
AIMSYS: AI for model-based
diagnostic at System level

Maciej Prokopczyk GMV PL

Maciej Szreter GMV PL

Anna Banachowicz GMV PL

David del Val GMV ES

Leandro Garcia GMV ES

Yusra Al-Khazraji GMV DE

Inmaculada Perea GMV ES

Vanessa Navarro GMV ES

Sepideh Rahimian GMV DE

Daniele Segneri ESA/ESOC

Federico Antonello ESA/ESOC

Final Presentation 2024

TL;DR

Solution

DT Alignment

ML/AI & Optimization

ML model integration

DT internal state storage

Future steps

Index

Needs

DT Management

DT Monitoring&Control

© GMV Property – 22/11/2024 - All rights reserved. Open use

TL;DR

© GMV Property – 22/11/2024 - All rights reserved. Open use

Goals:

• Creation of DT infrastructure based on
ESA/ESOC ground SW

• Definition of AI/ML logic supporting
selected use cases

• Validation with a real mission

Page. 4

Overview

Achievements:
• Analysis of existing SW
• Learning end-users needs
• Design of generic DT infrastructure
• Implementation of a prototype with

core functionality
• Use of flying mission for validation

Digital TwinMCS

S/C

AInabler

LTA

TM/TC

TM/TC

Inference

Internal
DT state

Training data

S/C data

TM/TC

G/S

State
vector

Presented aspects:

• Creation of new DT instance from GUI

• Creation of the DT dedicated session in MCS (for data separation)

• Setting the DT state to a be as close as possible as its S/C counterpart at given time

• Establishing links between MCS and the DT instance

• Receiving DT TM data by MCS and their visualization

• Checking that TM data include parameters generated with use of the AI model incorporated into the simulator

• Commanding DT by invoking a predefined activity list

• Receiving TM parameters describing the DT internal state

Demo

Page. 5

© GMV Property – 22/11/2024 - All rights reserved. Open use

Needs

© 2024 GMV

Page 7

AIMSYS - AI for model-based diagnostic at System level

Objectives

Exploit the usage of Model Based diagnostics at System level for reliable anomaly detection as well as for pre-
launch testing including pass/fail criteria evaluation for tests:

❑ Define, prototype and assemble the infrastructure platform running the AI

❑ Define AI/ML logic supporting anomaly detection, root cause analysis, ground testing, resource usage

predictions & margins refinement

❑ Validate the implemented prototype against a real mission

Introduction

© 2024 GMV

Page 8

AIMSYS - AI for model-based diagnostic at System level

Spacecraft Digital Twin (S/C DT): Dynamic and self-evolving digital representation of the
exact S/C state at given time

❑ Improve understanding of Spacecraft behavior

❑ Support and improve efficiency of FCT tasks

❑ Forecast future spacecraft state

❑ Detect anomalies

❑ Many more …

Concepts

Alignment: setting the state of the simulator so that it matches a provided state vector

❑ Synchronization - adjusting the simulator state so its TM matches the values of the real asset.

❑ Calibration - adjusting simulator analogue coefficients inside the simulator models

State Vector (SV): digital representation of the S/C state at a given point in time

❑ Synchronization State Vector - telemetry parameters that characterize the operational state of the spacecraft

❑ Calibration State Vector – values of simulator analogue coefficients to use in simulator SMP models

© 2024 GMV

Page 9

AIMSYS - AI for model-based diagnostic at System level

Available infrastructure

❑ Use the SIMULUS infrastructure for system
modelling

❑ Interact with EGS-CC for monitoring and control

❑ Interact with MUST for housekeeping storage

and retrieval

❑ Interact with the EGOS-MPS for mission planning

❑ Rely on the AInabler infrastructure for AI/ML
development and training

❑ Reuse, consolidate and focus the outcomes of

the ongoing studies

❑ pre-launch domain studies’ outcomes did not
match project needs

❑ Pre-launch functionality was descoped

Context

MUST

AInabler

© 2024 GMV

Page 10

AIMSYS - AI for model-based diagnostic at System level

Gaps in current infrastructure

Simulator with DT capabilities (i.e. automatic alignment)

Storage and analysis of simulator-generated data

Improvement of simulator fidelity by AI

Quick evaluation of past or custom scenarios

Analysis of internal DT state

Missing mechanisms:

DT lifecycle management

© GMV Property – 22/11/2024 - All rights reserved. Open use

Solution

© 2024 GMV

Page 12

AIMSYS - AI for model-based diagnostic at System level

Proposed approach

AiMSys
AI for model-based diagnostic at System level

Reuse existing infrastructure

Operational
Simulators

Mission Control
Systems

Long Term
Archives

AI Platform

Create
AI

models

Manage
DT

lifecycle

Monitor
&

Control
DT

Store &
analyze DT
state (incl.
internal)

Add missing features

Integrate
AI models

in
Simulator

Align DT

© 2024 GMV

Page 13

AIMSYS - AI for model-based diagnostic at System level

DT infrastructure

Architecture

• DT Orchestrator – for handling high-level tasks

• Simulation Manager – for controlling DT

• Simulation Container Orchestration – for running DTs
in containers

• State Updater – for DT alignment

• State Builder – for building SV needed by SU

• MCS – for Monitoring & Control of DT

• Remote Connectors – for storing internal DT state

• AI platform – for AI/ML creation

• AI application – for analysis of DT data

• ML Model – for incorporation of AI model in SIM

© 2024 GMV

Page 14

AIMSYS - AI for model-based diagnostic at System level

© GMV Property – 22/11/2024 - All rights reserved. Open use

DT Lifecycle
Management

© 2024 GMV

Page 15

AIMSYS - AI for model-based diagnostic at System level

Required functions

• Start Digital Twin instance

• Specify Mission for which to start a new Digital Twin

• Provide the date to be used for the alignment

• Decide whether to apply existing calibrations

• Run given scenario to validate by executing pre-prepared activity list

• Stop Digital Twin instance

• Clean resources

• Get status of a Digital Twin instance

• Display status of the past/current Digital Twin instance

• Maintain in DB basic characteristics of DT (id, creation/stop times, alignment date, state vector,…)

• List Digital Twin instances

• Filter by mission and or state (started, aligned, stopped, error)

DT Lifecycle Management

© 2024 GMV

Page 16

AIMSYS - AI for model-based diagnostic at System level

DT Management

Simulation
Manager

MCS-CC State UpdaterDT

AlignConnect

Request new DT

Request alignmentCreate session

Create instance

Container
Orchestrator

Connect to DT

Close session

Kill

Destroy instance

DB

Status

Demo

• Create a new instance of DT

• Connect via VNC to that instance

• Create the DT dedicated session in MCS-CC

• List all instances

• Get status of instance by ID

DT Management

© GMV Property – 22/11/2024 - All rights reserved. Open use

DT Alignment

© 2024 GMV

Page 19

AIMSYS - AI for model-based diagnostic at System level

Automatic DT alignment

State Vector

Formed by S/C telemetry parameters

Defines the S/C state at a certain moment

Used as a target state for alignment process

Alignment

Synchronize operational state

Apply calibration data

© 2024 GMV

Page 20

AIMSYS - AI for model-based diagnostic at System level

Alignment infrastructure

Simulation
Manager

State Builder

State Updater DT

MCS-CC

MUST

Alignment

Calibrations

S/C state

Request alignment
for a certain epoch

Deploy

Generate State
Vector based on

epoch

CLI Wrapper

Performs
alignment on

simulator

© GMV Property – 22/11/2024 - All rights reserved. Open use

Instructions generation

Alignment

To provide a reusable and modular structure, two Jinja2 layers

Were used to generate the alignment code:

• Generic Layer:
• Mission agnostic.
• Defines macros that can be reused in mission specific code.

• Mission Specific Layer:
• Implements the sequence to align specific mission.
• Based on macros defined in Generic Layer.
• Specifies the concrete TM parameter and commands, that are transparent to the Generic Layer.

State Updater
Generate instructions
to be executed on the

simulator

Mission-specific
templates

Mission-agnostic
generic macros

Based on explicit TCs
or FOPs

Flying Mission Integration: Alignment

© GMV Property – 22/11/2024 - All rights reserved. Open use

DT Monitoring & Control

MCS-CC

Monitors & Controls DT as if it was a real S/C

Dedicated system sessions provide

isolated data spaces for experiments

Automatic connection to the new DT

instance after alignment

Automatic execution of predefined

activity lists for scenarios evaluation

Extension to AInabler for accessing the

DT data for analytical purposes

WebUI for visualizing Monitoring & Control data

DT Monitoring & Control

Simulation
Manager

MCS-CC DT

Create

Inform which
activity list

to execute

Monitor &

Control

VNC

Create

MCS-CC
Session

MCS-CC
WebUI

Connect

Visualize

M&C Interact

directly

Demo

• Creation of MCS-CC session

• Connecting to the session

• Checking TM and TC links status before and after alignment

• Observing that the activity stack specified during DT creation was executed

• Creating UDDs for visualizing selected TM parameters, e.g. the ones affected by the ML model incorporation

DT Monitoring & Control

DT Data access from AInabler

• Accessing real S/C data from MUST

• Accessing DT data from MCS-CC

MCS-CC

© GMV Property – 22/11/2024 - All rights reserved. Open use

AI/Optimization Models

© GMV Property – 22/11/2024 - All rights reserved. Open use

Resource Usage Forecasting

Page. 29

Goal: Resource forecasting of the solar array output voltages

Resource Usage Forecasting

Python Model

Training Environment

Resource
forecasting ML

model

Simulator

ONNX model in
the simulator

Pre-trained
ML model

Downloaded TM

Input data and pre-processing steps: one year of data

Resource Usage Forecasting

ML model

GPS
Position

Attitude
quaternion

Sun
presence

Solar array output voltages

1. Data Interpolation: Interpolate
attitude quaternion (q1, q2, q3,
q4) and sun presence data using
linear methods to match the GPS
timestamp values.

2. Coordinate Conversion:
Convert GPS coordinates into
radius and unit vectors.

3. Data Standardization:
Standardize the radius data.

4. Error Removal: Remove GPS
data with position values of 0 or
infinity

Comparison of Regression Models and their performances

Resource Usage Forecasting

Model Description Key Feature

OLSR (Ordinary Least

Squares Regression)

Minimizes the sum of

squared differences

between observed and

predicted values.

Basic linear regression

without regularization

LASSO (Least Absolute

Shrinkage and

Selection Operator)

Uses L1 regularization,

leading to some

coefficients becoming

zero.

Effective for variable

selection.

Ridge Regression Similar to OLS but

includes L2

regularization, penalizing

large coefficients.

Helps prevent overfitting

ElasticNet Combines L1 and L2

regularization, useful for

correlated variables.

Hybrid of Lasso and

Ridge regression.

R-squared (r2) score value of all four models:

o OLSR = 0.9926702477416942

o LASS = 0.7787996545678473

o ENET = 0.807793425468875

o RIDG = 0.992433476417404

Ridge Regression showed better performance out of
all other models

Ridge Regression Model: Predicted vs. Actual Values

Resource Usage Forecasting

Model pipeline and Integration

Resource Usage Forecasting

Sklearn Pipelines:

• class sklearn.pipeline.

Pipeline(steps, *, memory=None, verbose=False)

• A sequence of data transformers with an optional

final predictor.

• Purpose: Sequentially apply transformers to

preprocess data, concluding with a final predictor for

modeling.

• Model Training Pipeline:

• Develop a custom transformer for preprocessing

the training data within the sklearn pipeline.

• Construct and train the final model pipeline,

saving the whole pipeline as a pickle file.

• Inference Pipeline:

• Implement a custom transformer for

preprocessing the test data.

• Integrate the test data preprocessing step into

the saved pipeline, Utilizing the previously

stored model to process and analyze the test

data.

Conclusions

❑ Model performance: The Ridge Regression model achieved a high score of 0.99, demonstrating strong
predictive ability for solar array output voltages.

❑ Negative predictions: The model sometimes produced negative voltage values

❑ Recommendations for Improvement:

▪ Model constraints: Introduce constraints or transformations to prevent negative values.

▪ Expanded Data: Use multi-year datasets to improve model generalization and account for seasonality.

▪ Model refinement: Fine-tune the regularization parameter.

▪ Implement advanced feature selection techniques.

▪ Use ensemble methods to combine Ridge Regression with other models.

▪ Explore alternative models, such as Support Vector Regression, Decision Tree Regression, Random Forest,
and Neural Networks.

▪ Include Physics Informed AI/ML models

Resource Usage Forecasting

© GMV Property – 22/11/2024 - All rights reserved. Open use

Calibration

Page. 36

Goal of the calibration use case

Isolated model for calibration

Find the constants that, when set in the simulator models, lead to the most accurate TM

Jupyter Notebook Simulator

Downloaded TM

Isolated model as

SIMULUS unit test

Calibrated
values

Generated
TM

Optuna
optimization

routine

Python library Optuna used for optimizing hyperparameters.

Contents of the isolated model

Isolated model for calibration

1. Instantiate the battery

2. Set the selected values of the coefficients being

calibrated

3. Simulate the battery for the same period of time as

the downloaded TM

• Set the intensity of charge/discharge to

simulate same power load

• Simulate for a ∆T

• Send the new voltage to the optimization

routine

Calculation of EMF in the simulator

• Bayesian optimization:

➢ Probabilistic model-based approach for
optimizing black-box functions that are
expensive to evaluate.

➢ It uses a surrogate model (commonly a
Gaussian Process) to approximate the
objective function and an acquisition
function to decide where to sample
next.

• Genetic algorithm:

➢ Inspired by the process of natural
selection and are used for optimization
and search problems.

➢ They work by evolving a population of
candidate solutions through selection,
crossover (recombination), and
mutation.

Feature Bayesian Optimization Genetic Algorithm

Model Type Probabilistic model-based (e.g., Gaussian

Process)

Population-based evolutionary algorithm

Function

Evaluations

Efficient, fewer evaluations needed Can require many evaluations

Search Strategy Uses a surrogate model and acquisition

function to balance exploration and

exploitation

Uses evolutionary operators to explore and

exploit the search space

Handling of Noise Can handle noisy evaluations Can handle noisy evaluations, though less

explicitly

Dimensionality Computationally intensive for high

dimensions

Handles high-dimensional spaces better

Global vs Local

Optima

Tends to find global optima Good at avoiding local optima, but

convergence can be slow

Parameter Tuning Requires careful tuning of the surrogate

model and acquisition function

Requires tuning of evolutionary parameters

(e.g., population size, mutation rate)

Application

Suitabilty

Expensive-to-evaluate, smooth functions Combinatorial, complex, multi-modal

functions

Calibration
Optimization Algorithms

• Data: TM parameters downloaded from MUST

• 2 datasets: shorter and longer timespan

• Complemented with information from

➢ tdbed

➢ SC mib

• Dataset Variables: Voltage, Batt Charge/Discharge,
Depth of Discharge

• Calculated variables: Intensity (Charge-Discharge)

• Simulator data:

• 7 battery coefficients

• Battery degradation

coeff init_value mult_min mult_max

e0 2.65852 0.25 1.25

e1 0.0575422 0.85 1.15

e2 -0.0008937 0.9945 1.0055

e3 5.3843E-06 0.985 1.015

e4 -1.651E-08 0.985 1.015

e5 2.9032E-10 0.985 1.015

e6 -1.92E-12 0.98 1.02

deg rand(0, 10) 0 10

Calibration
Experiments

22
Experiments

Optimization
Algorithm

[TPE, NSGAII]

Number of
Trials

[50, 500, 1000]

Initial Battery
Coefficients

(e0, e1, e2, e3,
e4, e5, e6, deg) Optimization

Search Space

(e0, e1, e2, e3,
e4, e5, e6, deg)

S/C Dataset

[15/2/18 (5h),

1/3/24 (24h)]

Execution timeRMSE

TPE (n_trials=500) NSGAII (n_trials=1000)TPE (n_trials=1000)

Calibration
Results (S/C Dataset 1)

TPE (n_trials=500) NSGAII (n_trials=1000)TPE (n_trials=1000)

Results (S/C Dataset 2)

• Simulation results are better with the new calibration procedure.

• Trade-off between number of trials and execution time:

➢ Optimization process seems to converge, but it takes time/trials.

• TPE sampler algorithm gives the best results for optimization, although genetic sampler gives very similar results.

• With 5h of data, the optimization process achieves good results that are similar to 24h dataset experiments.

• Establish a good search space is important, and also the coefficients’ first initialization.

• The most important coefficients can be identified (e1, e0 and deg in this case).

Calibration
Conclusions

© 2024 GMV

Page 43

AIMSYS - AI for model-based diagnostic at System level

© GMV Property – 22/11/2024 - All rights reserved. Open use

AI models integration
into DT simulator

© 2024 GMV

Page 44

AIMSYS - AI for model-based diagnostic at System level

Design

ModelParameter

UInt8Parameter UInt16Parameter

Dataflow Dataflow

MLModelMLField

MLMappingService

The existing SMP model is not
modified

MLExtensions

© 2024 GMV

Page 45

AIMSYS - AI for model-based diagnostic at System level

Inference process

© 2024 GMV

Page 46

AIMSYS - AI for model-based diagnostic at System level

ML Model Configuration

• MLModels/MLFields created from XML

• No assemblies

• No need to recreate breakpoints

• Any field in the simulator can be an input

• Perform inference on value updates and Schedule.

• Enable/Disable inferred value propagation

• Upper & lower limit

<MLMapping …>
 <Model Path="share/data/mlmapping/solar_array.onnx" Name="SolarArrayIntensity" ValidityPeriod="0">
 <Input Path="TestInterface/TmDecoder/TmDecoderParameterPool/<path>/engValue"/>
 <Input Path="TestInterface/TmDecoder/TmDecoderParameterPool/<path>/engValue"/>
 …
 <Output Path="Spacecraft/EPS/Pcdu/SaPC/S3R1" Parameter="inputCurrentTm" Interval="1" Lower="0.01"/>
 <Output Path="Spacecraft/EPS/Pcdu/SaPC/S3R2" Parameter="inputCurrentTm" Interval="1" Lower="0.01"/>
 …
 </Model>
</MLMapping>

© 2024 GMV

Page 47

AIMSYS - AI for model-based diagnostic at System level

Results

© 2024 GMV

Page 48

AIMSYS - AI for model-based diagnostic at System level

Results

Previous Modelling Using ML models

© 2024 GMV

Page 49

AIMSYS - AI for model-based diagnostic at System level

© GMV Property – 22/11/2024 - All rights reserved. Open use

Storing DT internal
state

© 2024 GMV

Page 50

AIMSYS - AI for model-based diagnostic at System level

MCS-CC

Flying mission tailoring extended to

contain DT internal state parameters

SIMSAT Remote Connector to publish

internal parameter values

MCS-CC extended to read and inject SIM

internal parameters

Internal parameters accessible as any

others (GUI, REST API)

Demo

• Flying mission tailoring extension to contain internal SIM parameters

• Publishing of DT internal parameters

• Injection of DT internal parameters

• Visualization of DT internal parameters on UDD

Tailoring

© 2024 GMV

Page 52

AIMSYS - AI for model-based diagnostic at System level

© GMV Property – 22/11/2024 - All rights reserved. Open use

Conclusions & future
steps

© 2024 GMV

Page 53

AIMSYS - AI for model-based diagnostic at System level

Conclusions

Reuse of ESA systems

DT Alignment

Validation against real mission

Creation of the DT infrastructure

AI/ML models improving SIM fidelity

Achievements:

© 2024 GMV

Page 54

AIMSYS - AI for model-based diagnostic at System level

Future steps

Add support of different missions

Alignment of all S/C systems, including OBC memory

Implementation of analytic UCs

Mature the prototype into a production system

Continuous synchronization and calibration

Future tasks to achieve a better system:

© 2024 GMV

Page 55

AIMSYS - AI for model-based diagnostic at System level

Thank you

Questions?

Icon attribution: Flaticon.com

Maciej Prokopczyk GMV PL

Maciej Szreter GMV PL

Anna Banachowicz GMV PL

David del Val GMV ES

Leandro Garcia GMV ES

Yusra Al-Khazraji GMV DE

Inmaculada Perea GMV ES

Vanessa Navarro GMV ES

Sepideh Rahimian GMV DE

Daniele Segneri ESA/ESOC

Federico Antonello ESA/ESOC

	Slide 1
	Slide 2: Index
	Slide 3: TL;DR
	Slide 4: Overview
	Slide 5: Demo
	Slide 6: Needs
	Slide 7: Introduction
	Slide 8: Concepts
	Slide 9: Context
	Slide 10
	Slide 11: Solution
	Slide 12: Proposed approach
	Slide 13: Architecture
	Slide 14: DT Lifecycle Management
	Slide 15: DT Lifecycle Management
	Slide 16: DT Management
	Slide 17: DT Management
	Slide 18: DT Alignment
	Slide 19: Automatic DT alignment
	Slide 20: Alignment infrastructure
	Slide 21: Alignment
	Slide 22: Flying Mission Integration: Alignment
	Slide 23: DT Monitoring & Control
	Slide 24: MCS-CC
	Slide 25: DT Monitoring & Control
	Slide 26: DT Monitoring & Control
	Slide 27: MCS-CC
	Slide 28: AI/Optimization Models
	Slide 29: Resource Usage Forecasting
	Slide 30: Resource Usage Forecasting
	Slide 31: Resource Usage Forecasting
	Slide 32: Resource Usage Forecasting
	Slide 33: Resource Usage Forecasting
	Slide 34: Resource Usage Forecasting
	Slide 35: Resource Usage Forecasting
	Slide 36: Calibration
	Slide 37: Isolated model for calibration
	Slide 38: Isolated model for calibration
	Slide 39: Calibration
	Slide 40: Calibration
	Slide 41: Calibration
	Slide 42: Calibration
	Slide 43: AI models integration into DT simulator
	Slide 44: Design
	Slide 45: Inference process
	Slide 46: ML Model Configuration
	Slide 47: Results
	Slide 48: Results
	Slide 49: Storing DT internal state
	Slide 50: MCS-CC
	Slide 51: Tailoring
	Slide 52: Conclusions & future steps
	Slide 53: Conclusions
	Slide 54: Future steps
	Slide 55

