

Eleonoor Bosch Senior R&D Engineer

07.10.2024

SLOTT FINAL PRESENTATION

TABLE OF CONTENTS

- Consortium
- Straylight Background and Objectives
- Project Organization
- Results and Accomplishments
- Conclusion

SLOTT CONSORTIUM

:: CSem

EXPERTISE AND RESPONSIBILITIES

:: CSem

- Straylight characterization with ultrafast time-of-flight imaging
 - Optical system test in cleanroom and vacuum
- System performance verification
- Test with representative baffle model

- Smart mechanisms and scientific instrumentation for space
- Lidar for space

- Straylight performance ٠ characterization and simulation, optics and electronics systems, satellite and space technology
- **Optoelectronics** ٠ hardware equipment for space, optical communications, OGSE, AOCS, Laser systems

- Project leadership and quality management
- Sub-system manufacture and preliminary test

- System requirements ۲ definition,
- Straylight simulation
- Manufacturing and ٠ alignment of illumination module

STRAYLIGHT BACKGROUND AND PROJECT OBJECTIVES

STRAYLIGHT

- Sources
 - Rogue paths
 - Ghosts
 - Diffraction
 - Scattering
 - At optical surfaces
 - At structural surface

- **Optical design**
 - Vanes
 - Baffles •

CHEOPS telescope

rsurface

:: CSEM

POINT SOURCE TRANSMITTANCE

- Irradiance ratio: focal plane / entrance aperture
 - Focal plane = continuous surface
 - Extremely large dynamic range (e.g. 12 orders of magnitude)
- Simulation softwares
 - ASAP, FRED, TracePro, LightTools
 - Limitations
 - Estimations of BRDF
 - Modelling precision (i.e. unexpected defects)
 - Processing resources & time consumption

NO DUST 300PPM 500PPM 300PPM 300PPM (AKTAR) Beck, T. et al. CHEOPS – Status summary of the instrument development, SPIE Space Telescopes and Instrumentation 2016, Vol 9904 (2016)

:: CSeM

DIRECT TIME-OF-FLIGHT LIDAR

★-----→
time-of-flight

Time of flight principle:

- 1. A pulse travels from its source
- 2. Some light scatters off a target
- 3. Some incident light generates a signal at the detector

Advantages

- The ability to time resolve detected straylight sources
- Highly sensitive detectors
 Sufficient measurement dynamic range (10⁻¹³).
- The acquisition time up to a few hours
- Flexible system design
 Can optimize for sensitivity, focal plane resolution or bandwidth

In straylight characterization: Detected light with different times of flight took different paths to the detector

TIME-OF-FLIGHT STRAYLIGHT CHARACTERIZATION

XY translation

stage

Laser

- Demonstrated at CSL
 - High dynamic range (10⁻¹¹)
 - Detector impulse response FWHM 124ps
 - Depth resolution 37.68mm
 - Differentiation of intrinsic baffle straylight from external sources
 - Air scattering vs defects

Clermont, L., Blain, P., Khaddour, W. et al. Unlocking stray light mysteries in the CoRot baffle with the time-of-flight method.

Sci Rep 14, 6171 (2024). https://doi.org/10.1038/s41598-024-56310-z

9 • SLOTT Final Presentation

:: CSem

Design, manufacture and test a functional OGSE verification breadboard

- Capable of detecting straylight paths
 - Based on incidence angle (classical PST)
 - With high resolution in time and space.
- Portable
- For baffle apertures up to 1m

The performance of the manufactured breadboard was verified using a representative test object – a model of the CHEOPS main baffle.

PROJECT ORGANIZATION

WORK PACKAGES AND RESPONSIBILITY BREAKDOWN

SLOTT RESULTS AND ACCOMPLISHMENTS

OPTICAL SIMULATION AND REQUIREMENTS DEFINITION

- Time of flight simulation considering several optical configurations
- Definition of system requirements for
 - LISA telescope baffle
 - CHEOPS fore and main baffle

Key project decision Validate time-of-flight straylight characterization with CHEOPS

" CSem

MAIN DESIGN REQUIREMENTS

Range resolution	≤10mm
Dynamic Range	10 ⁻¹³
Off-axis elevation angles	from 0° to 90°
Azimuth angles	from 0° to 180
Maximum baffle aperture	1m
Spatial scanning resolution	10mm

Portable Automated aperture scan + optical path length calculation

DETAILED SYSTEM DESIGN

- Illumination module
 - Laser selection
 - Beam expander
 - Gimbal mirror
- Detector module
 - Detector selection
 - Mounting configuration
- Timing system
 - Reverse start-stop mechanism
 - TCSPC selection

OGSE MANUFACTURING

- Illumination module assembly and alignment
 - Gantry system installation
 - Optical path setup and alignment
 - Gimbal attachment
- Detector module assembly
- Electrical connections and communication systems
- Software implementation
 - Timing system
 - User interface
 - Optical path length calculation

Gantry attachment

Beam expander

ILLUMINATION MODULE ALIGNMENT

- Coordinate frame definition
- Alignment from laser exit, through beam expander path, into gimbal mirror and telescope aperture
- Optical path length calculation

OGSE PERFORMANCE EVALUATION

- Time correlation verification
- Detector impulse response
- Depth resolution (right)
- Path length verification

• Dynamic range (left)

:: CSEM

CHEOPS BAFFLE TEST

- Full system alignment with test object
- Nine test locations
 - 7 baffle vanes
 - 2 walls
- About 1.1m maximum expected path length for straylight (~3.7ns)

:: CSeM

PERFORMANCE EVALUATION

- Simulation based on tested illumination positions
- High dynamic range -> long simulation time
- Overall good correlation
 - Test object is a model, and not stored in clean environment
 - Measurement noise

:: csem

OPPORTUNITIES FOR IMPROVEMENT

- Cleanliness testing
 - Optimization for use in clean room
- Vignetting at extremes of gimbal angle
 - Larger mirror
- Depth precision, wavelength and detector resolution
 - Use of super-conducting single photon detector (SSPD)
 - 17.8ps impulse response
 - Compatible with 1064nm light \rightarrow LISA telescope
 - Liquid helium cooled
 - 48 pixels

CONCLUSION

SLOTT PROJECT CONCLUSION

Successful validation of time-of-flight straylight detection scheme using a green laser and single pixel SPAD

- High dynamic range (10⁻¹³)
- High depth precision (10mm)
- Portable

Ready for upgrade to

- Cleanroom compatibility
- Longer wavelength

FACING THE CHALLENGES OF OUR TIME