TRANSFORMING POWER INTO SUCCESS

Final Review

New packaging techniques (NPT) to increase power density of power control and distribution units

ESA Contract No. 4000134603/21/NL/CRS

Lindau

13th March 2024

Participants

ESA:

• Giulio Simonelli

Airbus:

• Julian Bozler

ASP:

- Martin Blaser (COO)
- Günter Weishaar (Project management)
- Marcos Arend (Engineering)
- Konstantin Lutz (Engineering)
- Stefano Falcini (Thermal Engineering
- Günther Neumann (Product Assurance)

Objective

Final Review

- **Date:** 13.03.2024
- **Time:** 09:00h 12:00h
- **Location:** Telecon
- Input: Review Data Package definition in line with the list of deliverables
- Description: to assess the achievement and address further possible developments in the packaging technologies and/or propose further activities to increase the TRL of the selected technology/architecture.
- > **Output:** final payment and contract closure

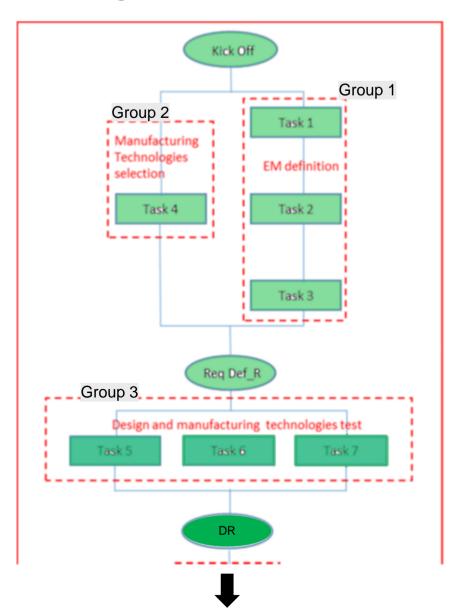
Agenda

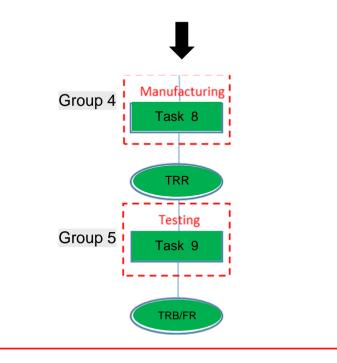
- Objective
- Work Logic
- Technical Summary
- **Programmatic**
 - Status of deliverable documents
 - Problem areas, Status of action items, Progress: actual vs. schedule
 - Milestones and events accomplished
 - Milestone payment status
 - Schedule
- Delivered Documents for Final Review
- Further Possible Developments
- Conclusion/MoM

Work Logic

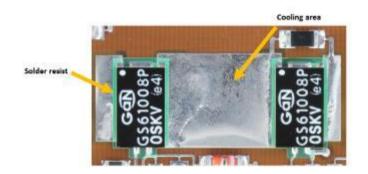
13.03.2024 // Page 5

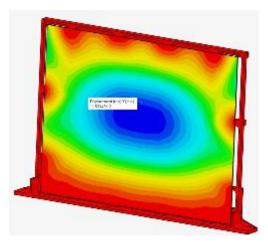
Work Logic


- The work is organised in 9 tasks that are divided in the following 5 groups:
 - Group 1: Task 1, 2, 3:
 - EM Definition
 - Group 2: Task 4:
 - Manufacturing technologies selection
 - Group 3: Task 5, 6, 7:
 - o EM and GSE design and manufacturing feasibility tests
 - Group 4: Task 8:
 - o EM and GSE manufacturing and test preparation
 - Group 5: Task 9:
 - o EM Test and results evaluation

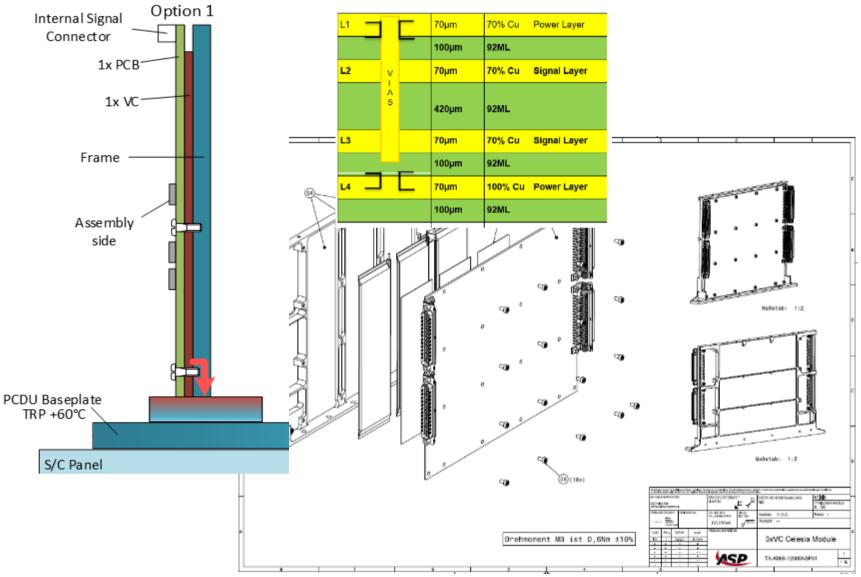

All nine tasks are successful completed.

Work Logic Flow

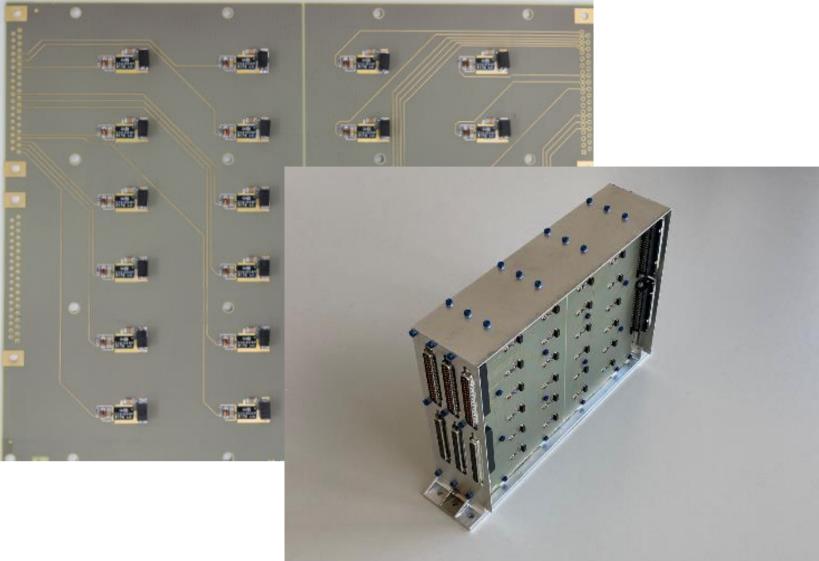

Technical Summary


The Challenges

- Extensive use of SMD Power Dissipative Devices
 - PCB Area Effective Use
 - " Punctual " Hot Spots
 - Mechanical (Steinberg) and Thermo-Mechanical Fatigue
- Vertical Modularity
- Double Insulation
- PCB Substrate: Thermal Conductance x Cost
- The SARM Extensive Thermal Cycling
- The Vapor Chamber Applicability and the Verification



The Design

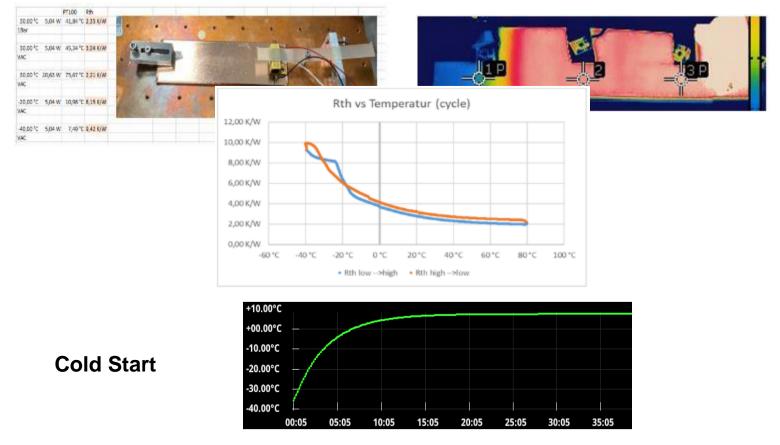


The Product



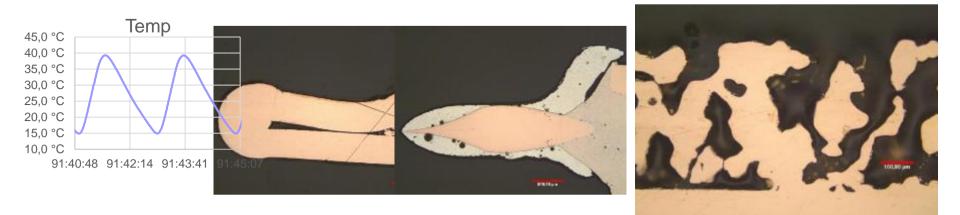
The Tests

AIRBUS DEFENCE AND SPACE

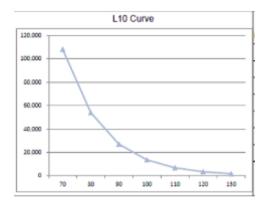


Vapor Chamber Test Summary

Thermal Conductivity

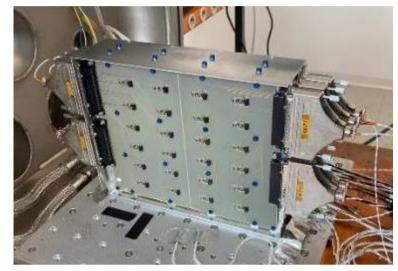

Low-pressure Resistance

Vapor Chamber Test Summary

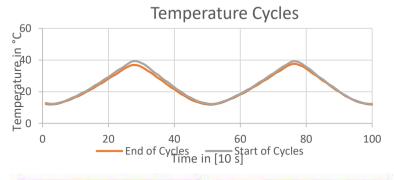


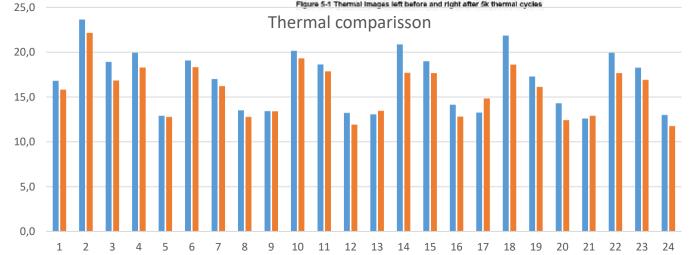
Thermal Vacuum Cycling 55 thousand cycles

Life Experiment Report


Stress/Elevated Temperature Ts (*C)	Unstress Temperature Tu (*C)	Acceleration Factor AF -Dep(Te-T4/10)	Qutntity of Test Devices n (pcs)	Poisson Distribution Factor B _{ris}	Required test time with 1 failure t (hours)	Actual test time with 1 failure t (hours)	Verified MTTF (hours)	Verified L10 (hours)
130	80	32	50	2.3026	723.6	744.0	378,274	54,039

Expected an average temperature over the Vapor Chambers less than $70^{\circ}\,$ C. Applying the L10 curve we will get a life bigger than 100K hours

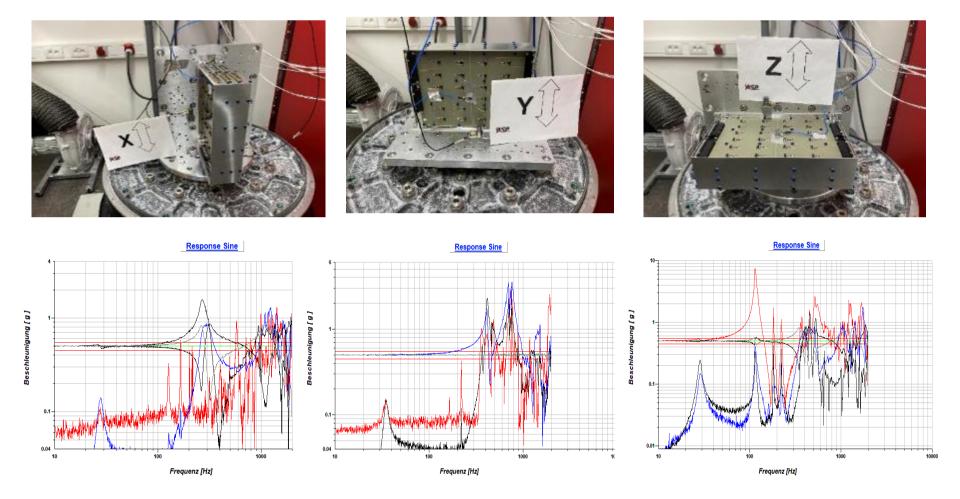

Module Test Summary – Thermal Cycling



5 000 cycles 25 K delta

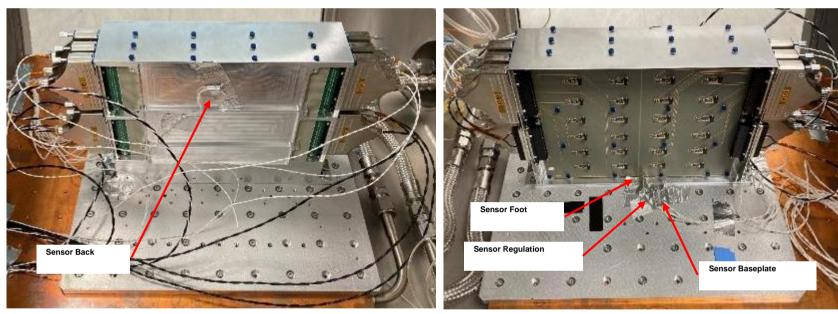
ma: 66.2 °		/	77.4	max 64.0°		3-14	4 72.8
			-	5	6.42	7941	8
-		-	-	8.41	10:00	118	12
-11	att -	der	-	13.60	14:50-	15 5	16==
-	-	62	-	17=	18===	19-12	20
ÔFLIR	an'		-413	¢FLIR 21	22	23	24 40.8

Figure 5-1 Thermal images left before and right after 5k thermal cycles

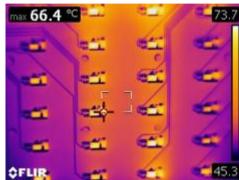


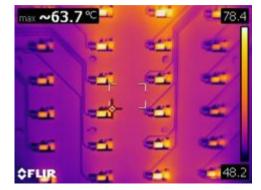
13.03.2024 // Page 15

Vibration Test Summary Sine: 6 g Random: 12 g_{rms}



Vibration Test Summary

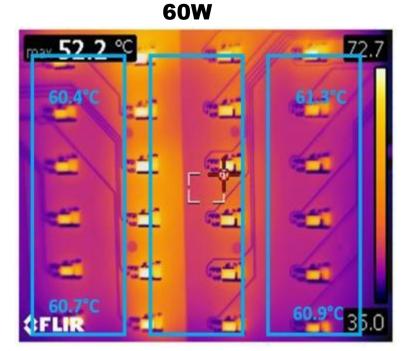


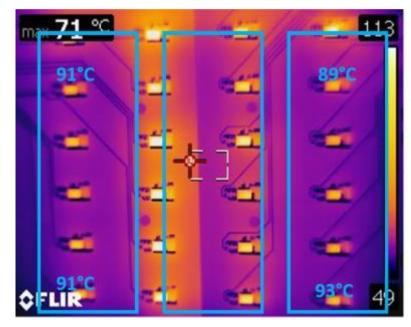


30,0 °C	before	after	70,0 °C
Back	50,4 °C	54,6 °C	Back
Foot	44,7 °C	47,7 °C	Foot
Baseplate	30,0 °C	30,0 °C	Basepla
Power	162,7 W	175,2 W	Power

70,0 °C	before	after
Back	86,3 °C	86,5 °C
Foot	78,2 °C	77,9°C
Baseplate	70,0 °C	70,0 °C
Power	168,8 W	168,8 W

	-30,0 °C	before	after
°C	Back	8,3 °C	8,9 °C
°C	Foot	-10,0 °C	-8,7 °C
°C	Baseplate	-30,0 °C	-30,0 °C
W	Power	170,9 W	173,7 W




Thermal Control Performance

120W

Mass Saving Impact

By simulations and analysis was evaluated the necessary frame mass addition for achieving a similar vapor chamber thermal control. Was necessary to add around 2.1kg of aluminum mass (a block) for the 120W dissipation case and around 1kg for the 60W case. **Considering a PCDU with 6 dissipative modules (60W) the total mass save would be around 6kg.** A more realistic evaluation shall consider a total redesign for the module without vapor chambers. **An average 4kg total saving mass can be considered a better evaluation, resulting in around 10% - 20% of the total mass saving for the whole equipment (standard PCDU mission design).**

Removing the Vapor Chambers (Experimental 120W)

Position	with VCs	with Dummies	Delta
1	104.5 °C	166.8 °C	62.3 °C
2	95.3 °C	152.5 °C	57.3 °C
3	89.3 °C	143.5 °C	54.3 °C
4	84.0 °C	132.5 °C	48.5 °C
5	80.0 °C	123.8 °C	43.8 °C
6	72.0 °C	110.0 °C	38.0 °C

Programmatic

13.03.2024 // Page 20

Document Status Overview

AIRBUS

Ref.	Documentation	Definit ion Review	Design Review	Test Readine ss Review	Test Revie Board	Final Revie	Due Date	Doc.: No.
Task1: D-01	Thermal Mechanical Constraints and Overall System Assumptions Technical Note	Issue 1					06.09.2021	GSTP-PACK-DOC-001
Task2: D-02	PCDUs Packaging Options, Thermal Mechanical Architectures and PCBA Technology Options Technical Note	lssue 1					12.10.2021	GSTP-PACK-DOC-002
Task3: D-03	EM Development Plan		Issue 1				01.08.2022	TN-K066-10000ASP003
Task3: D-04	Evaluation matrix and Trade Off TN	Issue 1					10.11.2021	TN-K066-10000ASP004
Task3: D-05	Architecture Justification of the Selected Packaging concept, Thermo-Mechanical Architecture and PCBA Technology TN	Issue 1					10.11.2021	TN-K066-10000ASP005
Task4: D-06	Manufacturing Technologies Survey	Issue 1					10.11.2021	TN-K066-10000ASP06
Task4: D-07	EM Manufacturing Feasibility Assessment Plan		Issue 1				04.04.2022	TN-K066-10000ASP007
Task4: D-08	PCBA and power component description TN	Issue 1					10.11.2021	TN-K066-10000ASP008
Task7: D-03	Manufacturing Technologies Feasibility Report		Issue 1				12.12.2022	incl. in D06/D07/D16
Task3: D-10	EM PCDU requirements Definition		Issue 2				28.06.2022	SPE-K066-10000ASP001-i2
Task5: D-11	Interface Control Document (Mech, Therm, Connectors)		Issue 1				01.08.2022	TN-K066-10000ASP011
Task3: D-12	Test Plan and GSE Requirement definition		Issue 1				10.05.2022	TN-K066-10000ASP012
Task5: D-13	EM Design Justification Document		Issue 1				26.08.2022	TN-K066-10000ASP013
Task5: D-14	Thermal and Mochanical (for Mechanical see D-29) Analyses		Issue 1				08.06.2022	TN-K066-10000ASP014
Task5: D-15	Tests Specifications		Issue 1				20.06.2022	SPE-K066-10000ASP015
Task5: D-16	Manufacturing Files (including electrical schematics, mechanical drawings, part lists etc)		Issue 1				10.06.2022	TN-K066-10000ASP016
Task5: D-17	EM User Manual			Issue 1			12.12.2022	incl. In D15/D13, Doc.
Task6: D-18	GSE Description			Issue 1			12.12.2022	no specific GSE.
Tack6: D-19	Tect Specification	-		leevo-1	-	-		see D-15 (double)
Task6: D-20	Test Procedures							Headline
Task6: D-201	Thermal Vacuum Test Procedure (Unit Level)			Issue 2			15.12.2022	TP-K066-10000ASP01
Task6: D-202	Vibration Test Procedure (Unit Level)			Issue 2			15.12.2022	TP-K066-10000ASP02
Task8: D-21	Photographic Documentation			Issue 1			12.12.2022	Incl. in the documents
Task9: D-22	Test Reports							Headline
Task9: D-221	VC Thermal Cycling Test Report			Issue 1			27.10.2022	TR-K066-10000ASP01
Task9: D-221	Frame Design and Process			Issue 1			20.03.2023	TR-K066-10000ASP03
Task9: D-222	VC Microsection Test Report			Issue 1			27.10.2022	TR-K066-10000ASP02
Task9: D-223	Thermal Vacuum Test Report (Unit Level)				Issue 1		25.07.2023	TR-K066-10000ASP04
Task9: D-224	Vibration Test Report (Unit Level)				Issue 1		25.07.2023	TR-K066-10000ASP05
Task9: D-23	Final Report					Issue 1	19.02.2024	TR-K066-10000ASP06
Task9: D-24	Technical Data Package					Issue 1		see D-01 to D-32
Task9: D-25	Summary Report					Issue 1	27.02.2024	RP-K066-10000ASP01
Task9: D-26	Executive Summary Report					Issue 1	23.02.2024	RP-K066-10000ASP02
Task9: D-27	Abstract					Issue 1	11.03.2024	AB-K066-10000ASP01
Task9: D-28	Contract Closure Documentation					Issue 1	04.03.2024	CC-K066-10000ASP01
Task5: D-28	Mechanical Harmonic Analysis		Issue 1				27.06.2022	TN-K066-10000ASP029
Task5: D-30	Broschure					lssue 1		BR-K066-10000ASP01
Task5: D-31	Final Review (Power Point presentation)					Issue 1	13.03.2024	FR-K066-10000ASP01
Task5: D-32	Final Presentation (Power Point presentation)					lssue 1		FP-K066-10000ASP01
Task5: D-33	Technical Achievement Template					Issue 1	13.03.2024	

Problem areas, if any, and corrective actions planned and/or taken

• None

Status of action items

• No open Action Items

Description of progress: actual vs. schedule

Schedule:

• WP1000/Task 1 to WP9000/Task 9 are completed

Actual:

• All documents acc. SoW are delivered

Mileste	ones and events accomplished	AIRBUS DEFENCE AND SPACE
•	Contract signed ESA/ASP	25.05.2021
•	Subcontract signed Airbus/ASP	11.06.2021
•	Kick-off meeting successful held	01.06.2021
•	1 st progress report/meeting	02.07.2021
•	2 nd progress report	30.07.2021
•	3 rd progress report/meeting	16.09.2021
•	4 th progress report/meeting	21.10.2021
•	Definition Review successful completed	26.11.2021
•	5 th progress report/meeting	28.01.2022
•	6 th progress report/meeting	11.03.2022
•	7 th progress report/meeting	08.04.2022
•	8 th progress report/meeting	12.05.2022
•	Technical Meeting Airbus/ASP	23.05.2022
•	Design Review successful completed	30.06.2022
•	9 th progress report/meeting	31.08.2022
•	10 th progress report/meeting	28.10.2022
•	Test Readiness Review successful completed	25.11.2022
•	11 th progress report/meeting	27.01.2023
•	12 th progress report/meeting	10.02.2023
•	13 th progress report/meeting	03.05.2023
•	14 th progress report/meeting	16.06.2023
•	Test Review Board successful completed	28.07.2023

Milestone payment status

- Advanced Payment,
 - ESA->ASP complete
 - ASP->Airbus complete
- MS1: Successful completion of tasks 1,2,3,4 and successful Definition Review
 - ESA->ASP complete
 - o ASP->Airbus complete
- MS2: Successful completion of tasks 5,6,7 and successful Design Review
 - ESA->ASP complete
 - ASP->Airbus complete
- MS3: Successful completion of task 8 and successful Test Readiness Review
 - ESA->ASP complete
 - ASP->Airbus complete
- MS4: Upon the Agency's acceptance of all deliverable items due under the Contract and the Contractor's fulfilment of all other contractual obligations including submission of the Contract Closure Documentation.

Schedule 03/2024

						2021									2(022				2023															
					21		H	lälfte 2	2, 202:	L	1	Hä	ilfte 1	, 2022		1	Hälf	fte 2, 2	2022			Hälf	te 1, 2	023			Hälfte	2, 202	23		Н	lälfte :	1, 202		
		Vorgangsname 👻	Anfang 🚽	Ende 👻	м	JJ	A	S	0	ND	J	F	M	A M	J	J	A	S C	N	D	J	FN	/ A	М	J.	J	A S	0	Ν	D	JF	М	A		
	1	New packaging techniques to increase power density of power control and distribution units																																	
	2																																		
	3	Kick off (T0)	Die 01.06.21	Die 01.06.21		01 06																													
	4																																		
	5	WP0000, Task 0: Project Management	Die 01.06.21	Don 01.06.23								 				Į					i												l		
	6	WP0100, Task 0: Project Management	Die 01.06.21	Don 01.06.23																															
	7	WP1000, Task 1: Mission needs / Thermal Mechanical Constraints	Die 01.06.21	Don 09.09.21																															
	8	WP1100, Task 1: Mission needs / Thermal Mechanical Constraints	Die 01.06.21	Don 09.09.21																															
	9	WP2000, Task 2: Alternative Packaging Solutions	Don 01.07.21	Die 12.10.21		F			3																										
	10	WP2100, Task 2: Alternative Packaging Solutions	Don 01.07.21	Die 12.10.21]]													[]						
	11	WP3000, Task 3: Selection of Thermal Mechanical Architecture	Mon 16.08.21	Fre 20.05.22			I]																					
AMM	12	WP3100, Task 3: Selection of Thermal Mechanical Architecture	Mon 16.08.21	Fre 20.05.22			I																												
DIAGR	13	WP4000, Task 4: Review and Selection of manufacturing technology	Die 01.06.21	Mon 28.02.22								1																							
GANTT-DIAGRAMM	14	WP4100, Task 4: Review and Selection of manufacturing technology	Die 01.06.21	Mon 28.02.22																															
9	15	Definition Review (T0+4m)	Fre 26.11.21	Fre 26.11.21						♦ 26	11					1													·····			1	1		
	16	WP5000, Task 5: EM design	Mon 29.11.21	Don 30.06.22			1	1		Ē	4·····						i i i i i i i i i i i i i i i i i i i	····	1	1			1			····	 	1)						
	17	WP5100, Task 5: EM design	Mon 29.11.21	Don 30.06.22																															
	18	WP6000, Task 6: EGSE/MGSE design	Mon 29.11.21	Don 30.06.22																															
	19	WP6100, Task 6: EGSE/MGSE design	Mon 29.11.21	Don 30.06.22																															
	20	WP7000, Task 7: Feasibility Samples/Coupons	Mon 29.11.21	Don 30.06.22						L.																									
	21	WP7100, Task 7: Feasibility Samples/Coupons	Mon 29.11.21	Don 30.06.22								 																					l		
	22	Design Review (T0+10m)	Don 30.06.22	Don 30.06.22							ļ				•	30	06																		
	23	WP8000, Task 8: Manufacturing of EM and GSE	Fre 01.07.22	Fre 18.11.22							ļ					F			.										ļļ				[
	24	WP8100, Task 8: Manufacturing of EM and GSE	Fre 01.07.22	Fre 18.11.22							ļ																								
	25	Test Readiness Review (T0+18m)	Fre 25.11.22	Fre 25.11.22							ļ					ļ				25.	1												[].		
	26	WP9000, Task 9: Test execution	Mon 28.11.22								ļ					Į				F]			ļļ						
	27	WP9100, Task 9: Test execution	Mon 28.11.22								ļ	l	ļ.			ļ	ļ.	ļ											ļļ				[
	28	Test Review Board (T0+25m)	Fre 28.07.23	Fre 28.07.23							ļ					Į							ļ			•	28.07		ļ,				.		
	29	Final Review	Mit 13.03.24	Mit 13.03.24						ļ	ļ		ļ.			ļ	ļ.									ļ	ļ		ļļ			• 1	13.03		

Delivered Documents for Final Review

- D-23: Final Report.
 - The Final Report shall provide a complete description of all the work done during the activity and shall be self-standing, not requiring to be read in conjunction with reports previously issued. It shall cover the whole scope of the activity, i.e. a comprehensive introduction of the context, a description of the programme of work and report on the activities performed and the main results achieved.
- D-24: Technical Data Package technical documents are delivered
 - Each (design and development) Contract shall be completed with a Technical Data Package. For a Contract with Phases, the Technical Data Package shall be provided at the end of a Phase in the case that the Agency decides not to proceed with the next Phase. The Technical Data Package consists of the final versions of all approved technical documents, delivered during the execution of the activity.

D-25: Summary Report.

• For each (design and development) Contract, one Summary Report shall be produced. It shall summarise the findings of the Contract concisely and, informatively. The Summary Report shall be approximately twenty (20) pages or six thousand (6000) words.

NOTE: The Agency may request the Contractor to produce the Summary Report in the form of a paper suitable for publishing in a technical journal.

D-26: Executive Summary Report.

 The Executive Summary Report shall concisely summarise the findings of the Contract. It shall be suitable for non-experts in the field and should also be appropriate for publication. For this reason, it shall not exceed five (5) pages of text and ten (10) pages in total (one thousand five hundred (1500) to three thousand (3000) words).

Delivered Documents for Final Review

- D-27: Abstract.
 - Each (study) Contract shall also be completed with an Abstract, summarising the work performed. It shall be suitable for application at symposiums or technical journals, normally not exceeding three (3) to four (4) pages of text with colored illustrations or photographs where appropriate.

Brochure

- A Brochure is intended for marketing purposes. It shall be concise and it shall include a short description of the work performed and applications of the development, a photograph or functional drawing if applicable, technical fact sheet, estimate of availability (delivery time) and a contact point for marketing purposes. It shall contain one (1) or two (2) pages of text (i.e. up to about seven hundred (700) words).
- A Brochure using the Website Article Template
- <u>https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Shaping_the_Future/Download_Area</u>
- Photographic Documentation included in the technical documents/presentations
 - Photographic documentation comprises photographs of hardware under manufacture, showing major progress, as well as of tests and test set-ups. Videos presenting the functioning of hardware/test set-up and relating test activities may also be included in this category.
- D-28: Contract Closure Documentation.
 - The Contract Closure Documentation is a mandatory deliverable, due at the end of the Contract (or at the end of a Phase in case the Agency decides not to proceed with the following Phase). For the avoidance of doubt, "end of the Contract" shall mean the finalisation of a series of tasks as defined in the Statement of Work attached to this Contract. Therefore, work performed under Riders or Contract Change Notices adding new tasks with respect to the original Contract shall require separate Contract Closure Documentation. The contents of the Contract Closure Documentation shall conform to the layout provided in Annex A hereto.
- __Template available

Delivered Documents for Final Review

- NPT Technology Achievement Template
- Final Review by Telecon
 - Location: Telecon
 - · Input: Review Data Package definition in line with the list of deliverables
 - Description: to assess the achievement and address further possible developments in the packaging technologies and/or propose further activities to increase the TRL of the selected technology/architecture.
 - Output: final payment and contract closure
- Hardware will stay at ASP. Loan agreement.

Conclusions and the Next Steps

- Were covered R&D, designs, analysis, manufacturability, qualification, and test efforts for achieving a disruptive new thermal control proposition for space avionics
- The Vapor Chamber (VC) technology presented the potential for a considerable product volume/mass reduction for the challenging application of high dissipative SMD elements assembled over a simple PCB board.
- Another advantage of the developed technology is the capability to implement a feasible thermal control for high dissipative hot spots caused by electrical failure.
- The developed technology presented potential for other space avionics products, such as high-power solid-state RF amplifiers (transponders) and high-power processing boards with multiple cores.
- The next steps:
 - Planned performance improvements (as VP base edge double covered)
 - Generating a higher fidelity vapor chamber model based on fluid flow and multi-phase operation,
 - Design validation in a true space mission (getting heritage, increasing the TRL).

Thank you very much for your cooperation and support in this exciting and challenging project!

