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Laboratory for Enabling Technologies (LET)

Research on innovative propulsion systems
• usually ~4 PhD students and multiple master students 

researching for their thesis

Range of vacuum facilities available
• Two laboratories with 5 test stands, up to 9000l
• Three vacuum chambers equipped to test with iodine

Portfolio
• 300 W thruster tested on Xenon, Krypton, Iodine, Argon, Water
• Development of a CubeSat propulsion unit with iodine
• Development of a kW-class thruster with iodine
• Development of noble gas hollow cathodes
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iodine compatible neutralizer is missing



Iodine compatible Neutraliser (IcoN) for 
Electric Propulsion and Cubesats

Key requirements:
• Iodine compatible cathode for a ~ 500 W propulsion system
• Design Lifetime > 1000 h
• Anode current: 1-1.5 A

Key success criteria:
• 100h endurance test in spot mode using iodine as a propellant
• Total power below 50 W during operation
• Total power below 150 W during ignition
• Max. 1 mg/s iodine consumption
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Literature Review: Basics

Iodine properties:
• 1 mbar to 1 bar at 20 - 200 °C
• Solid, high density storage
• High mass, low ionization energy
• However: Very reactive

Cathode types:
• Only plasma-bridge neutralizer 

fulfil requirements
• Only hot plasma bridge cathodes 

can deliver higher currents at 
reasonable energies
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1 bar

1 mbar

Iodine vapour pressure

Neutralizer efficiency

Source: Becke, P.S., Kottke, N.G., Vaupel, M. et al. Review on the current state of iodine compatible neutralizers. J Electr Propuls 3, 30 (2024). https://doi.org/10.1007/s44205-024-00093-y



Literature Review: Material Compatibility

Structural materials:
• Iodine compatibility depends on the environment:

pressure and temperature

• Ceramics and graphite survive worst conditions
• At lower temperatures refractory metals, Ni-alloys 

and polymers have acceptable performance

Hot Plasma Bridge Cathodes:
• Hollow/planar cathodes
• Require emitter to operate
• Only LaB6 and C12A7 electride might be compatible 

with iodine according to literature
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Source: Becke, P.S., Kottke, N.G., Vaupel, M. et al. Review on the current state of iodine compatible neutralizers. J Electr Propuls 3, 30 (2024). https://doi.org/10.1007/s44205-024-00093-y

Emitter types



Literature Review: Iodine Cathode Tests

Testing Results from the literature:
• All emitter materials containing metals are failing:

– WL20, BaO-Sc.-W, BCA
• Results for LaB6 were not published
• C12A7 electride has the potential to work, but 

tends to melt
• No further materials have been tested

• RF neutralizers up to 0.3 A have been tested
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Source: Becke, P.S., Kottke, N.G., Vaupel, M. et al. Review on the current state of iodine compatible neutralizers. J Electr Propuls 3, 30 (2024). https://doi.org/10.1007/s44205-024-00093-y

Author Emitter Duration Comment

Szabo 
(2012)

LaB6 1h Unknown result

Rand 
(2014)

C12A7:e- 20h Emitter molten

Benavides 
(2018)

BCA n.r. Failure: Emitter depletion

Taillefer 
(2018)

BCA n.r. Failure: Emitter depletion

Thompson 
(2019)

BaO-Sc.-W 72h Failure: Emitter depletion

Hua (2022) C12A7:e- 0.5h Emitter molten

Guglielmi 
(2022)

C12A7:e- n.r. Failure, reason unknown

Reitemeyer 
(2022)

C12A7:e- 2.75h Success at low currents

Kottke 
(2023)

WL20 2.4h Failure

Damage to dispenser emitter Cathode operating with 
iodine on C12A7 electride
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Design baseline
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Hot Planar Plasma Bridge Neutralizer v1

Based on Hollow Cathode legacy:

• Emitter materials: LaB6 and C12A7 electride
• Cathode type: Planar Hollow Cathode
• Ignition: Heater
• Structural Materials: Graphite, Ceramics, Refractory Metals, 

Stainless Steel

Design Philosophy: Rapid Testing

• Only a few sources in the literature exist
• Simulations are very complex, no useful design decisions
• Testing conditions are close to the limits of material parameters

Design decisions from previous experimental data

each failed test should contain new information to improve the design

Iterative testing approach
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On-Site manufacturing enables rapid development
Overview of the Production Processes.

Lathing:
- Can be done by ourselves on the same day
- A CNC lathe has been procured and is used to machine small parts
- Extensive experience with cathode parts

Spot welding:
- Can be done by ourselves on the same day
- Extensive experience with cathode parts

Glueing:
- Insulating ceramic glue and conductive graphite glue
- Extensive experience with the process of glueing the cathode parts

Sintering:
- Production of the C12A7 emitter material is done by Fraunhofer IKTS in Dresden

 Picture of a lathe and the CNC lathe.

Picture of a spot welder.



Design baseline
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Hot Planar Plasma Bridge Neutralizer v1

First C12A7 electride prototype tested in our laboratory:

• Tests use krypton to characterize and improve the design
• Emitter is mounted with a clamp to the tube
• The noble gas is fed through holes in the mount
• Thermal simulations to define maximum heating power

Cathode Keeper



Testing of first cathode version with krypton
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Hot Planar Plasma Bridge Neutralizer v1

• Ignition is hard to achieve, 
discharge is unstable

• Emitter is molten after test and 
refractory metal clamps are 
damaged (b)

Emitter is no longer clamped but 
glued with graphite glue (c)

Unstable Stable



Sudden Heater Failures: Thermal simulations

14

Ignition of the plasma to the heater

While using a heater in the planar cathode:

• Side of the cathode gets hot during 
discharge (c)

• Molten insulation found after test (b)
• Thermal simulation showed that it 

was possible the discharge actually 
started at the heater (a)

Solution: Electrical insulation inside 
the keeper (except front)



Planar cathode v2

15

Improvements of the design based on testing results

• Insulation inside keeper was added to prevent ignition to the heater

• A secondary orifice was added in front of the emitter to reduce thermal losses

• The emitter is glued inside the graphite tube



Further improvements
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Testing of the Hot Planar Plasma Bridge Neutralizer v2

• Ignition works better
• Less power required to operate
• Emitter melting is prevented

Efficiency 
improvement

Further improvements: Hot Planar Plasma Bridge Neutralizer v3

• Added more insulation to prevent thermal losses
• Parameter studies on orifice diameter and spacing
• Added dual feeding: 

Krypton and Iodine can be used simultaneously



Preliminary Iodine Testing
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Testing of the Hot Planar Plasma Bridge Neutralizer v3

• Ignition with krypton
• Transition to iodine
• Different discharge 

parameters with iodine
• Tests ends after 15 minutes 

because cathode front is 
blown-off

• Feeding pressure run-away 
suspected for failure

Before After
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Feeding block
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Redesign of the iodine feeding

• In the previous tests the flowrate could only be 
controlled by the tank temperature

– Very slow reaction time
• A new feeding block was developed to control the 

iodine flow with a proportional valve



Feeding block: Difficulties
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Detailed feeding design

Problem:
- Pressure sensor did not survive 

iodine environment

Solution:
- Calibrate mass flow and valve 

performance with krypton

Valve Pressure 
sensor

Krypton 
feeding

Cathode 
dummy

Corroded Membrane



Mass flow 
controller

Feeding block: Measuring the performance of the prop. valve
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Measuring the ratio of pressure to mass flow for different valve settings

Fixed orifice 
(0.6 mm)

Valve block 
(heated)

Pressure 
sensor

Krypton 
supply Valve setting in %
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Feeding block: Measuring the performance of the prop. valve
Calculating iodine performance

• Results allow to set a fixed iodine tank 
temperature (see below)

• Setting the flow rate can be done with the 
prop. valve

• Unknowns: Iodine might dissociate (I2 -> 2I), 
doubling the pressure

Iodine flow 
rate

Iodine 
pressure

Iodine tank 
temperature

5 sccm 10 mbar 67.15 °C

10 sccm 13 mbar 71.36 °C

15 sccm 17 mbar 75.85 °C

20 sccm 20 mbar 78.67 °C
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Feeding block: Measuring the performance of the prop. valve
Measuring iodine performance

• Comparing the corrected chamber pressure:
– krypton flow with a mass flow controller
– Iodine flow with a proportional valve

• Same range of mass flow can be controlled:
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Testing facility
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Feed system

• First cathode generations had a single feeding: 
krypton or iodine

• Later a dual feeding was introduced, allowing separate 
testing of krypton and iodine without venting 

• Proportional valve for the iodine feeding was added 
later during the CCN

• The krypton feed system uses an oxygen filter to 
prevent the emitter from being poisoned



Testing facility
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Pumping System

• Two-stage pumping system:
– Turbomolecular pump
– Forestage pump

• Testing had to be paused due to forestage pump 
failures during preliminary iodine tests

A Ceramic filter, nitrogen purging and a cold plate were 
installed to solve this problem



Testing facility
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Electrical Setup

• Heaters and temperature sensors are placed 
along the tubing keep a temperature of 130°
C to prevent iodine condensation

• To ignite the cathode, the keeper and the 
anode can be set to 500 V

• The cathode emitter is connected to ground

• During the extension, cathode heaterless 
ignition was tested and successfully 
implemented, removing issues with heater 
failure



Further cathode improvements during the extension
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Hot Planar Plasma Bridge Neutralizer v4

• Two versions: With (a) and without (b) secondary orifice
• Heaterless ignition
• Emitter is mounted via a screwable graphite cup
• Three emitter materials have been tested in total:

– C12A7 type A
– C12A7 type B
– LaB6



Test preparation
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Cathode and feed system assembly

• All components are assembled and integrated in the test facility
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Preliminary Tests
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Characterisation of the performance of the 
planar cathode v4

• Cathode secondary orifice parameter study
• Parameter study of the keeper orifice



Final Tests: C12A7 type A
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Iodine test with a C12A7 electride type A emitter

• Stable krypton discharge
• Becomes unstable, as soon as gas is 

switched to iodine
• Power necessary to operate with krypton has 

increased after iodine exposure or was not 
possible at all

Test 1

Test 2



Final Tests: C12A7 type B

33

Iodine test with a C12A7 electride type B emitter

• No stable discharge, not even with krypton
• Is more stable with iodine than type A
• No reignition with krypton possible, as the 

keeper orifice was blocked by evaporated 
material

Test 3 with krypton

Test 3 with iodine



Final Tests: LaB6
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Iodine test with a LaB6 emitter

• Unstable after switching to iodine
• No reignition with krypton possible

Test 6

Test 5
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Post Test Analysis
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Inspection after each iodine test 

• C12A7:e- Type A:
– Mostly stable in krypton discharge
– Metallic + blackish residues after iodine test

• C12A7:e- Type B:
– Already melting while using with krypton
– Largely evaporates while operating with iodine
– Evaporating emitter material blocks keeper orifice

• LaB6:
– Metallic coating after test with iodine

• Other:
– Residues on keeper orifice
– Evaporated emitter material

  blocking the keeper orifice

C12A7:e- Type A

C12A7:e- Type B

LaB6

Iodine



Post Test Analysis
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Inspection after each iodine test 

• C12A7:e- Type A:
– Mostly stable in krypton discharge
– Metallic + blackish residues after iodine test

• C12A7:e- Type B:
– Already melting while using with krypton
– Largely evaporates while operating with iodine
– Evaporating emitter material blocks keeper orifice

• LaB6:
– Metallic coating after test with iodine

• Other:
– Residues on keeper orifice
– Evaporated emitter material

  blocking the keeper orifice

C12A7:e- Mo

C12A7:e- BaO

Iod
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Conclusion
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• None of the tested materials produced a stable iodine discharge of more than half an hour
• None of the success criteria were met

• Post-test analysis revealed that all emitters have been coated during the test
• Significant damage through the iodine discharge indicates that even if problems are reduced, the iodine 

discharge is unlikely to last for the required thousands of hours
• We have to conclude that with the currently known materials, an iodine-fueled hot plasma-bridged 

cathode is not possible to operate

• Findings will be published (peer-reviewed) to allow future researchers a reasoned approach to iodine 
electric propulsion

• However: Development of iodine feeding and krypton planar C12A7:e- cathode was successful

Confidential - Do not distribute



Activity Overview
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21 testing campaigns with 162 cathode tests, including 30 
tests with iodine

113 manufactured components

3 forepumps and 1 turbopump replacements

400l of krypton used

4 conference proceedings, including 1 best session

1 published peer-reviewed review paper

1 paper being prepared for publication
Insulation
2 | 3

Tube
2 | 5 | 5

Keeper
2 | 2 | 2

Heater
5 | 5

Orifice 
Plate
4 | 9 | 10

Mount
1 | 2 | 1

Emitter
8 | 7 | 15

Orifice Plate
3 | 4 | 16

Manufactured Part Type
Amount in 2022 | Amount in 2023 | Amount in 2024
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