

Doc. no: TER-OSRAD-RP-0005

 Rev: 1

Date: 2022-01-07

DRD:

Onboard Software Reference Architecture Demonstrator

Executive Summary Report

Prepared:

Poul Hougaard, Nicholas Mecredy, Dennis Bo Hansen

Senior Analyst, Senior Engineer, Systems Engineer

Authorized: Approved:

Robert Olesen Ole Hartnack

Product Assurance Project Manager

Onboard Software Reference Architecture Demonstrator
Executive Summary Report

Doc. no: TER-OSRAD-RP-0005, Rev: 1

Page 2 of 14

Record of Changes

ECR/ECO Description Rev Date

- Released 1 2022-01-07

Contents

1 Introduction ... 4
1.1 Project Objectives ... 4
1.2 Project Background .. 4

1.2.1 Onboard Software Reference Architecture (OSRA) 4
1.2.1.1 Execution Platform ... 4
1.2.1.2 Pseudo Component .. 4
1.2.2 Electronic Data Sheets (SEDS) .. 5

1.3 Device .. 5

2 Project Process ... 6
2.1 Specification of the Star Tracker SEDS .. 6
2.2 Integration of the device .. 7

2.2.1 Device Specific Access Protocol (DSAP) 7
2.2.2 Device Abstraction Control Protocol (DACP) 7
2.2.3 SEDS Integration in the Execution Platform 8
2.2.4 SEDS Integration in the Component Layer 9
2.2.4.1 Commands ... 9
2.2.4.2 Parameters .. 9
2.2.5 SEDS Integration in the Interaction Layer 9

2.3 Application Development .. 10
2.3.1 Application ... 12

3 Evaluation ... 13
3.1 Evaluation of SEDS .. 13
3.2 Evaluation of Tool Chain ... 13
3.3 Evaluation of SCM .. 14

4 Conclusion and Recommendations .. 14

Onboard Software Reference Architecture Demonstrator
Executive Summary Report

Doc. no: TER-OSRAD-RP-0005, Rev: 1

Page 3 of 14

Abbreviations and Acronyms

Abbreviation Meaning

ACN ASN Control Notation

ASN Abstract Syntax Notation

DACP Device Abstraction Control Protocol

DSAI Device Specific Access Interface

DSAP Device Specific Access Protocol

DSFI Device Specific Functional Interface

EDS Electronic Data Sheet

EU Electrical Unit

FDIR Fault Detection, Isolation and Recovery

GNDC Ground Communication

HK Housekeeping

ISO International Standard Organization

OSRA On-Board Software Reference Architecture

OSRAD OSRA Demonstrator

PUS Packet Utilization Standard

SAVOIR Space Avionics Open Interface Architecture

SCM Space Component Model

SECT SAVOIR Electronic Data Sheets Common Tooling

SEDS SOIS Electronic Data Sheet

SOIS Spacecraft Onboard Interface Services

STR Star Tracker

SW Software

TASTE The ASSERT Set of Tools for Engineering

TBD To Be Defined

TC Tele Command

TM Telemetry

Onboard Software Reference Architecture Demonstrator
Executive Summary Report

Doc. no: TER-OSRAD-RP-0005, Rev: 1

Page 4 of 14

1 Introduction

This Executive Summary Report gives a short introduction to the project and summarizes the
findings gathered during the OSRAD project activities. The summary is intended to be a self-
contained description.

1.1 Project Objectives

1.2 Project Background

1.2.1 Onboard Software Reference Architecture (OSRA)

The baseline for the project is the onboard software reference architecture. The architecture
aims at ‘separation of concern’, meaning that mission independent functionality should be
isolated in an ‘execution platform’, while mission dependent functionality belongs to the
component layer (application layer).

Figure 1-1: Overall Reference Architecture

1.2.1.1 Execution Platform

The execution layer provides all services needed for tasking, protection, synchronization,
communication, etc. These services are used by the interaction layer. The services provided
by the execution platform are independent of the application.

It is intended that the execution platform is reusable across missions. For this to succeed, the
services integrated in the execution platform must be generic, e.g., if monitoring and control
services are based on PUS, it shall be possible to configure the execution platform with the
variability of PUS.

1.2.1.2 Pseudo Component

Some of the services provided by the execution platform are needed at component level. To
expose execution platform services to the application, the concept of a pseudo component is
introduced.

The objective of the activity is to analyse how the on-board software reference architec-
ture (OSRA) toolchain can be extended with a mechanism that support/allows (semi) au-
tomatic integration of instruments (devices), that has been specified by electronic data
sheets (SEDS).

Onboard Software Reference Architecture Demonstrator
Executive Summary Report

Doc. no: TER-OSRAD-RP-0005, Rev: 1

Page 5 of 14

A pseudo component, representing the functionality of a device, is called a device
component.

1.2.2 Electronic Data Sheets (SEDS)

The electronic data sheets applied are defined as the SOIS Electronic Data Sheets (SEDS).

SEDS is intended to replace the traditional user manuals, specifications, and data sheets
that accompany a device and are necessary to determine the operation of the device and
how to communicate with it.

Figure 1-2: SOIS EDS Scope

An electronic data sheet is intended to describe a device interface in a formal way, allowing
automatic processing of the specification.

Devices are mission independent, while the actual usage of a device will be mission
dependent. This implies that the implementation of the device control belongs to the
execution platform, while the actual usage belongs to the component layer.

1.3 Device

The example device used is the Terma T1 star tracker. The configuration consists of a head,
connected to the ‘electrical unit’ (EU). The electrical unit is responsible for the communication
with the onboard computer.

Figure 1-3: Star Tracker Configuration

A pseudo component appears at the component layer as ordinary component (with pro-
vided services). However, a pseudo component has no implementation at component
level but behaves as a kind of proxy for the execution platform services. The interaction
layer is responsible for mapping component level requests to the corresponding execu-
tion platform services (to ensure the mission independence of the execution platform and
move mission dependency to the component/interaction layers).

Onboard Software Reference Architecture Demonstrator
Executive Summary Report

Doc. no: TER-OSRAD-RP-0005, Rev: 1

Page 6 of 14

2 Project Process

2.1 Specification of the Star Tracker SEDS

The star tracker SEDS is intended to describe the interface
of the star tracker, as defined in the ICD. This implies that
the resulting SEDS specifies how to monitor and control the
star tracker but does not describe the semantics of the con-
trol. For example, the SEDS describes how to send a re-
quest for a mode change but has no knowledge of the ex-
pected resulting star tracker mode. Also, the SEDS is not
able to prohibit illegal mode change requests.

The SECT tool supports the generation of interface descrip-
tions in terms of html files. This is shown in Figure 2-1.

Figure 2-2 shows the corresponding section in the xml file.

Figure 2-2: Extract from Star Tracker SEDS

Figure 2-1: Generated ICD

Onboard Software Reference Architecture Demonstrator
Executive Summary Report

Doc. no: TER-OSRAD-RP-0005, Rev: 1

Page 7 of 14

2.2 Integration of the device

Figure 2-3 illustrates the overall architecture
with the on-board software represented by
OSRA and a remote device, connected via a
physical bus.

The Execution Platform is responsible for
mission independent TC/TM management,
the Pseudo Component is responsible for
providing the services to the component
layer, while the Application implements the
mission specific process.

An SEDS specifies the device interface, and
the integration results in functional code
(TC/TM handling) in the execution platform
and application interface specification in the
component layer (Pseudo Component).

The star tracker SEDS defines components DSAP and
DACP, taking care of different levels in the communication, as
illustrated in Figure 2-4.

All SEDS defined functionality will be implemented in the
execution platform. The monitoring and control services are
provided at component layer by a Pseudo Component.

2.2.1 Device Specific Access Protocol (DSAP)

DSAP is defined as:

The DSAP provides the functionality in the DSAI interface.

2.2.2 Device Abstraction Control Protocol (DACP)

DACP is defined as:

The DACP provides the functionality in the DSFI interface.

The control procedure that provides the

abstraction of a device-specific access proto-

col to a functional interface.

The protocol that maps DACP to the applied

SOIS subnetwork (Packet Service).

DSAP is responsible for TC/TM management.

Figure 2-3: Baseline Configuration

Figure 2-4: IO Stack Components

Onboard Software Reference Architecture Demonstrator
Executive Summary Report

Doc. no: TER-OSRAD-RP-0005, Rev: 1

Page 8 of 14

2.2.3 SEDS Integration in the Execution Platform

SEDS contains functional specification for
mapping between interfaces and enables the
generation of part of an IO stack, i.e., the DACP
and DSAP components, as illustrated. The SEDS
expects the existence of a ‘Packet Service’ layer,
which in turn requests lower-level driver
functionality.

The ‘Front End’, ‘Packet Service’ and ‘Driver
Library’ modules are not defined in the SEDS and
must be hand coded.

For the integration of SEDS into the execution platform, it was decided to use SECT and
TASTE tools:

Figure 2-6: Execution Platform generation

As shown in Figure 2-7, SECT/TASTE strategy is to
provide/require one function and use the actual
(TC)commands/(TM) packets as parameters. This
simplifies the interface but leaves the actual
identification of the commands/packets to the sequential
code.

Figure 2-5: SEDS Elements

Figure 2-7: Generated IO Elements

Onboard Software Reference Architecture Demonstrator
Executive Summary Report

Doc. no: TER-OSRAD-RP-0005, Rev: 1

Page 9 of 14

2.2.4 SEDS Integration in the Component Layer

The pseudo component, representing the device, is constructed as outlined here.

The top-level interface (DSFI) is mapped to a pseudo component. The pseudo component’s
provided operations and data set emitters are generated, based on the interface’s
commands and parameters:

2.2.4.1 Commands

<Command mode="async"

 name="STRModeCommand">

</Command>

This is mapped to an ‘STRModeCommand command.

2.2.4.2 Parameters

Parameters have several attributes:

<Parameter mode="async" -- “async” or “sync”

 name="AttitudeInformation"

 readOnly="true" -- “true”/“false”

 type="ROUTINE_ATTITUDE_PARAMETERS" –- defined in the DataTypeSet

 shortDescription="Routine attitude parameters"/>

An ‘async’ parameter will be provided as an ‘data set emitter’, i.e., will be updated
automatically.

You can recognise this in the actual device component:

Figure 2-8: Device Pseudo Component

2.2.5 SEDS Integration in the Interaction Layer

The interaction layer is intended to be generated automatically from the application
component model, based on the services provided by the execution platform. In principle, it
is simply to call the related operations in the two layers. However, the introduction of data set
emitting requires some data processing (the emit concept is not known by the execution
platform). This is done by the introduction of a mapping module, illustrated in Figure 2-9 as
the ‘Bridge between STR Pseudo Component and DSFI’.

Onboard Software Reference Architecture Demonstrator
Executive Summary Report

Doc. no: TER-OSRAD-RP-0005, Rev: 1

Page 10 of 14

‘

Figure 2-9: Interaction Layer Construct

2.3 Application Development

When developing the application, the execution platform and the corresponding interaction
layer shall be seen as a black box, as illustrated below.

Figure 2-10: Application Development Environment

From the application point of view, the only visible result of the integration of the device is the
Device (pseudo) Component.

Onboard Software Reference Architecture Demonstrator
Executive Summary Report

Doc. no: TER-OSRAD-RP-0005, Rev: 1

Page 11 of 14

Based on the System Requirements, an initial logical system model was produced as shown
in Figure 2-11 with data as defined by the Data Dictionary found in Table 2-1

Failure Detection,
Isolation and

Recovery
(FDIR)

Safe Mode Command

Star Tracker
(STR)

HK Parameters

Failure Event Report

STR Mode Information

Science Payload
Control Subsystem

(SPCS)

FDIR Event Report

Ground
Communication

(GNDC)

Attitude Information

STR Mode Command

Science
Payload Status

Figure 2-11: System Requirements Logical Model

Table 2-1: Data Dictionary

Data Name Description

STR Mode Command Command that changes the mode in which the STR is cur-
rently operating.

Safe Mode Command Command the STR into a safe mode

FDIR Event Report Report that the FDIR has sent a Safe Mode Command to STR

Science Payload Status Report about change in the Science Status parameter main-
tained by the SPCS.

HK Parameters Parameters holding the values of selected STR housekeeping
parameters.

Failure Event Report Report that an event has occurred in the STR that may lead to
reduced STR performance.

STR Mode Information Information about the mode in which the STR is currently oper-
ating.

Attitude Information The information that SPCS needs to verify STR attitude is ac-
curate and valid and current. This information includes STR at-
titude, angular rate, and attitude validity information.

Onboard Software Reference Architecture Demonstrator
Executive Summary Report

Doc. no: TER-OSRAD-RP-0005, Rev: 1

Page 12 of 14

For specifying the software requirements, we use the logical model shown in Figure 2-12.
This model is an elaborated version of the logical model used for the system requirements.
The model shows the elements of the on-board application.

 FDIR Component

Safe Mode Command

 STR Pseudo
Component

HK Parameters

Failure Event Report

STR Mode Information

 SPCS Component

FDIR Event Report

 GNDC Component

Attitude Information

STR Mode Command

Science
Payload Status

Required Interface

Provided Interface

Dataset Emitter

Dataset Receiver

Legend:

STR Mode
Command Copy

Figure 2-12 Software Requirements Logical Model

2.3.1 Application

The application initially registers as a data set receiver:

Then the application patiently waits until the upstart sequence has finished:

Subsequently, the application execution is controlled by the datasets received from the
pseudo component, as illustrated in part of the output from the application.

PseudoComponent_register_AttitudeInformation_DatasetReceiver(attitudeInformation_DatasetReceiver);
PseudoComponent_register_StrModeInformation_DatasetReceiver(strModeInformation_DatasetReceiver);
PseudoComponent_register_FailureEventReport_DatasetReceiver(anomalyReport_DatasetReceiver);
PseudoComponent_register_HKParameters_DatasetReceiver(housekeeping_DatasetReceiver);
PseudoComponent_register_ParameterValue_DatasetReceiver(parameterValue_DatasetReceiver);
PseudoComponent_register_InformationEventReport_DatasetReceiver(informationReport_DatasetReceiver);
PseudoComponent_register_command_verification_DatasetReceiver(application_commandVerification);

// upstartSequence: wait for autonomous change to atm - 1004
if (upstartSequence) {
 if (code == 1004) {
 upstartSequence = 0;
 printf(" Application: **** end of upstartSequence ****\n");
 }
 }

Figure 2-13: Dataset Receiver Registration

Figure 2-14: Wait for Upstart Conclusion

Onboard Software Reference Architecture Demonstrator
Executive Summary Report

Doc. no: TER-OSRAD-RP-0005, Rev: 1

Page 13 of 14

As shown, the application is informed about the status of the commands. This is managed by
exporting the TM[1,*] verification packages as command_verification_datasets, which the ap-
plication has registered as a receiver of.

3 Evaluation

3.1 Evaluation of SEDS

The main findings with respect to the SEDS are.

• It is not possible to define reactions to restriction violation. This implies that the
reaction is tool dependent. We found that the applied tool chain provoked an
execution crash when a restriction was violated.

• The SEDS is difficult to read and very laborious to write. This implies that it is error
prone to write specifications. We did not have specialized editors available

• The SEDS standard specifies the syntax. The sematic is not defined and must be
deduced based on the provided examples and from the actual syntax. This implies
that specific semantics might first be clarified by the applied tool set.

• Validation of an SEDS. It is straight forward to validate the syntax towards the
provided schema. Semantic validation is much more complicated.
SECT can do some semantic checking (e.g., complains in case of missing
references).

• It is not possible to define endianness on interface level. Endianness has to be
defined on type definition level (so two definitions of the same type are needed).

• The SEDS is sequential and does thus not have means for protection against data
overriding being caused by e.g., task switching.

3.2 Evaluation of Tool Chain

Detailed findings

• For arrays of dynamical length, the auto-generate tool makes the maximum possible
size depending on the type of the length field. In the actual case resulting in a buffer
size of 2,267,742,764,480 bytes.

• The information provided in the SEDS gives limits for interface purposes only.
Application-level limits for use by FDIR must be specified elsewhere.

• Functions to convert TM/TC to/from internal representation is manual coded.
In principle, the code could be autogenerated.

Application started
Application: **** end of upstartSequence ****
Application: Got ROUTINE_ATTITUDE_PARAMETERS, time 26.001419 (10)
Application: Got ROUTINE_ATTITUDE_PARAMETERS, time 27.001419 (20)
Application: Got ROUTINE_ATTITUDE_PARAMETERS, time 28.001419 (30)
Application: Got ROUTINE_ATTITUDE_PARAMETERS, time 29.001419 (40)
Application: Got ROUTINE_ATTITUDE_PARAMETERS, time 30.001419 (50)
Application: Got ROUTINE_ATTITUDE_PARAMETERS, time 31.001419 (60)
Application: Got PARAM_HK_PARAMETERS (3)
Application: Got STR MODE 3, atm
Application: Command(1) SetParameterValue in ATM, HkPeriod = 5: Requested
Application: Command(1) SetParameterValue in ATM, HkPeriod = 5: Successful start of execution
Application: Command(1) SetParameterValue in ATM, HkPeriod = 5: Successful completion of execution
Application: Got ROUTINE_ATTITUDE_PARAMETERS, time 32.011734 (70)

Figure 2-15: Application Log

Onboard Software Reference Architecture Demonstrator
Executive Summary Report

Doc. no: TER-OSRAD-RP-0005, Rev: 1

Page 14 of 14

• Building an application with several devices is problematic, as we end up with
multiple copies of the same common definitions

• The .pr files generated by SECT that should represent the state machines coming
from SEDS are not accepted by TASTE

• ‘Spare’ fields in telecommands based on the same generic type must be named
individually

• We found that in some case, the validation of a 32-bit unsigned integer failed, - the

actual value was evaluated greater than 232 − 1.

3.3 Evaluation of SCM

Implementations of the SCM model in terms of model editors and code generations is still on
the prototyping level. Consequently, it is difficult to export editors from one project to another.

However, using the SCM editor for application design, we found:

• Static registration as data set receiver. This means that the dynamic (state
dependent) registration/un-registration as data set receiver is not possible.
Consequently, data set filtering must be implemented in the functional code.

• Relations between provided and required operations are strictly one-to-one. This
means that if there is a need for sending the same command to two components,
you must duplicate the command, and send two commands. This implies a loss of
semantics, which must be covered textually.

• During system and software requirement specification, definition of corresponding
logical models in the SCM editor allowed for reuse/exchange of the models through
the requirements phase to the component design phase.

4 Conclusion and Recommendations

SOIS EDS is intended for specification of devices. This implies that the SEDS functionality
shall be mapped to the execution platform while the (top level) interface shall be mapped to a
device pseudo component.

The SOIS EDS standard is intended to be rich enough to describe any device, and to allow
for generation of all necessary device artefacts (ICD, user manual, tests, ..). This has implied
that an SEDS specification is close to impossible to read and equally difficult to write.

The SEDS specification examples does not define the behaviour of the device, but only the
extraction/packing of messages:

• They define the interfaces statically, and

• Define dynamic handling of incoming/outgoing messages.

Recommendations:

• Be very specific with the objective of the actual SEDS. This means that it must be
clear if the SEDS shall define packing/unpacking of messages, if it shall be used to
specify the behaviour of the device, or if it shall be used to define the ICD. The
intention is of course that the SEDS could be used for everything. However, this
requires tools for extracting and isolating the relevant parts of the SEDS.

• Authoring tools for writing and validation of SEDS specifications should be made
available.

• Compilers for transferring SEDS to source code should be made available.

• Specification of the semantics of the SEDS definition is needed.

	1 Introduction
	1.1 Project Objectives
	1.2 Project Background
	1.2.1 Onboard Software Reference Architecture (OSRA)
	1.2.1.1 Execution Platform
	1.2.1.2 Pseudo Component

	1.2.2 Electronic Data Sheets (SEDS)

	1.3 Device

	2 Project Process
	2.1 Specification of the Star Tracker SEDS
	2.2 Integration of the device
	2.2.1 Device Specific Access Protocol (DSAP)
	2.2.2 Device Abstraction Control Protocol (DACP)
	2.2.3 SEDS Integration in the Execution Platform
	2.2.4 SEDS Integration in the Component Layer
	2.2.4.1 Commands
	2.2.4.2 Parameters

	2.2.5 SEDS Integration in the Interaction Layer

	2.3 Application Development
	2.3.1 Application

	3 Evaluation
	3.1 Evaluation of SEDS
	3.2 Evaluation of Tool Chain
	3.3 Evaluation of SCM

	4 Conclusion and Recommendations

		2022-01-06T14:13:24+0100
	Robert Olesen

		2022-01-06T13:53:17+0100
	Ole Hartnack

