality

Telemicroscope

6

ØN

Telemicroscope: Performance characterization

- Comparison of calculated performance data with experimental results (in dependence on extension tube length):
 - Working distance
 - Field of view
 - Lateral resolution
- Very good agreement
- Focal length: 50 mm
- Extension tube length: 40 mm
- Working distance: 112.5 mm
- Field of view: 8.75 x 6.56 mm²
- Lateral resolution: < 10 μm</p>

IØN

Laser head: Design

- Housing with graphite front plate and sapphire window
- Dimensions: 95 x 47 x 127 mm³
- Øperational test in air and in vacuum was performed successfully
- NOT specified for in-vacuum operation:
 - Electronic parts had to be replaced
- Status: Ready for test campaigns

Laser head: Performance characterization

- Calibration using a high-precision linear table (positioning accuracy 10 µm)
- Relative distance measurement (with respect to reference plane)
- // (Relative) distance accuracy: +/- 20 μm

TLH

Reference

plane

High-precision linear table

Pyrometer: Design

IØM

9

- Steel housing with sapphire window
- Dimension: Size 25 x 30 x 47 mm³

(compared to former AEPD-1: 300 mm / Ø 200 mm cylinder)

- Operational test in air and in vacuum was performed successfully
- NOT specified for in-vacuum operation:

Electronic parts had to be removed or replaced

Status: Ready for test campaigns

Pyrometer

10

Pyrometer: Performance characterization

/ Thermocalibrator Optris BR 400: $T_{max} = 400^{\circ}C$; accuracy < 2°C

Difference between set and measured temperature

(w/o sapphire window): $< 2^{\circ}C$

Window effects need to be corrected

AO/1-7077/12/NL/EM Final Presentation, ESA/ESTEC, December 14, 2017

ΙØΜ

IØN

Thermocamera: Design

- Housing with graphite front plate and ZnS window
- Dimension: 56 x 60 x 143 mm³
 (AEPD-1: diameter 150 mm)
- Øperational test in air and in vacuum was performed successfully
- NOT specified for in-vacuum operation:
 Electronic parts had to be replaced
- Status: Ready for test campaigns

Thermocamera

12

Thermocamera: Performance characterization

/ Thermocalibrator Optris BR 400: $T_{max} = 400^{\circ}C$; accuracy < 2°C

Difference between set and measured temperature

(w/o ZnS window): $< 10^{\circ}$ C

Window effects need to be corrected

AO/1-7077/12/NL/EM Final Presentation, ESA/ESTEC, December 14, 2017

IØM

B

RPA: Design

Graphite grid: 149 holes, hole diameter 0.4 mm, hexagonally arranged

- Dimension: 38 x 39 x 16 mm³
- Performance test of electronics was performed successfully
- Status: Ready for test campaigns

RPA design is simulated by using IBSIMU software

- RPA was tested with ion beam source (IOM)
- Voltage measurement done using a calibrated instrument
- Comparison with ESMS in progress

Faraday probe: Design

- Dimension: length 102 / 132 mm, diameter 6 / 24 mm
- Performance test of electronics was performed successfully
- Status: Ready for test campaigns

Preliminary characterization done with RIT-22

- Current measurement calibrated with constant current source
- Current measurement employs an accuracy resistance
- Probe area is measured with calibrated vernier caliper

Vacuum feedthroughs

- USB connectors: Telemicroscope, pyrometer, thermocamera
- BNC connectors: RPA, Faraday cup
- Customized Lemo connector: TLH

- All feedthroughs (including connectors and cables) manufactured and assembled
- Operational tests in air and in vacuum were performed successfully
- Status: Ready for test campaigns

17

18

System setup with RIT-µX

Diagnostic

arm 1

(fixed)

Diagnostic arm 2 (movable)

Positioning system

System

System setup (Diagnostic arms)

Thermoprobe (CAU)

RPA

ExB (Aerospazio)

Diagnostic arm 1 (fixed)

Faraday probe

TLH/Pyrometer

Thermocamera Telemicroscope Diagnostic arm 2 (y-axis)

21

List of performed measurements

	RIT-µX	SPT100-ML
Faraday probe	\checkmark	\checkmark
Retarding potential analyzer (RPA)	\checkmark	\checkmark
Pyrometer (Pyr)	Out of range	\checkmark
Thermocamera (ThC)	\checkmark	\checkmark
Telemicroscope (TMS)	\checkmark	\checkmark
Triangular laser head (TLH)	\checkmark	\checkmark

ΙØΜ

RIT-µX: Operation points

Operation Point 1

- Beam voltage: 1050 V
- Beam current: 4 mA
- Accelerator voltage: -200 V
- Nominal thrust: 210 μN

Operation Point 2

- Beam voltage: 1700 V
 Beam current: 8 mA
- Accelerator voltage: -250 V
- ✓ Nominal thrust: 540 μN

IØ

RIT-µX: Faraday probe

Operation Point 1

- Jumbo (JLU Gießen)
- Operation Point 2

// $j_{max} = 0.18 \text{ mA/cm}^2 \pm 0.02 \text{ mA/cm}^2
// FWHM = 48 \text{ mm} \pm 2 \text{ mm}$

- $j_{max} = 0.52 \text{ mA/cm}^2 \pm 0.04 \text{ mA/cm}^2$
 - FWHM = 41 mm \pm 2 mm

IØM

RIT-µX: Faraday probe

Operation Point 1

Operation Point 2

Scans at two distances: 120 mm / 150 mm

- Slightly higher current density in Jumbo (Gie) than in MVTF (Rap)
- FWHM very similar

RIT-µX: RPA

Operation Point 1

Jumbo (JLU Gießen)

Operation Point 2

RIT-µX: RPA

Jumbo (JLU Gießen)

Operation Point 1

MVTF (Aerospazio)

Operation Point 1

AO/1-7077/12/NL/EM Final Presentation, ESA/ESTEC, December 14, 2017 27

RIT-µX: Thermocamera

RIT-µX: Telemicroscope

Jumbo (JLU Gießen)

MVTF (Aerospazio)

Center hole diameter: (1.27 ± 0.02) mm

Cycle 1

RIT-µX: TLH

Jumbo (JLU Gießen)

SPT100-ML: Operation points

Operation Point 1

- Anode voltage: 300 V
- Anodic mass flow: 3 mg/s
- Cathode mass flow: 0.5 mg/s
- Current: 2.5 A

Operation Point 2

- Anode voltage: 300 V
 Anodic mass flow: 5 mg/s
 Cathode mass flow: 0.5mg/s
- Current: 4.5 A

ΙØΜ

SPT100-ML: Faraday probe

Jumbo (JLU Gießen)

Horizontal line scan across center of thruster

Asymmetric beam profile, higher current density at operation point 2

SPT100-ML: Faraday probe

Jumbo (JLU Gießen)

MVTF (Aerospazio)

ΙØΜ

SPT100-ML: RPA

AO/1-7077/12/NL/EM Final Presentation, ESA/ESTEC, December 14, 2017 ΙØΜ

Jumbo (JLU Gießen)

SPT100-ML: RPA

MVTF (Aerospazio)

Operation point 2

Jumbo (JLU Gießen)

= E_{max} = 269 eV ± 2 eV

IØM

SPT100-ML: Pyrometer

Operation Point 1

Good agreement between Jumbo (Gie) and MVTF (Rap)

Thruster temperature higher in operation mode 2 than in operation point 1

37

SPT100-ML: Thermocamera

Operation Point 1, right channel

- Good agreement between Jumbo (Giessen) und MVTF (Rapolano)
- Differences in linescans are not artifacts (see images)

IØM

SPT100-ML: Thermocamera

Operation Point 2, right channel

Good agreement between Jumbo (Giessen) und MVTF (Rapolano)

Differences in linescans are not artifacts (see images)

SPT100-ML: Telemicroscope

Inner ceramic wall

- Jumbo (JLU Gießen)
- Outer ceramic wall

39

IØM

Top edge of channel walls already eroded (axial erosion ~ 4.5 mm ± 1.0 mm)

40

SPT100-ML: TLH

Jumbo (JLU Gießen)

Publications

Summary

- C. Bundesmann, F. Scholze, C. Eichhorn, D. Spemann, H. Neumann, F. Scortecci, H.J. Leiter, K. Holste, P.J. Klar Proc. 35th IEPC, Paper IEPC-2017-441.
- F. Scortecci, D. Pagano, C. Bundesmann, C. Eichhorn, F. Scholze, D. Spemann, H. Leiter, H. Kersten, R. Blott, S. Mazouffre,
 P.J. Klar, D. Feili, J. Gonzales del Amo, Proc. 35th IEPC, Paper IEPC-2017-33.
- C. Bundesmann, C. Eichhorn, F. Scholze, D. Spemann, H. Neumann, F. Scortecci, H.J. Leiter, K. Holste, P.J. Klar, A. Bulit,
 K. Dannenmayer, J. Gonzalez del Amo, Procedia Eng. 185 (2017) 1-8.
- C. Bundesmann, C. Eichhorn, F. Scholze, D. Spemann, H. Neumann, D. Pagano, S. Scaranzin, F. Scortecci, H.J. Leiter, S. Gauter, R. Wiese, H. Kersten, K. Holste, P. Köhler, P.J. Klar, S. Mazouffre, R. Blott, A. Bulit, K. Dannenmayer
 Eur. Phys. J. D 70 (2016) 217.
- C. Bundesmann, C. Eichhorn, F. Scholze, D. Spemann, H. Neumann, D. Pagano, S. Scaranzin, F. Scortecci, H.J. Leiter,
 S. Gauter, R. Wiese, H. Kersten, K. Holste, P. Köhler, P.J. Klar, S. Mazouffre, R. Blott, A. Bulit, K. Dannenmayer, J. Gonzales del Amo, Proceedings Space Propulsion 2016, Roma, Italy, Paper SP2016_3124997.
- C. Bundesmann, C. Eichhorn, F. Scholze, D. Spemann, H. Neumann, F. Scortecci, H.J. Leiter, K. Holste, P.J. Klar, A. Bulit,
 K. Dannenmayer, J. Gonzalez del Amo, Proceedings Space Propulsion 2016, Paper SP2016_3124791.
- C. Bundesmann, C. Eichhorn, F. Scholze, H. Neumann, H.J. Leiter, F. Scortecci, Proceedings 34th IEPC, Paper IEPC-2015-392.
- D. Pagano, F. Scortecci, C. Bundesmann, C. Eichhorn, F. Scholze, H. Neumann, H. Leiter, H. Kersten, S. Gauter, R. Wiese,
 R. Blott, P.J. Klar, K. Holste, B. Meyer, S. Mazouffre, A. Bulit, J. Gonzales del Amo, Proc. 34th IEPC, Paper IEPC-2015-363.

41

Summary

Summary

- AEPD2 system design, manufactured and tested
- Diagnostic tools developed and performance evaluated
 - Optical measurements: telemicroscope, triangular laser head
 - Temperature measurements: pyrometer, thermocamera
 - Particle beam measurements: retarding potential analyzer, Faraday probe, active thermal probe
- System operated well at all test campaigns
 - Jumbo (JLU Gießen): RIT-µX & SPT-100ML
 - MVTF (Aerospazio): RIT-µX & SPT-100ML
- In general very good reproducibility of results within the same facility
- Comparison of results between different facilities shows "facility effects", for example from background temperature and pressure
- Deeper understanding the facility effects requires further studies
- For better quantification, window effects (Pyr, ThC) need to addressed in more detail

Appendix

Appendix

ΙØΜ

Telemicroscope

Telemicroscope: Sources of uncertainty

- Vacuum (lack of convection)
 - Can affect operation of electronics (maximum temperature 85° C), no problems encountered in test campaign
- Rise of temperature due to interaction with energetic particle beam
 - Thermal expansion of mechanical parts, e.g. extension tube length, minimal effect on performance and can be examined by calculation
- Contamination by sputtered material:
 - Can affect image quality, protect window if not in operation
- Setup:
 - Window in image path: no effect detected

44

Laser head: Sources of uncertainty

- Vacuum (lack of convection)
 - Can affect operation of electronics (maximum temperature 85° C), no problems encountered in test campaign
- Rise of temperature due to interaction with energetic particle beam
 - Thermal expansion of mechanical parts, e.g. window, can be examined by calculation (expected to be negligible)
- Contamination by sputtered material:
 - Can affect signal intensity,
 - no problems encountered in test campaign
- Setup:
 - Window effect: relative distance changes are measured accurately

Pyrometer

Pyrometer: Sources of uncertainty

- Vacuum (lack of convection)
 - Can affect operation of electronics (maximum temperature 85° C), no problems encountered in test campaign
- Rise of temperature due to interaction with energetic particle beam
 - Thermal expansion of mechanical parts expected to be negligible
 - Heated window can affect results: to be examined by calculation
- Contamination or erosion by sputtered material:
 - Can affect window and, hence, signal intensity: needs to be tested in additional test campaign, can be examined by calculation and experiment
- Test object:
 - Emissivity error: to be examined by calculation and experiment
- Setup:
 - Window effect: experiment and/or calculation

Thermocamera: Sources of uncertainty

Vacuum (lack of convection)

Thermocamera

- Can affect operation of electronics (maximum temperature 85° C), chip temperature can be read out from software
- Rise of temperature due to interaction with energetic particle beam
 - Thermal expansion of mechanical parts expected to be negligible
 - Heated window can effect results: to be examined by calculation
- Contamination by sputtered material:
 - Can affect window and, hence, signal intensity: needs to be tested in additional test campaign, can be examined by calculation and experiment
- Test object:
 - Emissivity error: to be examined by calculation and experiment
- Setup:
 - Window effect: experiment and/or calculation

RPA: Sources of uncertainty

- Vacuum (lack of convection)
 - No effect, electronics outside vacuum
- Rise of temperature due to interaction with energetic particle beam
 - Thermal expansion of grids: can be examined by calculation, influence on measured ion energy expected to be small
- Contamination by sputtered material:
 - No effect expected
- Electronics (measurements and/or manufacturer's data):
 - High voltage power supply
 - Isolation amplifier
 - Measurement resistor
 - Data acquisition module

ΙØΜ

Faraday Probe

Faraday probe: Sources of uncertainty

- Vacuum (lack of convection)
 - No effect, electronics outside vacuum
- Rise of temperature due to interaction with energetic particle beam
 - Thermal expansion of measurement area:
 - can be examined by calculation, expected to be negligible
- Contamination by sputtered material:
 - No effect expected
- Electronics (measurements and/or manufacturer's data) and setup:
 - Measurement area
 - Measuring resistor
 - Data acquisition card
 - Cable and feedthrough

