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Goals: 

• Creation of DT infrastructure based on 
ESA/ESOC ground SW

• Definition of AI/ML logic supporting 
selected use cases

• Validation with a real mission
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Overview

Achievements:
• Analysis of existing SW
• Learning end-users needs
• Design of generic DT infrastructure
• Implementation of a prototype with 

core functionality
• Use of flying mission for validation

Digital TwinMCS

S/C

AInabler

LTA

TM/TC

TM/TC

Inference

Internal 
DT state

Training data

S/C data

TM/TC

G/S

State 
vector



Presented aspects:

• Creation of new DT instance from GUI

• Creation of the DT dedicated session in MCS (for data separation)

• Setting the DT state to a be as close as possible as its S/C counterpart at given time

• Establishing links between MCS and the DT instance

• Receiving DT TM data by MCS and their visualization

• Checking that TM data include parameters generated with use of the AI model incorporated into the simulator

• Commanding DT by invoking a predefined activity list

• Receiving TM parameters describing the DT internal state

Demo
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AIMSYS - AI for model-based diagnostic at System level

Objectives

Exploit the usage of Model Based diagnostics at System level for reliable anomaly detection as well as for pre-
launch testing including pass/fail criteria evaluation for tests:

❑ Define, prototype and assemble the infrastructure platform running the AI

❑ Define AI/ML logic supporting anomaly detection, root cause analysis, ground testing, resource usage 

predictions & margins refinement 

❑ Validate the implemented prototype against a real mission

Introduction
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Spacecraft Digital Twin (S/C DT): Dynamic and self-evolving digital representation of the 
exact S/C state at given time

❑ Improve understanding of Spacecraft behavior 

❑ Support and improve efficiency of FCT tasks

❑ Forecast future spacecraft state

❑ Detect anomalies

❑ Many more …

Concepts

Alignment: setting the state of the simulator so that it matches a provided state vector

❑ Synchronization - adjusting the simulator state so its TM matches the values of the real asset.

❑ Calibration - adjusting simulator analogue coefficients inside the simulator models

State Vector (SV): digital representation of the S/C state at a given point in time

❑ Synchronization State Vector - telemetry parameters that characterize the operational state of the spacecraft 

❑ Calibration State Vector – values of simulator analogue coefficients to use in simulator SMP models
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Available infrastructure

❑ Use the SIMULUS infrastructure for system 
modelling

❑ Interact with EGS-CC for monitoring and control

❑ Interact with MUST for housekeeping storage 

and retrieval

❑ Interact with the EGOS-MPS for mission planning

❑ Rely on the AInabler infrastructure for AI/ML 
development and training

❑ Reuse, consolidate and focus the outcomes of 

the ongoing studies

❑ pre-launch domain studies’ outcomes did not 
match project needs

❑ Pre-launch functionality was descoped

Context

MUST

AInabler
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Gaps in current infrastructure

Simulator with DT capabilities (i.e. automatic alignment)

Storage and analysis of simulator-generated data

Improvement of simulator fidelity by AI

Quick evaluation of past or custom scenarios

Analysis of internal DT state

Missing mechanisms:

DT lifecycle management
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Proposed approach

AiMSys
AI for model-based diagnostic at System level

Reuse existing infrastructure

Operational 
Simulators

Mission Control 
Systems

Long Term 
Archives

AI Platform

Create 
AI 

models

Manage 
DT 

lifecycle

Monitor 
& 

Control 
DT

Store & 
analyze DT 
state (incl. 
internal)

Add missing features

Integrate 
AI models

in 
Simulator

Align DT
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DT infrastructure

Architecture

• DT Orchestrator – for handling high-level tasks

• Simulation Manager – for controlling DT

• Simulation Container Orchestration – for running DTs 
in containers

• State Updater – for DT alignment

• State Builder – for building SV needed by SU

• MCS – for Monitoring & Control of DT

• Remote Connectors – for storing internal DT state

• AI platform – for AI/ML creation

• AI application – for analysis of DT data

• ML Model – for incorporation of AI model in SIM
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DT Lifecycle 
Management
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Required functions

• Start Digital Twin instance

• Specify Mission for which to start a new Digital Twin

• Provide the date to be used for the alignment

• Decide whether to apply existing calibrations

• Run given scenario to validate by executing pre-prepared activity list

• Stop Digital Twin instance

• Clean resources

• Get status of a Digital Twin instance

• Display status of the past/current Digital Twin instance

• Maintain in DB basic characteristics of DT (id, creation/stop times, alignment date, state vector,…)

• List Digital Twin instances

• Filter by mission and or state (started, aligned, stopped, error)

DT Lifecycle Management
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DT Management

Simulation 
Manager

MCS-CC State UpdaterDT

AlignConnect

Request new DT

Request alignmentCreate session

Create instance

Container 
Orchestrator 

Connect to DT

Close session

Kill

Destroy instance

DB

Status



Demo

• Create a new instance of DT

• Connect via VNC to that instance

• Create the DT dedicated session in MCS-CC

• List all instances

• Get status of instance by ID

DT Management
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DT Alignment
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Automatic DT alignment

State Vector

Formed by S/C telemetry parameters

Defines the S/C state at a certain moment

Used as a target state for alignment process

Alignment

Synchronize operational state 

Apply calibration data
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Alignment infrastructure

Simulation 
Manager

State Builder

State Updater DT

MCS-CC

MUST

Alignment

Calibrations

S/C state

Request alignment
for a certain epoch

Deploy

Generate State 
Vector based on 

epoch

CLI Wrapper

Performs 
alignment on 

simulator
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Instructions generation

Alignment

To provide a reusable and modular structure, two Jinja2 layers

Were used to generate the alignment code:

• Generic Layer:
• Mission agnostic.
• Defines macros that can be reused in mission specific code.

• Mission Specific Layer:
• Implements the sequence to align specific mission.
• Based on macros defined in Generic Layer.
• Specifies the concrete TM parameter and commands, that are transparent to the Generic Layer.

State Updater
Generate instructions 
to be executed on the 

simulator

Mission-specific 
templates

Mission-agnostic 
generic macros

Based on explicit TCs 
or FOPs



Flying Mission Integration: Alignment
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DT Monitoring & Control



MCS-CC

Monitors & Controls DT as if it was a real S/C

Dedicated system sessions provide 

isolated data spaces for experiments

Automatic connection to the new DT 

instance after alignment

Automatic execution of predefined 

activity lists for scenarios evaluation

Extension to AInabler for accessing the 

DT data for analytical purposes

WebUI for visualizing Monitoring & Control data



DT Monitoring & Control

Simulation 
Manager

MCS-CC DT

Create

Inform which 
activity list

to execute

Monitor & 

Control

VNC

Create

MCS-CC 
Session

MCS-CC 
WebUI

Connect

Visualize

M&C Interact

directly



Demo

• Creation of MCS-CC session

• Connecting to the session

• Checking TM and TC links status before and after alignment

• Observing that the activity stack specified during DT creation was executed

• Creating UDDs for visualizing selected TM parameters, e.g. the ones affected by the ML model incorporation

DT Monitoring & Control



DT Data access from AInabler

• Accessing real S/C data from MUST

• Accessing DT data from MCS-CC

MCS-CC
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AI/Optimization Models
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Resource Usage Forecasting
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Goal: Resource forecasting of the solar array output voltages  

Resource Usage Forecasting

Python Model 

Training Environment

Resource 
forecasting ML 

model

Simulator

ONNX model in 
the simulator

Pre-trained 
ML model

Downloaded TM



Input data and pre-processing steps: one year of data

Resource Usage Forecasting

ML model

GPS 
Position

Attitude 
quaternion

Sun 
presence

Solar array output voltages

1. Data Interpolation: Interpolate 
attitude quaternion (q1, q2, q3, 
q4) and sun presence data using 
linear methods to match the GPS 
timestamp values.

2. Coordinate Conversion: 
Convert GPS coordinates into 
radius and unit vectors.

3. Data Standardization: 
Standardize the radius data.

4. Error Removal: Remove GPS 
data with position values of 0 or 
infinity



Comparison of Regression Models and their performances

Resource Usage Forecasting

Model Description Key Feature

OLSR (Ordinary Least 

Squares Regression)

Minimizes the sum of 

squared differences 

between observed and 

predicted values.

Basic linear regression 

without regularization

LASSO (Least Absolute 

Shrinkage and 

Selection Operator)

Uses L1 regularization, 

leading to some 

coefficients becoming 

zero.

Effective for variable 

selection.

Ridge Regression Similar to OLS but 

includes L2 

regularization, penalizing 

large coefficients.

Helps prevent overfitting

ElasticNet Combines L1 and L2 

regularization, useful for 

correlated variables.

Hybrid of Lasso and 

Ridge regression.

R-squared (r2) score value of all four models:

o OLSR = 0.9926702477416942

o LASS = 0.7787996545678473

o ENET = 0.807793425468875

o RIDG = 0.992433476417404

Ridge Regression showed better performance out of 
all other models



Ridge Regression Model: Predicted vs. Actual Values

 

Resource Usage Forecasting



Model pipeline and Integration

Resource Usage Forecasting

Sklearn Pipelines:

• class sklearn.pipeline.

Pipeline(steps, *, memory=None, verbose=False)

• A sequence of data transformers with an optional 

final predictor.

• Purpose: Sequentially apply transformers to 

preprocess data, concluding with a final predictor for 

modeling.

• Model Training Pipeline:

• Develop a custom transformer for preprocessing 

the training data within the sklearn pipeline.

• Construct and train the final model pipeline, 

saving the whole pipeline as a pickle file.

• Inference Pipeline:

• Implement a custom transformer for 

preprocessing the test data.

• Integrate the test data preprocessing step into 

the saved pipeline, Utilizing the previously 

stored model to process and analyze the test 

data.



Conclusions

❑ Model performance: The Ridge Regression model achieved a high score of 0.99, demonstrating strong 
predictive ability for solar array output voltages.

❑ Negative predictions: The model sometimes produced negative voltage values

❑ Recommendations for Improvement:

▪  Model constraints: Introduce constraints or transformations to prevent negative values.

▪  Expanded Data: Use multi-year datasets to improve model generalization and account for seasonality.

▪  Model refinement: Fine-tune the regularization parameter.

▪  Implement advanced feature selection techniques.

▪  Use ensemble methods to combine Ridge Regression with other models.

▪  Explore alternative models, such as Support Vector Regression, Decision Tree Regression, Random Forest,   
and Neural Networks.

▪  Include Physics Informed AI/ML models

Resource Usage Forecasting
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Calibration
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Goal of the calibration use case

Isolated model for calibration

Find the constants that, when set in the simulator models, lead to the most accurate TM

Jupyter Notebook Simulator

Downloaded TM

Isolated model as

SIMULUS unit test

Calibrated 
values

Generated 
TM

Optuna 
optimization 

routine

Python library Optuna used for optimizing hyperparameters.



Contents of the isolated model

Isolated model for calibration

1. Instantiate the battery

2. Set the selected values of the coefficients being 

calibrated

3. Simulate the battery for the same period of time as 

the downloaded TM

• Set the intensity of charge/discharge to 

simulate same power load

• Simulate for a ∆T

• Send the new voltage to the optimization 

routine  

Calculation of EMF in the simulator



• Bayesian optimization:

➢ Probabilistic model-based approach for 
optimizing black-box functions that are 
expensive to evaluate.

➢ It uses a surrogate model (commonly a 
Gaussian Process) to approximate the 
objective function and an acquisition 
function to decide where to sample 
next.

• Genetic algorithm:

➢ Inspired by the process of natural 
selection and are used for optimization 
and search problems.

➢ They work by evolving a population of 
candidate solutions through selection, 
crossover (recombination), and 
mutation.

Feature Bayesian Optimization Genetic Algorithm

Model Type Probabilistic model-based (e.g., Gaussian 

Process)

Population-based evolutionary algorithm

Function

Evaluations

Efficient, fewer evaluations needed Can require many evaluations

Search Strategy Uses a surrogate model and acquisition

function to balance exploration and 

exploitation

Uses evolutionary operators to explore and 

exploit the search space

Handling of Noise Can handle noisy evaluations Can handle noisy evaluations, though less 

explicitly

Dimensionality Computationally intensive for high 

dimensions

Handles high-dimensional spaces better

Global vs Local 

Optima

Tends to find global optima Good at avoiding local optima, but 

convergence can be slow

Parameter Tuning Requires careful tuning of the surrogate 

model and acquisition function

Requires tuning of evolutionary parameters 

(e.g., population size, mutation rate)

Application

Suitabilty

Expensive-to-evaluate, smooth functions Combinatorial, complex, multi-modal

functions

Calibration
Optimization Algorithms



• Data: TM parameters downloaded from MUST

• 2 datasets: shorter and longer timespan

• Complemented with information from 

➢ tdbed

➢ SC mib

• Dataset Variables: Voltage, Batt Charge/Discharge, 
Depth of Discharge

• Calculated variables: Intensity (Charge-Discharge)

• Simulator data:

• 7 battery coefficients

• Battery degradation

coeff init_value mult_min mult_max

e0 2.65852 0.25 1.25

e1 0.0575422 0.85 1.15

e2 -0.0008937 0.9945 1.0055

e3 5.3843E-06 0.985 1.015

e4 -1.651E-08 0.985 1.015

e5 2.9032E-10 0.985 1.015

e6 -1.92E-12 0.98 1.02

deg rand(0, 10) 0 10

Calibration
Experiments

22 
Experiments

Optimization 
Algorithm

[TPE, NSGAII]

Number of 
Trials

[50, 500, 1000]

Initial Battery 
Coefficients

(e0, e1, e2, e3, 
e4, e5, e6, deg) Optimization 

Search Space

(e0, e1, e2, e3, 
e4, e5, e6, deg)

S/C Dataset

[15/2/18 (5h),

1/3/24 (24h)]

Execution timeRMSE



TPE (n_trials=500) NSGAII (n_trials=1000)TPE (n_trials=1000)

Calibration
Results (S/C Dataset 1)

TPE (n_trials=500) NSGAII (n_trials=1000)TPE (n_trials=1000)

Results (S/C Dataset 2)



• Simulation results are better with the new calibration procedure.

• Trade-off between number of trials and execution time:

➢ Optimization process seems to converge, but it takes time/trials.

• TPE sampler algorithm gives the best results for optimization, although genetic sampler gives very similar results.

• With 5h of data, the optimization process achieves good results that are similar to 24h dataset experiments.

• Establish a good search space is important, and also the coefficients’ first initialization.

• The most important coefficients can be identified (e1, e0 and deg in this case). 

Calibration
Conclusions
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AI models integration 
into DT simulator
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Design

ModelParameter

UInt8Parameter UInt16Parameter

Dataflow Dataflow

MLModelMLField

MLMappingService

The existing SMP model is not 
modified

MLExtensions
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Inference process
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ML Model Configuration

• MLModels/MLFields created from XML

• No assemblies

• No need to recreate breakpoints

• Any field in the simulator can be an input

• Perform inference on value updates and Schedule.

• Enable/Disable inferred value propagation

• Upper & lower limit

<MLMapping …> 
    <Model Path="share/data/mlmapping/solar_array.onnx" Name="SolarArrayIntensity" ValidityPeriod="0"> 
        <Input Path="TestInterface/TmDecoder/TmDecoderParameterPool/<path>/engValue"/> 
        <Input Path="TestInterface/TmDecoder/TmDecoderParameterPool/<path>/engValue"/> 
        … 
        <Output Path="Spacecraft/EPS/Pcdu/SaPC/S3R1" Parameter="inputCurrentTm" Interval="1" Lower="0.01"/> 
        <Output Path="Spacecraft/EPS/Pcdu/SaPC/S3R2" Parameter="inputCurrentTm" Interval="1" Lower="0.01"/> 
        … 
    </Model> 
</MLMapping> 
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Results
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Results

Previous Modelling Using ML models
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Storing DT internal 
state
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MCS-CC

Flying mission tailoring extended to 

contain DT internal state parameters

SIMSAT Remote Connector to publish 

internal parameter values

MCS-CC extended to read and inject SIM 

internal parameters

Internal parameters accessible as any 

others (GUI, REST API)



Demo

• Flying mission tailoring extension to contain internal SIM parameters

• Publishing of DT internal parameters

• Injection of DT internal parameters

• Visualization of DT internal parameters on UDD

Tailoring
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Conclusions & future 
steps
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Conclusions

Reuse of ESA systems

DT Alignment

Validation against real mission

Creation of the DT infrastructure

AI/ML models improving SIM fidelity

Achievements:
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Future steps

Add support of different missions

Alignment of all S/C systems, including OBC memory

Implementation of analytic UCs

Mature the prototype into a production system

Continuous synchronization and calibration

Future tasks to achieve a better system:
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Thank you

Questions?

Icon attribution: Flaticon.com
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