Final Presentation Project CoCiS: Characterization of Contamination induced Straylight

Recuberer

Tobias Herffurth

Motivation

- Light scattering unwanted in optical systems:
 - Image degradation, flare
 - Reduced throughput / losses
- Unavoidable origins of scattering
 - Interface roughness, bulk inhomogeneities, ...
 - Defects, particles & MOC
- → Scattering measurements & modelling
 - Quantify scattering distributions
 - Budgeting
 - Performance assessment & prediction (component & system level)

Ideal imaging

Impact of light scattering

CoCis joint project: Fraunhofer IOF & OHB, (esa)

from experimental fall-out to modelling on system level

- Goals:
 - Reliable & experimentally verified data & models for contamination induced scattering
 - \rightarrow Input for raytracing & system modelling
 - ightarrow Input for PAC & MOC budgeting
- Approach:
 - Collect fall-out: PAC (ISO5, ISO7, ISO8) & MOC
 - PAC distribution analysis
 - Scattering measurements from UV to IR
 - Modell development / optimization

Agenda / Outline

- 1. Motivation & Goals
- 2. Project CoCis
 - 1. Participants
 - 2. Project plan
- 3. Definitions & Approaches
- 4. Experimental results
 - 1. PAC fall out results
 - 2. Scattering from PAC
 - 3. Scattering from MOC
- 5. Modelling
 - 1. Scatter modelling from PAC
 - 2. Scatter modelling from MOC
 - 3. Modelling on system Level
- 6. Summary / Conclusions

Project CoCiS

Joint project CoCis

Partners:

- Fraunhofer IOF (Jena)
 - PAC exposure
 - Scattering measurements
 - Additional analysis (topography, microscopy, ellipsometry, ...)
 - Model development & analysis
- OHB (Munich)
 - PAC exposure
 - Scattering measurements
 - Additional analysis (PAC-counting, microscopy, FTIR, ...)
 - Model development (system level)

- NIST (USA)
 - Modelling tools
- esa / ESTEC
 - PAC exposure
 - MOC contamination
- TSW (The Scatter Works)
 - Scattering measurements
- Thales
 - PAC exposure

Work breakdown structure

OHB

Fraunhofer

Page 6

Experimental Work Flow (initial time schedule)

Sample Sets

- Supersmooth Si-Wafer, superpolished KG5 glass
 → low roughness induced scattering (roughness <0.3nm)
- Reflecting/opaque and transmitting samples
 - Aluminum mirrors (thin film protected aluminum, reflective from UV/VIS to IR)
 - Silicon Wafer (reflective in the VIS, transparent in the NIR)
 - KG5 glass (transparent in the VIS, reflective in the NIR)
- KG5 also for PAC counting at OHB (transparent sample required)
- No disassembly required for mounting in scatterometers

Fraunhofer

- Roughness and cleanliness cross checks during procurement and assembly
- First scattering measurements of initial state

Fraunhofer

PAC Exposing labs

Planned ppm levels from 20ppm to 5000ppm

- **ISO 5** clean room available at: OHB, IOF, Thales
- ISO 7 clean room available at: IOF, Thales
- ISO 8 clean room available at: OHB, esa, Thales
- Pre-screening results:
 - 1 to <10ppm for Si Wafer initially
 - 50 ... 100 ppm for KG5 (defects)
- Pre-test to estimate exposure time:
 <~ 1ppm/day in ISO5; ~10 ppm/day in ISO8
- Continuous monitoring during exposure if available or cross checks on short exposure samples

Envisaged PAC

Number of sample sets + envisaged exposure time

	IOF, O	НВ, ЕхроЗ	IOF,	Ехро3	OHB, esa						
	1	SO 5	19	50 7	ISO 8						
	Exposure		Exposure		Exposure						
	time	Sample set	time	Sample set	time	Sample set					
	1 to 2										
20 ppm	Months	1x	-		-						
	5 Months,										
	2 Months	3x +1x close to									
50 ppm	(activity)	the activity	-								
100 ppm	-		10 days	1x	-						
			1 Month,								
			3 Weeks	2x +1x close							
300 ppm	-		(activity)	to the activity	5 Days	2x					
					3 Weeks,						
					2 Weeks	1x + 1x close					
1000 ppm	-		4 Months	2x	(activity)	to the activity					
5000 ppm	-		-		4 Months,	2x					
Total		5x		6x		6x					

MOC generation

- MOC contamination at dedicated esa/ESTEC facility (M. Helici, H. Fischer)
- MOC sample sets: Si, KG5; + ZnS sample for FTIR analysis
- Additionally: 2" Si Wafers
- Contaminants
 - Epoxy adhesive **EC2216**
 - Silicone Elastosil **RT745**
 - initially planned Dowsil 93-5000 or RTV-S 691
 → problems in generating reasonable MOC
- Envisaged contamination levels:
 - 250 ng/cm² & 500 ng/cm²

RT745 on Si

EC2216 on Si

Scattering Labs

- Fraunhofer IOF
 - All sample sets
 - Primarily 532nm & 1064nm
 (+ 325nm, 405nm, 633nm, 10600nm)
 - > 1000 single BRDF measurements
- OHB
 - 6 sample sets
 - 532nm & 1064nm
 - > 610 single BRDF measurements
- TSW (The Scatter Works)
 - 3 sample sets
 - Cross check measurements at 532 nm
 - Additionally at 1550 nm

CASI (TSW)

ALBATROSS-TT (OHB)

						PRE	ESCREEN	IING	mon	th																									
	Identifier	CI	G	ioal	Facility				4		5			6	5		7			8			9		10			11		1	2		1	3	
Plan	15-20-OHB	Si KG5 IS Al	05	20 ppm	ОНВ		(cl1) in1 cl1 (cl1)) as	tr F	in1 x x	x	x	x x	×	×	pc1 sc1	532 1064		tr	532 sc1 532 532															
1 Iun	15-50-IOF	Si KG5 Al	05	50 ppm	IOF		(cl1) in1 cl1 (cl1)) as x	x	x x x	×	x	x x	x	x	x x	x	x x	x	x x	x sc	100 1 100	54,325 54 10600 10600	532+, 532 532	, 640 Nea	r tr	pc1	tr pc2							
	15-50-OHB	si KG5 IS	05	50 ppm	ОНВ		(cl1) in1 cl1) as	tr F	in1 x x	(x	x	x x	x	x	x x	x	x x	x	x x	x x	×	x				pc1	tr sc1	532	064 cl	2 sc1	532	064 tr	pc1	
	I5-50-Ex3	Si KG5 IS	05	50 ppm	Expo3		(cl1) in1 cl1) as	tr i	n1 x >	(x	x	x x	×	x	x x	x	x x	x	x x	x x	×	x	:r			pc1	tr sc1	532	064 cl	3 sc1	532	064 tr	pc1	
	15-50-OHB-a	Si KG5 IS	05	50 ppm	OHB-activity		(cl1) in1 cl1) as	tr p	in1 pc1 X X	(x	x	x x	×	x	pc1 sc1	532 1064		tr	532 sc1	10	64			tr	tr	sc1	32, 1550 32, 1550	1	tr ti	sc1	532	064	pc1	
	17-100-IOF	Si KG5 IS	07	100 ppm	IOF	to	(cl1) in1 cl1 (cl1)) as	sc1 5 sc2 5	32 .064 x) 32	(in pc	2 1 sc1	532 532 532				_		sc	32!	5			tr	pc1								
	17-300-IOF	Si KG5 Al	07	300 ppm	IOF	to	(cl1) in1 cl1 (cl1)) as	sc1 5 sc2 5	32 .064 x x	×	x	in pc	2 1 sc1	532+ 532 532						10 10	64 325 64	10600 10600	640 N	lear	tr	pc1	tr pc2							
17x PAC	17-300-Ex3	Si KG5 IS	07	300 ppm	Expo3		(cl1) in1 cl1) as	tr i	n1 x >	(x	x	tr			pc1			tr	532 sc1	2					tr	pc1	tr pc2							
samnle	I7-300-Ex3-a	Si KG5 IS	07	300 ppm	Expo3-activity		(cl1) in1 cl1) as	tr i	n1 x >	(x		tr			pc1 sc1	532 1 532 1	1064 1064	tr	532 sc1	10	64			tr	tr	sc1	32, 1550 32, 1550	1	tr ti	sc1	532	064 tr	pc1	
soto	18-300-OHB	Si KG5 ISO	08	300 ppm	ОНВ		(cl1) in1 cl1) as	tr r	in1 pc1 x p	:1 tr		tr			pc1 sc1	532 1 532 1	1064 1064	tr	532 sc1	2														
sets	18-300-esa	si KG5 ISC	08	300 ppm	esa		(cl1) in1 cl1) as	tr i	n1 x ir	12		t	r		pc1			tr	532 sc1	10	64			in2 pc1	tr L	pc1	tr pc2							
	17-1000-IOF	si KG5 IS	07	1000 ppm	IOF	to	(cl1) in1 cl1) as	sc1 5 sc2	32 .064 X X	x	x	x x	×	x	x x	x	x x	x	x x	in2 pc1					tr	pc1	tr sc1	532	064 cl :	2 sc1	532	064 tr	pc1	
	I7-1000-Ex3	si KG5 IS	07	1000 ppm	Expo3		(cl1) in1 cl1) as	tr i	n1 x >	x	x	x x	×	x	x x	x	x x	x	x x			ł	:r			pc1	tr sc1	532	⁰⁶⁴ cl	3 sc1	532	⁰⁶⁴ tr	pc1	
	I8-1000-OHB	Si KG5 Al	0 8	1000 ppm	ОНВ		(cl1) in1 cl1 (cl1)) as)	tr F	in1 x x	x					pc1 sc1	532 1 532 1	1064 1064	tr	532 sc1 532 532	+ 10	325 64	10600 10600	640 N	lear tr	tr	sc1	32, 1550 32, 1550	1	tr ti	sc1	532	tr 064	pc1	
	18-1000-esa-a	KG5 ISO	0 8	1000 ppm	esa-activity		(cl1) in1 cl1) as	tr i	n1 x >	(i	in2 t	r		pc1			tr	sc1 532					in2 pc1	tr L	pc1	tr pc2							
	18-5000-OHB	KG5 ISC	8 0	5000 ppm	ОНВ		(cl1) in1 cl1 (cl1)) as	tr F	in1 x x	(x	x	x x	×	x	x x	x	x x	x	x x	sc	532 532	2 1064 2 1064				pc1	tr sc1	532,10 532,10 532	064 32: 064	5				
	18-5000-esa	KG5 ISO	0 8	5000 ppm	esa		in1 (cl1) cl1) as	tr i	n1 x >	(x	x	x x	×	x	x x	x	x x	х	x x	in2 ti	r	<u>,</u>	640.			pc1	tr sc1	532						
	control	KG5) as												sc1 532	+ 10	64, 32	10600	640 1	lear	tr	pc1								
4x MOC	M-LL-EC2216	Si KG5 MC	C lo	ow level	EC2216		(cl1) in1 cl1) as					tr		tr	x x	x	x tr	in3	sci	532 1064	tı													
sample	M-LL-RTVS691	Si KG5 ZnS	DC Id	ow level	RTV-S 691	to	(cl1) (cl1) in1 cl1) sc1	532 1064				tr	R	tr	x x	x	x tr	in3	sci	532 1064	tı	FIIR												
sumple	M-HL-EC2216	Si KG5 ZnS	DC h	igh level	EC2216	to	(cl1) (cl1) in1 cl1) sc1	532 1064				tr	n.	tr	x x	x	x tr	in3	sci	532 1064	tı	FTIR												
sets	M-HL-RTVS691	Si KG5 MC	DC h	igh level	RTV-S 691		(cl1) (cl1) in1 cl1) as					tr		tr	x x	x	x tr	in3	sci	532 1064	tı	- IIK												

Page 13

Agenda / Outline

- 1. Motivation & Goals
- 2. Project CoCis
 - 1. Participants
 - 2. Project plan
- 3. Definitions & Approaches
- 4. Experimental results
 - 1. PAC fall out results
 - 2. Scattering from PAC
 - 3. Scattering from MOC
- 5. Modelling
 - 1. Scatter modelling from PAC
 - 2. Scatter modelling from MOC
 - 3. Modelling on system Level
- 6. Summary / Conclusions

Definitions

Fraunhofer

PAC

- PAC percent (particle) area coverage (synonym for particle contamination)
- obscured surface area by particles in ppm
- PAC counting via microscopy (bright field)
 + image processing at OHB
- → PAC level in ppm + histogram
- Often density / frequency / distribution described by two parameter function (MIL-STD-1246C):
 CL – Cleanliness level & S - slope

D = minimal particle diameter of the class;
 N = number of particles per 0.1 m²

MOC

• MOC – molecular organic contamination

- Described in mass density in ng/cm²
- Formation: thin film, droplets or particles ?
- Analysis with:
 - FTIR → mass density highly averaged, no local resolution
 - Ellipsometry → optical film thickness locally resolved thin film properties
 - AFM → topography locally resolved droplet properties

Fraunhofer

FTIR: Fourier Transform Infrared Spectroscopy AFM: Atomic Force Microscopy

Page 16

Light scattering quantities

 $\theta_{\rm s}$... polar scattering angle

 φ_s ... azimuthal scatter angle P_s ... scattered light power P_i ... incident light power

 $\Delta \Omega_s$... detector solid angle

... specularly reflected light power

Angle Resolved Scattering (ISO19986)

$$\operatorname{ARS}(\theta_i, \theta_s, \varphi_s) = \frac{\Delta P_s(\theta_i, \theta_s, \varphi_s)}{\Delta \Omega_s P_i}$$

$$BSDF(\theta_i, \theta_s, \varphi_s) = \frac{\text{differential radiance}}{\text{differential irradiance}} = \frac{ARS(\theta_i, \theta_s, \varphi_s)}{\cos \theta_s}$$

- BRDF for reflection hemisphere
- BTDF for transmission hemisphere

Total scattering (ISO13696)

$$TS = \int_{0}^{2\pi} \int_{2^{\circ}}^{85^{\circ}} ARS \sin \theta_s \, d\theta_s d\varphi_s$$

- Scattering loss
- Energy balance: 100% = R + T + A + TS_b + TS_f

P,

Light scattering quantities

Typical Angle Resolved Scattering distributions

Fraunhofer

Agenda / Outline

- 1. Motivation & Goals
- 2. Project CoCis
 - 1. Participants
 - 2. Project plan
- 3. Definitions & Approaches
- 4. Experimental results
 - 1. PAC fall out results
 - 2. Scattering from PAC
 - 3. Scattering from MOC
- 5. Modelling
 - 1. Scatter modelling from PAC
 - 2. Scatter modelling from MOC
 - 3. Modelling on system Level
- 6. Summary / Conclusions

Approaches

Fraunhofer

Analyzing particle-induced light scattering

Roughness-induced scatter

- Scatter ~ roughness(²)
- Does not depend on beam diameter

Higher resolution / sensitivity

Defect-induced scatter

- Scatter ~ particle size ?
- Does depend on beam diameter

 $ARS(D) = ARS_r(d)$ $+ARS_d(d)\left(\frac{d}{D}\right)$

 \rightarrow Careful analysis for evaluation of particle induced scattering

→ Averaging to determine application relevant / area covering BSDF of contaminated sample

Particle-induced light scattering Measurement approaches

- Particles are localized features
- How to generate a meaningful BRDF of a surface/sample with low stochastic uncertainty and without measuring entire sample?
- Measure all positions? → lasts days

\rightarrow Averaging approaches

- OHB approach: regular pattern
- IOF approach: mapping + selected positions

Particle-induced light scattering

Measurement approach at OHB

OHB approach:

- BRDF measurements for positions on regular pattern \rightarrow averaging
- Number of measurement positions* according to contamination level and beam size:

Table 1: calculation of needed measurement points

contamination level [ppm]	contamination level [CL]	number of particles in a 3 mm spot	theoretical number of measurement points	used measurement points
20	164.32	2.68	74.76	100
50	204.48	6.69	29.91	36
100	239.85	13.38	14.95	16
300	306.08	40.13	4.98	9
1000	395.31	133.75	1.50	9
5000	547-53	668.76	0.30	9

Page 24

*discussed and tested in master thesis by A. Althammer who performed BSDF measurements at OHB

Particle-induced light scattering

Measurement approach at OHB

OHB approach:

- BRDF measurements for positions on regular pattern \rightarrow averaging
 - Example for a KGS sample at 1064nm
- Scattering results:

*discussed and tested in master thesis by A. Althammer who performed BSDF measurements at OHB

Particle-induced light scattering

Measurement approach at IOF

Silicon mapping at 532 nm 55 10-3 Х 50 10-4 X_{Si} 45 10-5 10-6 40 10-7 35 10⁻⁸ 30 130 140 135 155 150 145

IOF approach:

- Map the scattering into fixed detection direction for the entire surface
 → Measure BRDF of selected positions & generate histogram
- Average according to histogram

Efficient scattering analysis of PAC contaminated samples

Measurement approach at IOF (cross check)

• Full surface analysis (area:15x20mm² \rightarrow 70h):

Extended stochastic analysis:

- Clean positions dominate box plot (~75%)
- But: particles dominate average
- Most dominant scattering from less than 5% of features
- → Excellent agreement between full surface average and histogram method

\rightarrow Efficient & robust full surface scattering assessment (30x30mm² in 1.5h; +/- 90°)

Analysis of all data sets obtained so far

- OHB, IOF and TSW collected 105 averaged curves for the PAC sample sets
- For PAC & MOC \approx 2000 single BSDF measurements

Agenda / Outline

- 1. Motivation & Goals
- 2. Project CoCis
 - 1. Participants
 - 2. Project plan
- 3. Definitions & Approaches
- 4. Experimental results
 - 1. PAC fall out results
 - 2. Scattering from PAC
 - 3. Scattering from MOC
- 5. Modelling
 - 1. Scatter modelling from PAC
 - 2. Scatter modelling from MOC
 - 3. Modelling on system Level
- 6. Summary / Conclusions

Experimental Results - PAC Fall Out

Sample	Clean Room	Exposure Time	Achieved PAC	CL-fit				
	Class	(days)	in ppm	CL	Slope s			
I5-50-OHB	15	186	126	713	<mark>0.63</mark>			
I5-50-OHB-a	15	72	72	974	0.50			
I5-20-OHB	15	71	<mark>3</mark>	2376	<mark>0.24</mark>			
I7-300-Ex3	15	N/A	147	3448	0.37			
I7-300-Ex3-a	18	8	187	3900	0.35			
I5-50-Ex3	18	N/A	276	6301	0.33			
I7-1000-Ex3	18	10	292	9292	0.30			
18-300-OHB	18	47	357	5829	0.35			
18-300-esa	18	7	55	2893	0.35			
I8-1000-OHB	18	69	1191	4616	0.41			
15-50-IOF	15	50	21	720	0.50			
17-100-IOF	17	19	60	2301	0.38			
17-300-IOF	17	50	155	6256	0.31			
17-1000-IOF	17	166	606	4598	0.41			
18-1000-esa-a	18	14	271	17979	<mark>0.25</mark>			
18-5000-OHB	18	302	1915	8392	0.38			
18-5000-esa	18	<mark>397</mark>	<mark>3103</mark>	24118	0.30			

PAC analysis of 17 sample sets

- Achieved PAC from 3ppm to 3100 ppm
- CL from 700 to 24000

- Reasonable fits of CL & s
- Slope values from s = 0.24 to 0.63

- Higher variety of s for lower clean room classes (lower contamination levels)
- published: s = 0.38 (uncleaned surfaces)

PAC: influence of shipping

 One exception: increase of factor 2 for one sample from initially 72ppm to 161 ppm

Impact of sample shipping

PAC influence of cleaning

- 4 sample sets, 2 cleaning approaches:
- \rightarrow N2 purge

(sample sets I5-50-Ex3, I7-1000-IOF)

- → Wiping using clean room microfiber cloth soaked with isopropanol (sample sets I5-50-OHB, I7-1000-Ex3)
- Significant PAC reduction in particular big particles
- Slope parameter:
 s = 0.4 ... 0.7 (Literature: 0.9)
- Higher efficiency for wiping
- → Interesting light scattering results

Page 34

Agenda / Outline

- 1. Motivation & Goals
- 2. Project CoCis
 - 1. Participants
 - 2. Project plan
- 3. Definitions & Approaches
- 4. Experimental results
 - 1. PAC fall out results
 - 2. Scattering from PAC
 - 3. Scattering from MOC
- 5. Modelling
 - 1. Scatter modelling from PAC
 - 2. Scatter modelling from MOC
 - 3. Modelling on system Level
- 6. Summary / Conclusions

Experimental Results - PAC scattering

Initial Scattering Screening

- Prescreening of selected samples regarding PAC and roughness
- → High homogeneity, cleanliness and low roughness/initial scattering demonstrated
- Only single particles and defects observed

Scattering Mappings

I7-300-IOF, 155ppm

I8-1000-OHB, 1190 ppm

Fraunhofer
Scattering of PAC contaminated samples Silicon at 532 nm

- Percent Area Coverage (PAC): 20 ppm to 3100 ppm
- PAC & size distribution by microscopy, required for later modelling
 - Scattering: increase by >10³
 - pprox Linear scaling with PAC ?

KG5 at 1064 nm

- Percent Area Coverage (PAC): 20 ppm to 3100 ppm
- PAC & size distribution by microscopy, required for later modelling
- Scattering: increase by >10³
- \approx Linear scaling with PAC ?
- Slightly different high angle slope than for PAC on Si at 532nm

Scattering of PAC contaminated samples KG5 at 10600 nm

- 3 KG5 samples also analyzed at 10600 nm
- In general measurements and quite similar behavior as for VIS wavelengths
- However, thermal effects of glass or instrument noise becomes critical

transparent sample

- Influence of backside scattering \rightarrow increase of scattering for clean sample
- Different slope for scattering transmission \rightarrow BTDF closer to substrate induced scattering
- → Please see modelling results

Particles on front or rear side

Forward scattering,

- Test at OHB: Forward scattering with particles on front vs. rear side
- Slight difference for KG5 (at 532nm)
- Higher differences for Si (at 1064nm)
- Increasing differences at higher scattering angles
- → Higher scattering for particles on exit surface
- → Caused by: reflectance / transmission / absorption + geometric effects
- \rightarrow See Modelling for further explanation

Influence of incidence angles

- Oscillation behavior not much changing
- Only moderate changes in level, in particular close to specular direction
- → Particle forward scattering scaled by changing reflectance of the surface?

Wavelength and PAC scaling (Silicon wafer)

Page 44

Fraunhofer

Scaling of SINGLE particle induced scattering

Fraunhofer

OHB

Experimental results: scaling of particle induced scattering

Experimental results: scaling of particle induced scattering

Wider wavelength range

Scattering of PAC contaminated samples - Before vs. after shipping (Si, 532nm)

- → Most features stay identical / similar
- \rightarrow Alterations for sample with medium contamination level
- → Almost no changes for averaged curves
- \rightarrow (same for KG5 at 1064 nm)

Analysis before and after cleaning - Isopropanol wiping vs N2 purge

- Significant reduction of averaged scattering level, but "redistribution" in particular for N2
- Isopropanol: Big and medium sized particles removed, but "haze" induced
 - ightarrow dominant scattering by particles ~1-2µm (see modelling)

Analysis before and after cleaning

Isopropanol wiping

Fraunhofer

Agenda / Outline

- 1. Motivation & Goals
- 2. Project CoCis
 - 1. Participants
 - 2. Project plan
- 3. Definitions & Approaches
- 4. Experimental results
 - 1. PAC fall out results
 - 2. Scattering from PAC
 - 3. Scattering from MOC
- 5. Modelling
 - 1. Scatter modelling from PAC
 - 2. Scatter modelling from MOC
 - 3. Modelling on system Level
- 6. Summary / Conclusions

Experimental Results - MOC scattering

MOC – Molecular Organic Contamination

- MOC: source of absorption & "spectral disturbance"
- MOC formation ??

Particle MOC

"Haze" MOC (droplets)

 \rightarrow Application of particle model(s) ?

Thin film MOC (nm range)

- \rightarrow Application of thin film roughness scattering models ?
- MOC contamination @ esa-ESTEC (Effusion cell)
- Contaminants: Epoxy **EC2216**, Silicone Elastosil RT745

Fraunhofer

MOC - EC2216 on Si Wafer

topography

Fraunhofer

MOC - EC2216 on Si Wafer

Scattering

Analysis of MOC contamination – KG5 1064nm

MOC Summary

			Scattering mapping			Topography analysis		
contaminant	Envisaged level	substrate	Homogeneou s haze	particles	clean	droplets	roughness	other
RT745		SiA		(x)	(x)		-	
	LL,	Si		х		(x)	increased	
	250ng/cm ²	KG5	x				increased	No polishing features
		SiA			х		-	
	н	Si		х			-	
	500 ng/cm^2	KG5		(x)	(x)		-	Polishing features
	50016/011							(+fine spikes)
EC2216		SiA	(x)		(x)		sign. changed	
							inhomogeneous	
	П.	Si	х	х		х	sign. changed	
	250ng/cm ²						inhomogeneous	
		KG5			(x)		slight increase	Polishing features still
								visible
		SiA	х			х		
	н	Si	x			х		Different from other
	500ng/cm ²							droplets
		KG5	x			x	changed	(Big droplets)

- Inhomogeneous MOC density on surface from effusion cell
- MOC levels from ~0 to 3450e-7 g/cm²
- Thin film MOC between 100 ng/cm² to 640 ng/cm² analyzed

Agenda / Outline

- 1. Motivation & Goals
- 2. Project CoCis
 - 1. Participants
 - 2. Project plan
- 3. Definitions & Approaches
- 4. Experimental results
 - 1. PAC fall out results
 - 2. Scattering from PAC
 - 3. Scattering from MOC
- 5. Modelling
 - 1. Scatter modelling from PAC
 - 2. Scatter modelling from MOC
 - 3. Modelling on system Level
- 6. Summary / Conclusions

Modelling - PAC scattering

Fraunhofer

Mie Model – double interaction

- Several theories reviewed and discussed
- Bobbert-Vlieger shall be exact for (MIE-)particles on surfaces (but, no particles >5µm possible ...)
- MIE + Double interaction: Free space Mie particles + surface interaction (phase correct)

Summary of approach

- Good Fit for different ppm-levels
- No significant wavelength scaling (big particles present)
- Good fit for measurements in transmittance
- Good fit of cleaned samples
- For low contamination levels single particles in duce stochastic uncertainty

General correlation

Very good correlation for the selected samples

BSDF modelling Transparent samples

→ BTDF results of ScatMech has to be modified:

- Transmission through bulk & 2nd interface
- Refraction at 2nd interface
- Additional "diffraction" of solid angle
- high contribution to slope at higher BTDF scattering angles

Influence of particle refractive index n/k

- Analyzing these influences on scattering + comparison to measured data
- Average refractive indices set to:

100

>	n = 1.53 + i0.001	@ 532nm
÷	n = 1.50 + i0.001	@ 1064nm

 cross check to published values: almost same values as in literature or in FRED

Influence of particle distribution (CL, s)

- Cleanliness Level: acts as global scaling factor
- Slope: also influences the global level (ARS normalized for comparison)
- \rightarrow Moderate changes of scattering slope by particle distribution slope
- \rightarrow observed slopes between 0.25 and 0.6 (0.7)

Contribution of particle sizes

Integrated scattering of single particles (model)

- integrated scattering (TS) of single according to power laws
- Different slope for diameter < or > λ

 In particular for high PAC almost linear growth of integrated scattering (TS) wit PAC

Influence of cleaning

So far, no significant influence of particles with D <~ 5 μm observed

- → few big particles dominate BSDF
- After Isopropanol wiping a lot of small particles with D < 4µm observed
- → BSDF model fits only by including this exaggeration of small particles into particle distribution
- → CL-s PAC model not useful to describe this PAC distribution!

Wavelength scaling

- Model also predict sno significant wavelength scaling for VIS / NIR
- Increased near angle scattering for IR wavelengths

Wavelength scaling

- Comparison of scattering measurement and model for single particles
- Particle scattering (meas & mod) intersects measured ARS (roughness induced/instrument signature) horizontally
- → Particle model continues horizontally until specular direction
- Particle scattering is not contributing to near angle scattering beyond this plateau

Agenda / Outline

- 1. Motivation & Goals
- 2. Project CoCis
 - 1. Participants
 - 2. Project plan
- 3. Definitions & Approaches
- 4. Experimental results
 - 1. PAC fall out results
 - 2. Scattering from PAC
 - 3. Scattering from MOC
- 5. Modelling
 - 1. Scatter modelling from PAC
 - 2. Scatter modelling from MOC
 - 3. Modelling on system Level
- 6. Summary / Conclusions

Modelling - MOC scattering

Fraunhofer

Scattering modelling from MOC

Thin film coating approach

Vector perturbation theory ($\sigma \ll \lambda$) $ARS(\theta_s) \sim \frac{1}{\lambda^4}$ $F_i F_j^* \text{PSD}_{ij}(f)$ **Optical factors Roughness factors**

PSD: Power Spectral Density of surface roughness (~ Fourier Transform)

- Multilayer design
- Optical constants
- Polarization

- PSDs of individual surfaces
- Cross-correlation properties (i≠/)
- Multilayer scatter influenced by roughness and interference effects
- Application for a single thin MOC layer on Si/KG5 substrates ?
- PSD + Film parameters of MOC ?

Scattering modelling from MOC

"Roughness" of MOC

- AFM topography data \rightarrow PSD (model function)
- n, k from tables
- Film thickness from Ellipsometry

- AFM topography data \rightarrow PSD (model function)
- n, k from tables
- Thickness \rightarrow "effective thickness" from geometry
 - $\sim 1/3$ of droplet height

30 nm

-30 nm

Scattering modelling from MOC

Results: EC2216 on Si

• Modelling: Thin Film scattering theory gives excellent results for thin film & droplet MOC

Agenda / Outline

- 1. Motivation & Goals
- 2. Project CoCis
 - 1. Participants
 - 2. Project plan
- 3. Definitions & Approaches
- 4. Experimental results
 - 1. PAC fall out results
 - 2. Scattering from PAC
 - 3. Scattering from MOC
- 5. Modelling
 - 1. Scatter modelling from PAC
 - 2. Scatter modelling from MOC
 - 3. Modelling on system Level
- 6. Summary / Conclusions

Modelling - System level

Fraunhofer

Modelling on system level

BSDF models into Ray-Tracing Software

Software FRED:

- MIE model implemented including particle distributions according to MIL-STD-1246C
- "double interaction" implicitly implemented
 → particle scattering interacts with surface

 Implementation of customized scattering models or import of external modelling data supported

Modelling on system level

BSDF import into Ray-Tracing Software

- Direct import of measured data
- Fitting of measured curves with ABg model e.g. with two terms:
 - ightarrow less oscillation / "noise"

→ However, poor fit at high scattering angles (reducible by 3^{rd} term or use θ_s instead of $\sin \theta_s$)

- Proposal for handling of near angle scattering: horizontal plateau since near angle scattering is not driven by particles
- FRED will handle transmittance, reflectance, refraction, ... of this data

ightarrow care required not to consider those effects twice

n	А	В	g
1	7e-5	3e-4	1.1
2	9.5e-8	1e-7	3.5

Modelling on system level

Optical system

- Test system: TMA imaging system, VIS: EFL= 545 mm
 F# = 4
 FoV = +/-2.91 °
- Three mirrors (M1,M2,M3) one refractive element/window (RS) and Detector.
- Measured BRDF data applied for PAC
- Modelled for:
 Half Field Illumination → contrast degradation
 Punctual Illumination → PSF degradation

Modelling on system level

Influence of contamination

- Scattering contribution to bright field >3000x lower than direct light
- Scattering close to point source x10⁻⁷ lower than image of the point source

Detecto

Summary

- Light scattering from PAC & MOC is critical factor for optical coatings, components and systems → image degradation & losses
- Project CoCis: initiated by esa to obtain reliable & experimentally verified data & models for contamination induced scattering
- PAC collected by exposure in different clean rooms; MOC generated by effusion cell
- Results for real world scattering of PAC contaminated surface
 - \rightarrow Linear scaling of scattering according ppm
 - ightarrow No significant wavelength scaling
 - \rightarrow Influence of optical properties of substrate
 - → "Efficiency" of cleaning approaches
- MOC: forms as thin films or droplets with tremendous effect on scattering
- PAC modelling using MIE double interaction theory
- MOC modelling (thin films/droplets) using thin film techniques

Thank you for your attention

Thanks to colleagues:

Marius Wyltschew, Anna Gottwald, Nadja Felde, Marcus Trost, Anne-Sophie Munser, Sven Schröder (IOF) Albert Althammer, Harald Steiniger, Piotr Sakowicz, Monika Kroneberger, Sebastian Fray (OHB), John Stover, Chris Staats (TSW); Thomas Germer (NIST); Mathilde Marcon (Thales) Mircea Helici, Holger Fischer, Simon Strotman, Volker Kirschner (esa)

inunities

ОНВ