

IODINE-COMPATIBLE NEUTRALISER FOR ELECTRIC PROPULSION OF CUBESATS AND SMALL SATELLITES Final Presentation 4000136710/21/NL/RA

DEFENCE AND SPACE

Philipp Becke, Max Vaupel, Nils Gerrit Kottke, Franz Georg Hey (philipp.becke@airbus.com)

1. Introduction

- 2. Literature Review
- 3. Development and preliminary tests
- 4. IcoN CCN: Improvement of the iodine feed system
- 5. Test preparation and assembly
- 6. Test results
- 7. Post test analysis
- 8. Conclusion

Laboratory for Enabling Technologies (LET)

Research on innovative propulsion systems

 usually ~4 PhD students and multiple master students researching for their thesis

Range of vacuum facilities available

- Two laboratories with 5 test stands, up to 90001
- Three vacuum chambers equipped to test with iodine

Portfolio

- 300 W thruster tested on Xenon, Krypton, Iodine, Argon, Water
- Development of a CubeSat propulsion unit with iodine
- Development of a kW-class thruster with iodine
- Development of noble gas hollow cathodes

iodine compatible neutralizer is missing

AIRBUS

Iodine **co**mpatible **N**eutraliser (IcoN) for Electric Propulsion and Cubesats

Key requirements:

- Iodine compatible cathode for a ~ 500 W propulsion system
- Design Lifetime > 1000 h
- Anode current: 1-1.5 A

Key success criteria:

- **100h endurance** test in spot mode using iodine as a propellant
- Total power **below 50 W** during **operation**
- Total power below 150 W during ignition
- Max. **1 mg/s** iodine consumption

Introduction

2. Literature Review

- 3. Development and preliminary tests
- 4. IcoN CCN: Improvement of the iodine feed system
- 5. Test preparation and assembly
- 6. Test results
- 7. Post test analysis
- 8. Conclusion

Literature Review: Basics

lodine properties:

- 1 mbar to 1 bar at 20 200 °C
- Solid, high density storage
- High mass, low ionization energy
- However: Very reactive

Neutralizer efficiency

Plasma-less Plasma-bridged 10 neutralizer neutralizer (A/W) **Dry cathodes** Hot plasma bridge cathodes - directly heated Hot cathodes - indirectly heated - cylindrical ŏ ××× thode Electron - planar 10⁻² - filamentary ×× × **Photocathodes EM-field** excited cathodes Secondary - RF 10⁻³ emission Cold cathodes Hollow Cathodes - MW cathodes ٥ Planar Hollow Cathodes - ECR × Radio-Frequency Cathodes Field emission **Pulsed plasma** cathodes 10^{0} 10^{-1} 10^{2} 10^{1} Anode Current (A) AIRBUS

Cathode types:

- Only plasma-bridge neutralizer fulfil requirements
- Only hot plasma bridge cathodes can deliver higher currents at reasonable energies

6

Literature Review: Material Compatibility

Structural materials:

- lodine compatibility depends on the environment:
 - **pressure** and **temperature**
- Ceramics and graphite survive worst conditions
- At lower temperatures refractory metals, Ni-alloys and polymers have acceptable performance

Hot Plasma Bridge Cathodes:

- Hollow/planar cathodes
- Require emitter to operate
- Only LaB₆ and C12A7 electride might be compatible with iodine according to literature

Literature Review: Iodine Cathode Tests

Testing Results from the literature:

- All emitter materials containing **metals** are **failing**:
 - WL20, BaO-Sc.-W, BCA
- Results for LaB₆ were not published
- C12A7 electride has the potential to work, but tends to melt
- No further materials have been tested
- **RF neutralizers** up to 0.3 A have been tested

Cathode operating with iodine on C12A7 electride

Author	Emitter	Duration	Comment
Szabo (2012)	LaB6	1h	Unknown result
Rand (2014)	C12A7:e-	20h	Emitter molten
Benavides (2018)	BCA	n.r.	Failure: Emitter depletion
Taillefer (2018)	BCA	n.r.	Failure: Emitter depletion
Thompson (2019)	BaO-ScW	72h	Failure: Emitter depletion
Hua (2022)	C12A7:e-	0.5h	Emitter molten
Guglielmi (2022)	C12A7:e-	n.r.	Failure, reason unknown
Reitemeyer (2022)	C12A7:e-	2.75h	Success at low currents
Kottke (2023)	WL20	2.4h	Failure

AIRBUS

Introduction

2. Literature Review

3. Development and preliminary tests

- 4. IcoN CCN: Improvement of the iodine feed system
- 5. Test preparation and assembly
- 6. Test results
- 7. Post test analysis
- 8. Conclusion

Design baseline

Hot Planar Plasma Bridge Neutralizer v1

Based on Hollow Cathode legacy:

- Emitter materials: LaB₆ and C12A7 electride
- Cathode type: Planar Hollow Cathode
- Ignition: Heater
- Structural Materials: Graphite, Ceramics, Refractory Metals, Stainless Steel

Design Philosophy: Rapid Testing

- Only a **few sources** in the literature exist
- Simulations are very complex, no useful design decisions
- Testing conditions are close to the limits of material parameters
- Design decisions from previous experimental data
- each failed test should contain new information to improve the design

AIRB

DEFENCE AND SPACE

On-Site manufacturing enables rapid development

Overview of the Production Processes.

Lathing:

- Can be done by ourselves on the same day
- A CNC lathe has been procured and is used to machine small parts
- Extensive experience with cathode parts

Spot welding:

- Can be done by ourselves on the same day
- Extensive experience with cathode parts

Glueing:

- Insulating ceramic glue and conductive graphite glue
- Extensive experience with the process of glueing the cathode parts

Sintering:

- Production of the C12A7 emitter material is done by **Fraunhofer IKTS** in Dresden

AIRBUS

Laboratory for Enabling Technologies

Picture of a lathe and the CNC lathe.

Picture of a spot welder.

Design baseline

Hot Planar Plasma Bridge Neutralizer v1

First C12A7 electride prototype tested in our laboratory:

- Tests use krypton to characterize and improve the design
- Emitter is mounted with a clamp to the tube
- The noble gas is fed through holes in the mount
- Thermal simulations to define maximum heating power

Testing of first cathode version with krypton

Hot Planar Plasma Bridge Neutralizer v1

- Ignition is hard to achieve, discharge is unstable
- Emitter is molten after test and refractory metal clamps are damaged (b)
- Emitter is no longer clamped but glued with graphite glue (c)

Laboratory for Enabling Technologies

AIRBUS

Sudden Heater Failures: Thermal simulations

Ignition of the plasma to the heater

While using a heater in the planar cathode:

- Side of the cathode gets **hot** during discharge (c)
- Molten insulation found after test (b)
- Thermal simulation showed that it was possible the discharge actually started at the heater (a)
- Solution: Electrical insulation inside the keeper (except front)

Planar cathode v2

Improvements of the design based on testing results

- Insulation inside keeper was added to prevent ignition to the heater
- A secondary orifice was added in front of the emitter to reduce thermal losses
- The emitter is glued inside the graphite tube

Further improvements

Testing of the Hot Planar Plasma Bridge Neutralizer v2

- Ignition works better
- Less power required to operate
- Emitter melting is prevented

Further improvements: Hot Planar Plasma Bridge Neutralizer v3

- Added more insulation to prevent thermal losses
- Parameter studies on orifice diameter and spacing
- Added dual feeding: Krypton and lodine can be used simultaneously

AIRBUS

AIRBUS

Preliminary Iodine Testing

Testing of the Hot Planar Plasma Bridge Neutralizer v3

- **Ignition** with krypton
- Transition to iodine
- Different discharge parameters with iodine
- Tests ends after **15 minutes** because cathode front is blown-off
- Feeding **pressure run-away** suspected for failure

Before

After

- Introduction
- Literature Review
- 3. Development and preliminary tests
- 4. IcoN CCN: Improvement of the iodine

feed system

- 5. Test preparation and assembly
- 6. Test results
- 7. Post test analysis
- 8. Conclusion

Feeding block

Redesign of the iodine feeding

- In the previous tests the flowrate could only be controlled by the tank temperature
 - Very slow reaction time
- A new feeding block was developed to control the iodine flow with a proportional valve

Feeding block: Difficulties

Detailed feeding design

Problem:

- Pressure sensor did not survive iodine environment

Solution:

- Calibrate mass flow and valve performance with krypton

Corroded Membrane

AIRBUS

- 90

85

82

79

78

76 75 -73

-71 70 69

21

Feeding block: Measuring the performance of the prop. valve

Measuring the ratio of pressure to mass flow for different valve settings

Feeding block: Measuring the performance of the prop. valve

Calculating iodine performance

- Results allow to set a fixed iodine tank temperature (see below)
- Setting the flow rate can be done with the prop. valve
- Unknowns: lodine might dissociate (I₂ -> 2I), doubling the pressure

lodine flow rate	lodine pressure	lodine tank temperature		
5 sccm	10 mbar	67.15 °C		
10 sccm	13 mbar	71.36 °C		
15 sccm	17 mbar	75.85 °C		
20 sccm	20 mbar	78.67 °C		

*

Feeding block: Measuring the performance of the prop. valve

Measuring iodine performance

- Comparing the corrected chamber pressure:
 - krypton flow with a mass flow controller
 - Iodine flow with a proportional valve

• Same range of mass flow can be controlled:

AIRBUS

- Introduction
- 2. Literature Review
- 3. Development and preliminary tests
 - IcoN CCN: Improvement of the iodine feed system

5. Test preparation and assembly

- 6. Test results
- 7. Post test analysis
- 8. Conclusion

Testing facility

Feed system

- First cathode generations had a single feeding: krypton or iodine
- Later a dual feeding was introduced, allowing separate testing of krypton and iodine without venting
- Proportional valve for the iodine feeding was added later during the CCN
- The krypton feed system uses an oxygen filter to prevent the emitter from being poisoned

Testing facility

Pumping System

- Two-stage pumping system:
 - Turbomolecular pump
 - Forestage pump
- Testing had to be paused due to forestage pump failures during preliminary iodine tests
- A Ceramic filter, nitrogen purging and a cold plate were installed to solve this problem

AIRBUS

Testing facility

Electrical Setup

- Heaters and temperature sensors are placed along the tubing keep a temperature of 130° C to prevent iodine condensation
- To ignite the cathode, the keeper and the anode can be set to 500 V
- The cathode emitter is connected to ground
- During the extension, cathode heaterless ignition was tested and successfully implemented, removing issues with heater failure

Further cathode improvements during the extension

Hot Planar Plasma Bridge Neutralizer v4

- Two versions: With (a) and without (b) secondary orifice
- Heaterless ignition
- Emitter is mounted via a **screwable** graphite cup
- Three emitter materials have been tested in total:
 - C12A7 type A
 - C12A7 type B
 - LaB₆

Test preparation

Cathode and feed system assembly

• All components are assembled and integrated in the test facility

- Introduction
- 2. Literature Review
- 3. Development and preliminary tests
 - IcoN CCN: Improvement of the iodine feed system
- 5. Test preparation and assembly

6. Test results

- 7. Post test analysis
- 8. Conclusion

Preliminary Tests

Characterisation of the performance of the planar cathode v4

- Cathode secondary orifice parameter study
- Parameter study of the keeper orifice

Final Tests: C12A7 type A

lodine test with a C12A7 electride type A emitter

- Stable krypton discharge
- Becomes unstable, as soon as gas is switched to iodine
- Power necessary to operate with krypton has increased after iodine exposure or was not possible at all

Test	Emitter	Gas	Flow	Keeper	Keeper Anode			Duration in min	Comment
			in <u>sccm</u> or gr	Power in W	Current in A	Power in W	Current in A		
	C12A7	Kr	30	20.3	1.2	153	3	25	Before iodine exposure.
1	Type A 1	Ι	2	14.5	1.2	155	3	16	lodine discharge.
		Kr	30	2.1	0.1	158	3	6	After iodine exposure.
	C12A7 Type A 2	Kr	20	26.9	0.8	64	1.5	20	Before iodine exposure.
2		1	3	118	0.5	21	3000	26	Unstable iodine discharge.
		Kr	-	-	-	-	-	-	No reignition with krypton possible.

Final Tests: C12A7 type B

lodine test with a C12A7 electride type B emitter

- No stable discharge, not even with krypton
- Is more stable with iodine than type A
- No reignition with krypton possible, as the keeper orifice was blocked by evaporated material

Test	Emitter	Gas	Flow	Keeper		Anode		Duration in min	Comment
			in sccm or gr	Power in W	Current in A	Power in W	Current in A		
	01047	Kr	30	5	0.5	120	3000	9.5	Before iodine exposure.
3	Type B	1	2.5	8	0.5	150	3000	22	lodine discharge.
		Kr	-	-	-	-	-	-	No reignition with krypton possible.
4	C12A7 Type B 2	Kr	30	16	1200	100	3000	10	Before iodine exposure.
		1	4	21.5	1200	141	3000	18	lodine discharge.
		Kr	-	-	-	-	-	-	No reignition with krypton possible.

Laboratory for Enabling Technologies

Test 3 with krypton

Test 3 with iodine

Final Tests: LaB6

lodine test with a LaB6 emitter

- Unstable after switching to iodine
- No reignition with krypton possible

*

Fest	Emitter	Gas	Flow	Keeper		Anode		Duration in min	Comment
			in sccm or gr	Power in W	Current in A	Power in W	Current in A		
5 La		Kr	30	20	1200	115	3000	3	Before iodine exposure.
	LaB6 1	I	2.5	25	1200	130	3000	23	lodine discharge.
		Kr	30	268	1200	160	3000	1	After iodine exposure. No stable discharge.
6	LaB6 2	Kr	30	18	1200	100	3000	3	Before iodine exposure.
		I	1.5	27	1200	150	3000	9	lodine discharge.
				Kr	30	20	1200	123	3000

- Introduction
- 2. Literature Review
- 3. Development and preliminary tests
 - IcoN CCN: Improvement of the iodine feed system
- 5. Test preparation and assembly
- 6. Test results

7. Post test analysis

8. Conclusion

Post Test Analysis

Inspection after each iodine test

- C12A7:e- Type A:
 - Mostly stable in krypton discharge
 - Metallic + blackish residues after iodine test
- C12A7:e- Type B:
 - Already melting while using with krypton
 - Largely evaporates while operating with iodine
 - Evaporating emitter material blocks keeper orifice
- LaB₆:
 - Metallic coating after test with iodine
- Other:
 - Residues on keeper orifice
 - Evaporated emitter material blocking the keeper orifice

Post Test Analysis

Inspection after each iodine test

- C12A7:e- Type A:
 - Mostly stable in krypton discharge
 - Metallic + blackish residues after iodine test
- C12A7:e- Type B:
 - Already melting while using with krypton
 - Largely evaporates while operating with iodine
 - Evaporating emitter material blocks keeper orifice
- LaB₆:
 - Metallic coating after test with iodine
- Other:
 - Residues on keeper orifice
 - Evaporated emitter material blocking the keeper orifice

C12A7:e- Mo lod C12A7:e-BaO b) a)

- Introduction
- 2. Literature Review
- 3. Development and preliminary tests
- 4. IcoN CCN: Improvement of the iodine feed system
- 5. Test preparation and assembly
- 6. Test results
- 7. Post test analysis
- 8. Conclusion

DEFENCE AND SPACE

Conclusion

- None of the tested materials produced a stable iodine discharge of more than half an hour
- None of the success criteria were met
- Post-test analysis revealed that **all emitters have been coated** during the test
- Significant damage through the iodine discharge indicates that even if problems are reduced, the iodine discharge is unlikely to last for the required thousands of hours
- We have to conclude that with the currently known materials, **an iodine-fueled hot plasma-bridged cathode is not possible** to operate
- Findings will be published (peer-reviewed) to allow future researchers a reasoned approach to iodine electric propulsion
- However: Development of iodine feeding and krypton planar C12A7:e- cathode was successful

DEFENCE AND SPACE

Activity Overview

21 testing campaigns with 162 cathode tests, including 30 tests with iodine

113 manufactured components

3 forepumps and 1 turbopump replacements

400I of krypton used

4 conference proceedings, including 1 best session

1 published peer-reviewed review paper

1 paper being prepared for publication

Manufactured Part Type Amount in 2022 | Amount in 2023 | Amount in 2024

Thank you for your attention

