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Abstract—This document summarises the work performed
within the ESA Contract No. AO/1-10116/19/NL/AS. It discusses
the design and implementation of a new software tool intended
for computing and representing the uncertainties of an antenna’s
performance caused by the stochastic behaviour of design vari-
ables of the system. The mathematical algorithms implemented in
the tool allow for a very general formulation, where uncertainty
can be added to both geometrical and electrical parameters of
the system. Further, the algorithms are designed with speed and
accuracy in mind, resulting in trustworthy statistical quantities
such as confidence intervals. To validate the software, several
testcases were designed and the results are compared to both
analytical and measured data. The results show impressive
performance by the software tool, allowing for better antennas to
be produced by taking into account realistic, rather than ideal,
performance of a manufactured antenna.

Index Terms—Uncertainty quantification, space applications,
antenna design software

I. INTRODUCTION

Designing antenna systems for modern telecommunication
or earth observation applications entails stringent performance
requirements and strict error budgets. As the systems become
increasingly complex and involve many subsystems, the need
for accurate and reliable quantification of the imperfections
involved in the error budgets becomes greater and greater.
In particular, for concepts such as unfurlable reflectarrays
or unfurlable reflectors, where in-flight deployment is used,
detailed mechanical and thermal studies are required, all of
which provide parameter ranges rather than specific parameter
values. Further, for high-accuracy applications such as deep-
space communication, even minor imperfections can have
devastating consequences if not taken into account.

Modern computational electromagnetics software makes it
possible for the RF engineer to simulate a large number of the
mechanical designs, and in some cases the software can allow
fully automatic optimization to attain optimal performance.
However, when it comes to quantifying the uncertainty, e.g.,
the performance degradation introduced by mechanical imper-
fections, the engineers are currently on their own.

If the engineers apply some form of uncertainty analysis,
most will resort to simply running a very large number of
simulations with random errors added sporadically to the
system, and then perform some statistical examination on that
data, a so-called Monte-Carlo simulation. The downsides to
this approach are clear: A very large number of simulations
are required, and the risk of user error is high. Further,
the statistical accuracy is extremely poor, which could cause

misleading conclusions about the final performance when the
antenna is deployed.

The objective of the present activity has been to develop
a powerful software package that allows antenna designers to
study the impact of uncertainties already in the design phase.
The software is closely coupled with TICRAs existing soft-
ware tools, and is therefore able to analyse antennas commonly
used for satellite communication payloads or scientific instru-
ments, including passive microwave components, feeds, reflec-
tors, arrays, reflectarrays, etc. Further, the software is able to
assess uncertainties related to structural antenna elements and
the satellite platform. The software allows uncertainties to be
associated with all geometrical and electrical input parameters
and computes statistical output of all performance parameters
of interest.

The major steps involved in the software development have
been the following:

1) Evaluate the most efficient algorithms for uncertainty
qualification. Several algorithms have recently been de-
veloped in the mathematical research community, but
their applicability and their interdependency has been
studied in detail. This work is briefly summarized in
Section II.

2) Integratation of the UQ algorithms in a user-friendly
setup into TICRA Tools, such that UQ can be used
across all existing TICRA products (GRASP, CHAMP
3D, ESTEAM, QUPES, POS).

3) Test the software across a range of cases. This is
discussed in Section III.

II. OVERVIEW OF MATHEMATICAL TECHNIQUES

We seek to quantify the behaviour of an antenna system
as a function of the uncertainties in its design variables. The
behaviour is expressed as an output with uncertainty (OwU),
while the design variables are described as a set of stochastic
uncorrelated variables.

Mathematically, we assume that the OwU is a deterministic
function F (X), where X is a set of N stochastic variables,
assumed uncorrelated, with marginal distributions gX(i) , where
a(i) and b(i) are the limits of this distribution function. We
stress that a key aspect of this activity is that F is a black-
box function, allowing us to apply the techniques described
here in a non-intrusive manner, that is, without modifying
the computation of F . Indeed F can represent any relevant
output from the antenna system, which is a key strength of
the techniques, as it allows users to inspect any quantity they
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deem important for their specific application. Mathematically,
we only assume the function to be a continuous function
F : RN → R that represents some OwU.

The most common distributions of the variables are shown
in Table I. We will limit the possible variable distributions

TABLE I
THE MARGINAL DISTRIBUTIONS AVAILABLE IN THE SOFTWARE. NOTE

THAT, B(α, β) = Γ(α)Γ(β)/Γ(α+ β) IS A NORMALISATION CONSTANT.

Name gX(i) Support Parameters
Uniform 1

b−a [a, b] a < b

Normal 1
σ
√
2π
e
− 1

2

(
x−µ
σ

)2

[−∞,∞] µ, σ > 0

Beta (x−a)α−1(b−x)β−1

(b−a)α+β−1B(α,β)
[a, b] a < b, α, β > 0

to Normal, Uniform and Beta. However, in principle, any
distribution can be treated, even discrete distributions. For
simplicity, we will only consider continuous variables in the
following.

We note that in practice, F is likely multi-variate, con-
sidering of M OwUs the system simultaneously. Since the
computationally most demanding part of evaluating F (X) is
the analysis of the antenna itself, we stress that the antenna
analysis is only done once, and then all M OwUs are extracted
based on the results of the antenna analysis and treated as the
result of independent stochastic processes. The object of the
algorithms described here is to characterize these stochastic
processes.

To allow the implementation of the accurate statistical
estimates relevant for the present activity, we need to char-
acterize the full conditional distribution of F , conditional on
the variables X . The distribution of F can be expressed in a
number of different ways, e.g. by computation of its moments:

Expected value : E(F (X)) = µF (1)

=

∫ b(1)

a(1)

∫ b(2)

a(2)

. . .

∫ b(D)

a(D)

gX(X)F (X)dX,

Variance : Var(F (X)) = σ2
F (2)

=

∫ b(1)

a(1)

∫ b(2)

a(2)

. . .

∫ b(D)

a(D)

gX(X)F 2(X)dX − µ2
F ,

or by approximating F by a function expansion

F (X) ≈
K∑
i=1

αifi(X), (3)

and applying statistical analysis to that function expansion.

A. Methods for Uncertainty Quantification

There are several methods available for UQ, and the meth-
ods can roughly be classified as follows:
• Monte-Carlo based approaches,
• Intrusive Higher-Order methods,
• Non-intrusive Higher-Order methods

Since we consider F as a black-box function, Intrusive Higher-
Order methods are not suitable [1, Section 10.2]. Hence, we

have focused on a Monte-Carlo (MC) method in addition to
two Non-intrusive Higher-Order methods, namely, Stochastic
Collocation (SC) and Polynomial Chaos Expansion (PCE).
Here, non-intrusive means that F is treated as a black-box
function with the only requirement being that we should be
able to evaluate it.

The methods are presented below in the following order:
1) Monte-Carlo
2) Stochastic Collocation
3) Polynomial Chaos Expansion

This order roughly reflects the complexity of implementation
and the computation time required with Monte-Carlo being the
simplest method. The three methods provide us with different
information about F . The MC method provides function
values at a number of samples of the input variables; these can
be used to estimate the expected behaviour of the OwU and the
expected deviation from this behaviour in addition to estimates
of statistics like the confidence interval. The SC method
provides an estimate of a number of moments of F , which
again can be used to estimate the expected performance and its
expected deviation; statistics like confidence intervals can be
computed after an assumption is made about the distribution
of F . The PCE method provides an approximation to F of
the form (3), which can be used to get the relevant statistics
(expected performance, deviation, confidence intervals) by
sampling the approximation like with MC; in addition, the
PCE method provides so-called Sobol indices [2, Section 4],
which indicate the user the amount of variation in the OwU
caused by the different variables. The methods are summarized
below, and we refer to the Final Report for more in-depth
details, including key implementation aspects.

1) Monte-Carlo: Monte-Carlo (MC) is an extremely simple
method: Perform Nq evaluations of F , gather all the results
in a vector f , and compute the mean µF = 1

Nq

∑Nq
i=1 fi and

the variance σ2
F = 1

Nq−1
∑Nq

i=1(fi − µF )2, although it should
in practice be computed by a stable formula for variance
computation, see e.g. [3] and the references therein.

From an accuracy and efficiency perspective, the difference
in practice between the convergence rate of Monte-Carlo (MC)
and higher-order methods is extreme for a moderate number
of unknowns. One of the reasons that the convergence rate of
MC is poor is that the method relies on completely random
sampling which has high discrepancy, i.e., the samples have
a tendency to cluster, rather than fill the function space. To
mitigate the poor convergence, we use a sequence of low-
discrepancy numbers instead of pseudo random numbers, such
that the rate of convergence is increased from 1√

Nq
to 1

Nq
.

This approach is termed Quasi-Monte-Carlo (QMC) [4] and
the low-discrepancy numbers are termed Quasi-random in
the sense that they are deterministic (but long) sequences of
numbers.

Still, even with the improvement of QMC over MC, the con-
vergence of QMC is still much too slow compared to higher-
order methods. From this it is clear that QMC should mainly
be considered in cases where an independent verification is
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necessary or when the number of variables makes the use of
the higher-order methods too time-consuming.

2) Stochastic Collocation: The SC method approximates
the moments of the function F by direct numerical integra-
tion, using specialized integration rules based on orthogonal
polynomials as done in the Wiener-Askey scheme, but without
actually producing a functional representation of F . In other
words, F is only characterized by its moments. A brief
overview is found in [1, Section 11.1] and [5, Chapter 7].

SC computes the moments directly, by numerically com-
puting the integrals of F . As an illustration of the method,
we consider the computation of the first moment (1). Clearly,
this is an N -dimensional integral against a kernel, namely the
probability density of the variables gX . From approximation
theory, see e.g. [5, Chapter 3], we understand that the optimal
integration rule for such an integral is found by applying
Gaussian quadrature rules constructed to be orthogonal relative
to the measure induced by gX . Hence, the moments can be
computed by numerical quadrature as follows:

µF ≈
Nq∑
q=1

F (Xq)wq, (4)

σ2
F ≈

Nq∑
q=1

F (Xq)2wq − µF , (5)

and so on for the higher moments if relevant.
We can then use the computed moments ”as is”, as key

statistics of our function. To compute more sophisticated statis-
tics, such as confidence intervals, we construct a cumulative
distribution function for F conditioned on the distribution of
X , based on the available moments.

The advantages of SC when used for UQ is clearly the
simplicity of implementation, which relegates the majority
of the complexity to the task of accurately performing N -
dimensional numerical quadrature. The main drawback, rel-
ative to the next method, is the restriction to a preselected
distribution family.

To get the moments of F , we perform successively more ac-
curate integration based on different quadrature rules and judge
convergence along the way. The choice of (N -dimensional)
quadrature scheme is no easy task and good quadrature rules
depend on the distributions of the variables. For example,
when all variables are uniformly distributed a set of efficient
integration rules known as the Stroud rules [6] are at our
disposal but only up to a certain accuracy. A more general
quadrature scheme is the sparse grid rules [1], [7, Section 11],
where the accuracy can be increased and the number of points
required in more dimensions does not grow too fast.

3) Polynomial Chaos Expansion: Polynomial Chaos Ex-
pansion (PCE) is a method that approximates the behaviour
of the function F by an expansion of orthogonal polynomials
in each variable. More details about the method can be found
in [2], [8]–[11].

The key concept for a PCE is the approximation of F as
a sum of orthogonal polynomials, the so-called polynomial

chaos basis. The construction of these polynomials is trivial
in the univariate case N = 1, but in the multi-variate case, it
becomes non-trivial as the maximum order of the multi-variate
terms can be controlled independently from the order of the
univariate terms.

The P ’th order polynomial chaos expansion of a function
F evaluated at a specific point X can be expressed as

F (X) ≈
K∑
t=0

αtΨt(X), (6)

Where K = (N+P )!
N !P ! − 1 and the polynomial chaos basis

functions are expressed as Ψt. This scheme is termed the
Wiener-Askey scheme and is discussed in more detail in [12].

With the expansion (6) we are thus, in contrast to the
Stochastic Collocation method, directly able to calculate the
value of our approximation to F at any X by simply evaluating
(6). What remains is the computation of the coefficients αt,
which is in principle done by projection of the full expansion
against F , although more sophisticated methods provide better
results.

This description allows us to compute every statistic that we
can compute with SC. Further, PCE allows us to extract more
information than SC. First, since we have a full description of
F , we can avoid the need for a predetermined distribution and
simply compute directly the PDF or CDF of F by Monte-Carlo
analysis of (6), which is very fast since it requires evaluation
only of simple polynomials.

Secondly, the PCE allows the extraction of individual pa-
rameter uncertainties by computation of the so-called Sobol
indices, as discussed in [2]. The most intuitive of these are
the first-order Sobol indices, which constitute the conditional
variances conditioned on the variation of a single variable, but
in principle higher-order conditional variances (conditioned
on variation of multiple variables simultaneously) can be
extracted as well. This can be a very important piece of
information in practice. The first-order Sobol index for the
ith variable is computed as

Si =

∑
t∈Ti α

2
tQt

σ2
, (7)

where Ti is the set of indices where the chaos polynomial only
contains powers of variable i.

Thus, with PCE, the user can not only learn an accurate
estimation of the statistical behaviour of F over all variables
X — typically more accurately than for SC due to the lack
of requirement for a predetermined distribution — but can also
learn the main reasons of this variation by inspecting the Sobol
indices that indicate which variable (or set of variables) are
responsible for how much of the variation. This, for instance,
allows for cost-based uncertainty reduction of a system. For
instance, if it turns out that a single variable is responsible for,
say, 80% of the variation in the performance, it is clear that it
will be worthwhile increasing the reliability of that variable.
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III. APPLICATION EXAMPLES

As part of the activity 6 test cases were defined, see [13],
with which to validate the developed software. The application
of the software to these cases were the topic of [14]. Three
of these test cases have been selected as examples for this
document and are presented in the following.

A. Example 1: Multi-Beam Reflector Antenna System

This topic of this example is an antenna system that
may find application for a so-called High-Throughput-Satellite
(HTS). Specifically it is a 4-colour multi-beam single-feed-
per-beam configuration. The beams of the antenna system
are shown in Figure 1. Each antenna has a single offset
reflector with a diameter of 3.66 m and operates at a frequency
of 30 GHz. The beam width is 0.25◦. In such systems, it
is important that the sidelobes of one beam in the nearest
neighbouring coverage cell with the same frequency and
polarisation are not too high, to avoid compromising the C/I
(Carrier to Interference) ratio. For the present, we focus on a
single reflector generating a single color.

This means that the most interesting cell to look at begins
0.375◦ away from the peak. In Figure 2 the beam of this
configuration, centred at θ = 0◦, is shown with the beam
on the opposite side of the nearest neighbour. The nearest
neighbour is ”off-colour” (a different frequency or polarisa-
tion) meaning there will not be noteworthy interference with
this. However, the ”next-neighbour” beam has the same colour
and there will be mutual interference between this and the
centre beam. With respect to the coordinate systems used in
Figure 2 this means that the radiation patterns of the central
beam should not unduly interfere in the directions defined
by θ ∈ [0.375◦; 0.625◦]. To this end the radiation in this
range will be subject to analysis wrt. the influence of surface
deformation of the reflector’s shape and mounting angles.

In [14], additional investigations involving variations of the
reflector shape and coupling between the feed of the two
beam were presented. These are omitted here and presently
variations of the reflector’s orientation is addressed. With
only the 3 orientation variables a Monte Carlo analysis of
this problem is feasible and thus reference data has been
generated using 20.000 samples. The orientations are varied
according to a normal distribution with a standard deviation of
σ = 0.01◦. The aim is now to recover the expected mean and
95% confidence interval for this case using the Polynomial
Chaos Expansion method.

In Figure 3 the 95% confidence interval and the expected
mean of the radiation pattern are shown and compared with
the Monte Carlo reference. The Polynomial Chaos Expansion
was employed using a dynamic range of 30 dB within a θ-
range from 0.3◦ to 0.7◦, which means that it aims at ensuring
convergence at levels less than 30 dB below the value at 0.3◦,
i.e., in the present case about a level of 5 dBi.

Inspection of the plots shows that the obtained results agree
fairly well with the reference results. The curves deviate
slightly for the lower bound of the confidence interval with
a maximum deviation of about 0.4 dB at a level around
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Fig. 1. The beams from the HTS used in Example 1. Beams with the same
colour have the same polarisation and frequency and are generated by offset
feeds using the same reflector.

Fig. 2. Nominal radiation patterns of two beams. The centre beam is shown
with the ”next-neighbour” beam at θ = 0.5◦ (same colour).

12 dBi (18 dB below peak). This result was obtained after
1097 function evaluations (samples) in the Polynomial Chaos
Expansion method.

B. Example 2: Reflectarray Mounted on Cubesat

In many practical cases, the influence of a nearby satellite
body can affect antenna performance negatively. We therefore
include an example where the platform has a very large impact
on the antenna performance - the deployable reflectarray
shown in Figure 4 is such a case. The flush-mounted all-
metallic feed employs the entire top face as an inherent part
of the feeding structure. The reflectarray consists of three
deployable panels with spring-loaded hinges and each panel is
constructed as a symmetric set of Rogers substrates around a
glass fibre core. In total the 1703 cross-shaped reflectarray ele-
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Fig. 3. Radiation patterns predicted by Polynomial Chaos Expansion com-
pared with Monte Carlo using 20.000 samples. The Confidence interval is
shown in grey.

Fig. 4. Deployable reflectarray on a 6U cubesat.

ments are positioned on the 3 panels. The reflectarray operates
at X-band from 8.0 - 8.4 GHz. Depending on the analysis to be
done different computational models are relevant. In the right-
hand side of Figure 4 an example of such a model is shown.
In that model the feed, which is embedded in the top face of
the satellite can be seen with the 3 panels of the reflectarray.

Variable Amount Distribution Tolerance
ψL, ψR 2 Uniform ±0.2◦

ψC 1 Uniform ±0.4◦

ψF 1 Uniform ±0.5◦

εs 1 Normal ±0.05 (±1σ)
ts 1 Normal ±0.01 mm (±1σ)
δi 5109 Uniform ±0.02 mm

TABLE II
SUMMARY OF VARIABLES AND THEIR DISTRIBUTIONS USED IN EXAMPLE

2.

This investigation relates to the hinge deployment angles of
the reflectarray panels and the feed plate. Obviously an accu-

Fig. 5. Radiation pattern with associated confidence interval predicted by
Stochastic Collocation compared with Monte Carlo using 1.000 samples. The
Confidence interval is shown in grey.

rate deployment of the panels is a prerequisite for succesful
communication with the satellite. Severe errors and possibly
malfunction of the antenna may result if the hinges fails to
open flawlessly. The deployment angles ψL, ψR, ψC , and ψF

of the left, right, centre, and feed hinges, respectively, are
therefore relevant quantities to investigate in an uncertainty
quantification analysis. The angles are varied according to
Table II and the Stochastic Collocation method is employed in
the analysis. A reference solution has been obtained using the
Monte Carlo method with 1000 samples. With only 4 variables
this is assumed to have converged.

The result obtained by Stochastic Collocation is shown in
Figure 5 where it is compared with the Monte Carlo reference.
The co-polar directivity of the reflectarray antenna is shown
for φ = 90◦. Note that the Stochastic Collocation analysis is
done with convergence requirements down to 30 dB below
the peak value on the co-polar component. Hence it may be
expected, that the method recovers the Monte Carlo reference
data down to a level of about 0 dBi. The maximum deviation
for the expected mean are less than 0.01 dBi around the peak
and 0.3 dBi in the off-peak parts. Corresponding values for
the confidence interval are about 0.01 dBi around the peak
and 0.4 dBi in the off-peak parts.

This second investigation relates to manufacturing errors
of the substrate thickness ts and permittivity εs as well as
the etching of the 1703 cross-shaped elements, denoted by δi.
This totals 5111 variables as listed in Table II. A converged
Monte Carlo reference result is not feasible for this analysis
because there are simply too many variables. Instead so-called
Ensemble reference data is generated using 10.000 samples.
This means that 10.000 random samples are generated and
the resulting output is used as reference when assessing the
correctness of the method. The obtained Ensemble values of
the co- and cross-polar directivities at θ = 0◦ are shown
in Figure 6 as black dots. Super-imposed on these are the
associated 95% confidence intervals predicted by the Stochas-
tic Collocation. It is then the aim that roughly 95% of the
black dots should be encompassed by the predicted confidence
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intervals. A detailed count of the black dots reveal that the
confidence intervals encompass about 98% and 92% of the
samples, for the co- and cross-polar directivities, respectively.
The above results were obtained using roughly 15.300 function
evaluations, i.e., samples of the etching errors δi and substrate
errors εs and ts.

Fig. 6. Co- and cross-polar directivities at θ = 0◦ sampled 10.000 times
with varying values of the substrate and element etching as listed in Table II.
Confidence intervals are shown in grey.

C. Example 3: Corrugated Horn Antenna

In this example a corrugated horn antenna is analysed. This
kind of antenna is commonly used as a reflector feed. The
horn includes 18 slanted radial corrugations as indicated in
Figure 7. The operating frequency of the horn is 10 GHz.

The horn profile may present challenges in terms of man-
ufacture. Particularly a specified accuracy of the slanted cor-
rugations may be difficult to maintain depending on wear and
accuracy of the employed machinery. It is therefore relevant
to have an idea of the impact of such inaccuracies. The 18
corrugations are varied with respect to widths and depths
giving rise to 36 variables, 18 depth errors di and 18 width
errors wi. In addition the flare angle α and two alignment

Fig. 7. Profile of the corrugated horn antenna with slanted corrugations.

angles β and φ are varied. In Table III the variables and their
distributions are summarised.

Variable Amount Distribution Tolerance
di 18 Uniform ±0.1 mm
wi 18 Uniform ±0.1 mm
α 1 Uniform ±0.5◦

β 1 Normal ±0.5◦ (±1σ)
ψ 1 Normal ±0.5◦ (±1σ)

TABLE III
SUMMARY OF VARIABLES AND THEIR DISTRIBUTIONS USED IN EXAMPLE

3.

The first investigation is done using the Polynomial Chaos
Expansion in an analysis of the radiation pattern of the antenna
when this is oriented with small alignment errors β and ψ
as summarised in Table III. For comparison a corresponding
analysis has been done using the Monte Carlo method with
10.000 samples of the two alignment angles β, ψ. With only
two variables, it is assumed that the Monte Carlo method has
converged. In Figure 8 the directivity of the antenna is shown
for φ = 45◦. Note that the Polynomial Chaos Expansion
analysis is done with convergence requirements down to 40 dB
below the peak value. Hence it may be expected, that the
method recovers the Monte Carlo reference data down to a
level of about -22 dBi. It is seen that the results are in very
good agreement with very small errors. Since the Polynomial
Chaos Expansion is not expected to provide correct results
for levels below -22 dBi, some deviations for values lower
than this are acceptable as is for example seen in the plot of
the cross-polar component. We note that these results were
obtained with just 41 function evaluations, i.e., samples of the
alignment angles.

The second investigation relates the peak directivity and
reflection coefficient. This is analysed including all 37 vari-
ables related to the manufacturing tolerances in Table III, i.e.,
excluding the alignment angles. The reference data consist of
an Ensemble of 1000 random samples and in Figure 9 the
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Fig. 8. Co-polar (top) and cross-polar (bottom) radiation patterns at φ = 45◦

of the corrugated horn with alignment errors of β, ψ at 10 GHz predicted
by Polynomial Chaos Expansion compared with Monte Carlo using 10.000
samples. Confidence intervals are shown in grey.

corresponding values of the peak directivity and reflection
coefficient at 10 GHz are shown. Again, the 95% confidence
interval, predicted by Stochastic Collocation, is super imposed.
It is noted that the confidence intervals encompass 91% and
95% of the samples, for the co- and cross-polar directivities,
respectively. These results were obtained with just 112 func-
tion evaluations, i.e., samples of α, β, and ψ.

IV. CONCLUSIONS AND PERSPECTIVES

The perspectives at the outset of this activity were quite
daunting: build a completely novel addition to the TICRA
Tools software family that allows, for any design that can be
analysed using the TICRA Tools algorithms, the user to easily,
rapidly and reliably compute statistics such as confidence
intervals for the effect of production uncertainties.

None-the-less, this challenge has been met. The output of
this activity is first and foremost software that allows the user
to do just that. The software is

1) Easy-to-use: For users familiar with the TICRA Tools
framework, all that is needed is to specify the distri-
bution of the variables and the output of interest. Most
everything else is handled automatically, while the user
can (but is not forced to) easily control a few additional
parameters.

2) Fast: With advanced UQ algorithms focused on mini-
mizing the computational resources spent, the user is

Fig. 9. Peak directivity and reflection coefficient sampled 1000 times with
varying values of the mechanical errors as listed in Table III. Confidence
intervals are shown in grey.

able to analyse several different designs in fractions of
the time needed for the industry-standard Monte-Carlo
alternatives to the software.

3) Reliable: The UQ algorithms provide accurate and reli-
able statistical output, meaning that users can trust that
the information such as confidence intervals are realistic.

With these properties, we are confident that a wide range
of antenna engineers including designers, manufacturers and
operators will find the software applicable in their daily work.

This assessment is also confirmed by the fact that TICRA
has already put in a vast amount of development resources
beyond this contract to further strengthen the UQ software.
We are currently aiming to release the software to our users
within 6 months of the completion of this contract.
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