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Introduction

• Each block is mission-dependent

• Long design times

• MEA is a centralized controller. Critical
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Introduction

• What if we could standardize and parallelize each main block (SAR, BCR, 
BDR)?

• Same hardware for each role (SAR, BCR, BDR)

• Control and protection local to each module

• Redundancy at module level

• Automatic power sharing
• Failure recovery

• Health monitoring to prevent failure

• Power scale by introducing additional blocks

• No centralized controller

• Three branches to develop
• Topology
• Control

• Health monitoring
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Topology

1. New architecture is proposed. Smaller units (modules) that can be 

combined to satisfy power needs

2. Each module can work as SAR, BDR and BCR

3. No hardware reconfiguration needed. Digitally controlled.

4. Redundancy at module level

5. No communication between modules

6. Additional supervisor module interfaces between power system and rest

of spacecraft
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Topology

• Topology selection based on a 
comparison of optimised converters
(lowest losses for each point of
operation).
• Each module includes SAR, BCR, and BDR 

capabilities.

• Two-method analysis. 

• Qualitative analysis explores a wide range of
converters

• Quantitative analysis selects the best based on
a figure of merit
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Topology

• Qualitative analysis

• Divided into: unidirectional, bidirectional and three-port
topologies

• Evaluates adequacy of the topology (at module level) based on:

• Number of semiconductor devices

• Number of magnetic elements

• Number of capacitors

• Number of converters

• Complexity of control 

• Bus limitations

• Efficiency
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Topology
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Topology Converters total
Semiconductor 

devices
Inductors Capacitors Control Bus lim. Efficiency

Buck or Boost 3 12 3 6 Simple Y Very High

Weinberg 3 21 6 6 Simple Y High-Very High

Non Inverting
BuckBoost

3 18 3 6 Simple-Average N High

Full Bridge 3 24 6 9 Simple N High

Push Pull 3 18 6 9 Simple N High

Bidirectional 2-level 
Switched-Capacitor

2 16 2 8 Complex Y High

4-switch BuckBoost 2 12 2 4 Average N High

Bidirectional
Buck/Boost

2 8 2 4 Average Y High

DAB 2 16 4 6 Complex N High

Bidirectional LLC 2 24 10 8 Complex N High

TAB 1 12 3 5 Very Complex N High
Interleaved Boosts 

with 
Full bridge 

(integrated)

1 9 4 3 Very Complex Y High

Three-port 
asymmetrical
 Half Bridge

1 8 2 4 Very complex Y Medium-High



Topology

• Unidirectional: 

• Offer no real advantage

• Bidirectional:

• More advantages at almost no cost

• Reduce number of modules in one

• Galvanic Isolation not a requirement. Increase in weight

• Three port bidirectional:

• Reduction of components

• Single control. More complex

• Modularity more cumbersome

• Final candidates: Bidirectional buck and 4-switch buck-boost
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Topology

• Quantitative analysis

• Used to obtain a final figure of merit to evaluate the best topology
to choose. 

• Converters optimized for lowest losses.

• Sweeping process.

• Optimised variables: fsw, current ripple.

• Topologies: Bidirectional buck and 4-switch buck-boost.

• Conditions: 
• Bus voltage: 28 V

• Battery voltage 22 to 34 V 

• Solar array voltage: 30 to 60 V.
• Power: 500 W. 

• Switching frequency: 30 to 200 kHz 

• Current ripple (relative): 0.05 to 0.45
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Topology

1. Definition of input variables (voltage range, power, 

switching frequency, current ripple, etc)

2. Minimum inductance value 

3. Switch selection

4. Inductor design 

5. Rough estimation of efficiency for each fsw-ripple pair

6.    Accurate efficiency estimation

7.    Figure of merit efficiency/weight
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L calculated

Vin max value?

ΔIL, fsw minimum value

Vin, Vout minimum value

Best MOSFET calculation Mopt(fsw, ΔIL)

Vin incremented

Vout minimum value

fsw  max value?

ΔIL incremented, fsw minimum value

ΔIL max value?

Vout max value?

Vout incremented, Vin minimum value

 Mopt_loss > Mchosen_loss?

 Mchosen(fsw, ΔIL)=Mopt(fsw, ΔIL)

Return Mchosen(fsw, ΔIL)



Topology
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Topology

• Single point failure free

• Local OCP, UVP, OVP protections. 

• Protection FETs included.

• In failure module isolates from power system.

• Rest of the modules compensate

• Each module is digitally controlled by FPGA.

• Interface to control:

• Analog

• Input/Output voltage and current

• Inductor current

• Digital:

• On/Off

• Transistor driving

• Watchdog
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Topology
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• Watchdog prevents digital controller 

failure.

• If stuck permanently High or Low module 
isolates.

 



Topology

• Prototype built with COTS

• Rad-hard equivalents available

• Component availability

• Switching elements: GaNSystems GS66516B
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Bus voltage 100 V
Battery voltage 80 V
Solar array voltage 150 V
Output capacitor 35.2 µF
Switching frequency 180 kHz
Inductance 83 µH
Current ripple 2.5 A
Output current 5 A
Bus power 500 W



Topology
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IL (2 A/div)

VBAT (20V/div)

VDS_HIGH (50 V/div)

VBUS (20 V/div) 2 µs/div

IL (1 A/div)

VBAT (20V/div)

VDS_HIGH (50 V/div)

VBUS (20 V/div)

2 µs/div

• Boost Mode

• Vin=80 V

• Vout=100 V

• Buck Mode

• Vin=150 V

• Vout=100 V



Topology
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Topology
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• Full power temperature 
response below 90ºC.

• Full power efficiency: 
~96%



Conclusions: Topology

• New power architecture is presented

• Hardware developed to test it

• Allows parallelization and adequate power scaling

• Allows decentralized control

• M. Fernandez, M. Arias, P. F. Miaja, J. Oliver, J. A. Fernandez and P. Z. Vaquero, "Four-Switch Buck-Boost 

Based Module Block for Highly Modular Power Architecture," 2023 13th European Space Power 

Conference (ESPC), Elche, Spain, 2023, pp. 1-6, doi: 10.1109/ESPC59009.2023.10412700. 
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Control. Outline

• Control principle: droop control, DBS

• Control architecture and implementation

• Results
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Control. Decentralized control in multiple converter
architecture

• Typical example in microgrids: droop control

• Droop resistance made by control

• It allows multiple converters connected to the same 
bus sharing load without any communication among 
them

• Limitations:
• Every module provides current to the load according the 

control law: no power limitation per module

• All modules regulate cooperatively the bus: no regulation of 
other quantities are allowed (input side of the module: 
battery, MPPT,…)
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Control. Operation modes of the modular system

• Depending on the bus voltage, the modules have different 
operating modes:

• Bus mode → voltage sources + Rdroop (source or load)

• Device mode → regulates voltage or current at its no-bus side 
(device side)

• At least one module in bus mode to regulate bus voltage
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Control. DC bus signalling

• Every module has a slightly different bus 
reference voltage

• Only one module regulates the bus

• SAR modules priority vs. Battery modules to 
deliver power to the load

• SAR modules have the higher reference 
voltages

• When a module has a bus reference voltage 
lower than the actual bus voltage, it delivers 
the minimum output current: 0A for SAR, 0A or 
negative current for BCR

• When a given module reaches its maximum 
output current, it enters device mode
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Control. Example of DC bus signalling
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Light load: 
• Module 1 

provides the load 
power → bus 
mode

Medium load:
• Module 1 reached its maximum  

power → device mode
• Module 2 regulates the bus and 

provides the required extra 
power → bus mode

Heavy load:
• Modules 1 and 2 reached their 

maximum power → device mode
• Module 3 regulates the bus and 

provides the required extra power 
→ bus mode
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Control. Saturator and mode selector

• The BCR charging reference current is provided by the supervisor using 
an additional block
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BCDR operation:

SAR operation: 32
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• Design debugging 

using co-simulation 

PSIM-Modelsim

• All control blocks 

implemented in VHDL

• Synthesis code 

included in simulation

• ADC model included in 

VHDL blocks

Power stage
PSIM simulator

Control stage
Modelsim simulator

Control. Co-simulation



Control. Simulation results

• Cosimulation has been essential to debug the control implementation
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Control. Experimental set-up for single module

• A simplified power stage has been used:
• Because of shortage of original GaN modules, 

replacement for other equivalent

• No auxiliary circuitry and protections
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CH5
Ibus

Electronic 
load
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-

CH4
Vbus
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-

CH3
IL3

DC/DC 
Module 3 (z)DC voltage source

FPGA ADC

SAR/BAT+ BUS+

FPGA bus Telemetry bus

BUS-SAR/BAT-

+

-

CH6
Vin3
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+

-

CH3
IL3

CH4
Vbus

CH5
Ibus
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Vin3
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PS3 EL



Control. Single module: static characteristic

• V-I curve as expected
• Droop control and DC bus signalling implemented

• Admisible temperatura rise
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Control. Single module: different input voltages
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CH3: IL3
CH4:Vbus
CH5:Ibus
CH6:Vin

CH3: IL3
CH4:Vbus
CH5:Ibus
CH6:Vin

CH3: IL3
CH4:Vbus
CH5:Ibus
CH6:Vin

Vin=80V

Ibus=2A

Vin=100V

Ibus=2A

Vin=150V

Ibus=2A

Different input voltage

Medium bus current

Modulator demonstration



Control. Single module: input voltage sweep
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CH3: IL3
CH4:Vbus
CH5:Ibus
CH6:Vin

Test C1.7

Vin=80V-150V

Ibus=2A

Bus voltage is properly regulated under input voltage slow variation



Control. Single module: load current steps
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CH3: IL3
CH4:Vbus
CH5:Ibus
CH6:Vin

Test C1.12

Vin=80V

Ibus=0.5A-3.5A

Bus voltage is properly regulated under current steps (droop effect)



Control. Single module: MPPT
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CH3: IL3
CH4:Vbus
CH5:Ibus
CH6:Vin

Test C1.16

Vin=PV panel emulator (MP=240W)

Vbus=100V (regulated by the load)

MPPT produces expected input voltage variations



Control. Three module set-up

• Every module has the same power
stage and control stage

• Minimum control configuration
made by external signals (switches)

• Simplified DC/DC modules
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Control. Three module: bus current sweep
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CH3: IL3
CH4:Vbus
CH5:Ibus
CH6:Vin3

CH2: IL2
CH1: IL1

Test C3.4

Vin=80 V

Ibus=2-9A

Module priorization as expected using DC bus signalling



Control. Three module: full test (MPPT and battery)
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Test C3.12

Vin3=PV panel emulator (MP=240W), Vin1=battery, Iload=2-9A

MPPT in module 1 is always operating as it has to provide the load power and the battery charge

While module 2 is not saturated, battery is being charged. When module 2 reaches its maximum 
output current, battery module regulates the bus

CH3: IL3
CH4:Vbus
CH5:Ibus
CH6:Vin3

CH2: IL2
CH1: IL1



Control. Three module: load current steps
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CH3: IL3
CH4:Vbus
CH5:Ibus
CH6:Vin3

CH2: IL2
CH1: IL1

Detailed transitions Overall test



Control. Three module: supervisor set-up
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DC/DC moduleDC/DC voltage
source

Electronic load

FPGA ADC

SAR/BAT+ BUS+

FPGA bus Telemetry bus

BUS-SAR/BAT-

+

-

+

-

DC/DC moduleDC/DC voltage
source

FPGA ADC

SAR/BAT+ BUS+

FPGA bus Telemetry bus

BUS-SAR/BAT-

+

-

DC/DC moduleDC/DC voltage
source

FPGA ADC

SAR/BAT+ BUS+

FPGA bus Telemetry bus

BUS-SAR/BAT-

+

-

Raspberry 
Pi 4

Supervisor implemented in a RaspberryPi 4

Every control module implemented in the FPGA has 
an SPI interface for telemetry and configuration

For simplicity, only connected to module 1



Control. Three module: telemetry
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Supervisor gets telemetry data every second approx.

Offset in the measured data



Control. Three module: change in V-I curve
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Supervisor sends a command to change V-I curve parameters in module 1

Constant current bus during test: depending on the V-I curve module 3 or module 1 
regulate the bus

Bus voltage is properly regulated despite the change in V-I curve



MODULE 3 MODULE 2
MODULE 3 saturated

MODULE 1
MODULE 2 saturated
MODULE 3 saturated

MODULE 3
(No 
MPPT) MODULE 1

MODULE 2 saturated

MODULE 3 with MPPT

MODULE 2
MODULE 3

with MPPT

MODULE 1 charge Batt

MODULE 2
MODULE 3 with MPPT

MODULE 1
MODULE 2 saturated

MODULE 3 with MPPT

Control. Conclusions

• Feasibility of making a primary power distribution system based on equal 

power modules, with the same digital control and only sharing the information 

of the bus voltage

• DC bus signalling is used to prioritized the modules that provide the energy to 

the load while keeping the bus regulated: SAR modules priority vs. Battery 

modules to deliver power to the load

• Although the result is a non-tight regulation of the bus, the variation of the bus 

voltage is less than 5%.

• The priority order of the modules can be changed by the external supervisor

• MPPT algorithm is running in SAR modules. When the module is in MPPT 

mode, the variable injected current is compensated by the regulating module

• Battery module can be charged and is the module that ensures bus regulation 

despite the operation condition of the other modules

• Extensive test demonstrates the implemented control

• Co-simulation has been a useful tool for control debugging
51



Health Monitoring of digitally
controlled flexible converters

Health monitoring



Health Monitoring

• Health monitoring methods
• Improve reliability

• Increase lifetime

• Modules able to recalculate 
power demands
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Ctrl

Ctrl

SAR 3

SAR 2

SAR 1 
(aged)

bus

Ctrl!



Health Monitoring

• Failure causes:
• Magnetic elements: Almost nothing reported. 

• Capacitors:
• One of the main causes

• Indicators include increased ESR and reduction of capacitance

• When modules sharing output difficult to identify which is failing.

• Space design: Self-healing capacitors.

• Semiconductor switches:
• Main cause of failure

• The ultimate root cause is in most cases mechanical and package related.

• Multiple indicators

• Mainly related to MOSFETs and IGBTs
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Health Monitoring

• Multiple indicators:
• Threshold voltage

• Difficult to measure in application.

• Body diode forward voltage
• Difficult to measure in application. 

• Gate charge
• Specialized circuitry. Difficult to measure in application.

• Parasitic capacitances
• Specialized circuitry. Difficult to measure in application.

• Breakdown voltage
• Difficult to measure in application. Potentially destructive.

• Leakage current
• Difficult to measure in application. 

• On-state resistance:
• Most used method.

• Possible to measure in application.
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Health Monitoring

• Detect MOSFET degradation
• Resistance increase

• Non-invasive 

• Three alternatives 
• Kalman filter

• Model comparison based on heatmap

• Machine learning
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Health Monitoring

• MOSFET resistance measurement good indicator

• Direct measurement not an option
• Added complexity. Reliability decreases

• Prediction 
• Kalman filter

• Noisy environments, GNSS
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Health Monitoring
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• State prediction  based on previous 
inputs

• State variables 𝑥𝑘

• State transition matrix 𝑥𝑘+1 =
𝑓(𝑥𝑘 , 𝑢𝑘 , 𝑤𝑘)

• Describes state evolution over time 

• Measurement model 𝑧𝑘 = ℎ(𝑥𝑘 , 𝑣𝑘)
• State covariance P

• Uncertainty in the estimated state

• Process noise covariance Q
• Uncertainty in the process model

• Measurement noise covariance R
• Uncertainty in sensors

• Kalman gain K
• Weights that assign how much trust is 

given to measurements

• Jacobian matrices 𝐹𝑘 and 𝐻𝑘



Health Monitoring
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• Case of study: average current 
controlled boost converter

• Adapted to Buck too

• Estimation of parasitic 
resistance

• Control inputs
• 𝑉𝑖𝑛, 𝑉𝑜𝑢𝑡

• Current reference 𝐼𝑟𝑒𝑓

• Additional current sample 𝐼𝑟𝑖𝑝

• Duty cycle 𝑑

• Output:
• Estimated states 𝑟𝑙 and current

ripple Δ𝑖 = 𝐼𝑅𝐼𝑃 − 𝐼𝑅𝐸𝐹



• State variables

• Current sample difference Δ𝑖

• Parasitic resistance 𝑟𝑙

• State space description

• State transition

• One switching cycle is developed

Health Monitoring
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1
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Health Monitoring
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• Next switching cycle

Δ𝑖 𝑇𝑠 = 1 −
𝑟𝑙

𝐿
𝑇𝑠 Δ𝑖 0 +

𝑉

𝐿
𝑇𝑠 − 𝐼𝑟𝑒𝑓

𝑟𝑙

𝐿
𝑇𝑠

𝑉 𝑛 = 𝑉𝑖𝑛 𝑛 − 1 − 𝑑 𝑛 ∙ 𝑉𝑜 𝑛

• Boost • Buck

𝐹(X n , U[n]) =
∆𝑖[𝑛]
𝑟𝑙[𝑛]

=
∆𝑖[𝑛 − 1] ∙ 1 − 𝑟𝑙 𝑛 − 1 ∙

𝑇𝑠

𝐿
+

𝑇𝑠

𝐿
∙ 𝑉[𝑛 − 1] − 𝐼𝑟𝑒𝑓[𝑛 − 1] ∙

𝑇𝑠

𝐿
∙ 𝑟𝑙[𝑛 − 1]

𝑟𝑙[𝑛 − 1]

• State transition

𝑉 𝑛 = 𝑑 𝑛 ∙ 𝑉𝑖𝑛 𝑛 − 𝑉𝑜 𝑛



Health Monitoring
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Health Monitoring
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Hall

ADC

Digital 
compensator

DPWM

Iref

ADC ADC

d

L

IL, IripVin Vo

d, Vin , Vo, IL, Irip

DSP PC

EKF

C
R

Vds Id

ADC

Rdson 
Vds, Id

Parameter Value
Input voltage 𝑉𝑖𝑛: 15 𝑉

Output voltage 𝑽𝒐: 30 𝑉

Inductor 𝑳: 275 𝜇𝐻

Capacitor 𝑪: 570 𝜇𝐹

Switching frequency 

𝒇𝒔𝒘:

10 𝑘𝐻𝑧

Switching FET: 𝐹𝐷𝑃26𝑁40

Switching FET ON 

resistance 𝑹𝒅𝒔𝒐𝒏:

190 𝑚Ω

Reference current 

𝑰𝒓𝒆𝒇: 

1.5 𝐴

ADC resolution: 12 bits
ADC input range: 0-3V

• Custom boost converter

• Data acquisition
• Texas Instruments TMS28F379

• Kalman filter execution on external PC



Health Monitoring

• EKF prediction  implementations

• Simulink model

• Wide range of toolboxes

• DSP support

64

EKF

DSP communication & data 
conditioning

Parameter Value
Initial states 𝑿𝟎 0

110 · 10−3

State error covariance 

matrix 𝑷𝟎:
1 · 10−3 0

0 1 · 10−3

Measurement noise 𝑅0: 1 ∙ 10−2

Process noise 𝑸:
1 ∙ 10−3 0

0 1 ∙ 10−3



Health Monitoring

• Degradation simulated using MOSFET driver voltage change
• 10% increase
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Δ𝑟𝑙 𝐸𝐾𝐹

𝑅𝐷𝑆 𝑜𝑛

• Change in conduction 
resistance detected

• Minor changes in input voltage 
cause errors in prediction.

𝑉𝑖𝑛 = 15 𝑉 𝑉𝑖𝑛 = 17 𝑉 𝑉𝑖𝑛 = 15 𝑉



Health Monitoring

Kalman filter:

+ Detection of parasitic resistance increase

- Second current sample needed

- Temperature effects not considered
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Health Monitoring

•  Four-switch buck boost

• Gain= 
𝐷1

1−𝐷2

• Same gain, different duty cycles

• Regions where degradation is evident

• Operating in suboptimal conditions 
during certain moments (e.g. out of 
eclipse) 

67



Health Monitoring

• Converter losses calculated
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Health Monitoring

• Find zones of interest
• Different degradations for each MOSFET
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M4 aged M1 aged



Health Monitoring

• Find zones of interest
• Different degradations for each MOSFET
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All MOSFETs agedM2 aged



Health Monitoring

• Comparison with prototype
• Temperature effects not considered

• Not accurate
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Health Monitoring
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• Generating whole heatmap is resource 
consuming

• Generated database with different aging 
elements

• Baseline to predict behaviour 



Health Monitoring

• Generated “real measurements
• Random noise -> 5% measurement error

• Detection

73

L
o
s
s
e
s
 (

W
) 

L
o
s
s
 d

if
fe

re
n
c
e

 (
W

) 



Health Monitoring

• Heatmap conclusions: 

• Results inconclusive

•  External errors (measurement, temperature effects…) have not 
been considered

•  No additional measurements needed
• Input/output power
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Health Monitoring
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• Machine Learning Approach:
• Forget about  any prior model

• Just use data to model a healthy converter.
• Inputs: Vin, Vout, Temperature, Iload,…

• Outputs: Duty cycle command, inductor current ripple, ….

• Neural Network fits the input data to the output. Generate a model of the converter.

• Degradation-> Difference between model and measurements.
• Significant difference: More than 1 standard deviation from average.



Health Monitoring
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• Utilization of the approach
• The model is specific for each unit.

• The data could be qualification data

• Results of the activity
• Input data identified

• Converter indicators identified

• Training datasets generated
• Simulation only

• Several estimators trained



Health Monitoring

• Dataset generation
• Module simulation in PSIM. Scripts to vary Vin, Iload and Temperature

• Including control scheme

• Includes temperature effect on MOSFETs
• Includes switching and driving losses
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ControlPower stage

Measurements
Power stage

PWM from control

Switching
losses

Ron:
• Temperature drift
• Degradation drift

Load 
demand

Input 
voltage



Health Monitoring

• Dataset generation
• Measurements

• Sampled at the switching rate and filtered
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Input voltage

Input current

Output voltage

Output current

Duty cycle

Inductor current

Inductor current ripple



Health Monitoring

• Dataset generation
• 𝑟𝑑𝑠_𝑜𝑛 varies with temperature
• Approximation of conduction and switching losses
• Simple thermal model for switches
• Degradation modelled as an increase of the 𝑟𝑑𝑠_𝑜𝑛 
• Inductor change only for a loss of 1 turn.

• Goal of model: Provide data. The data may not reflect accurately the reality.
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• Dataset generation
• Change in 𝑟𝑑𝑠_𝑜𝑛

• Converter labelled as degraded or non-degraded.

• Non-degraded converters: increase in 𝑟𝑑𝑠_𝑜𝑛 < 25%.

• Degraded converters: 1.5 ⋅ 𝑟𝑑𝑠_𝑜𝑛_𝑛𝑜𝑚𝑖𝑛𝑎𝑙 ≥  𝑟𝑑𝑠_𝑜𝑛≥ 1.9 ⋅ 𝑟𝑑𝑠_𝑜𝑛_𝑛𝑜𝑚𝑖𝑛𝑎𝑙 .

• Change in inductance
• Converter labelled as degraded or non-degraded.

• Nominal inductance: 84 μ𝐻
• Degraded converters: Inductance lower than 84 μ𝐻. Minimal 67.2 μ𝐻

• Training is only performed over non-degraded data.
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• Data for training:
• 80% Training and Validation - 20% Test

• Training  and Validation: 80% Training 20% Validation

• Select a data subset 80% Training and Validation - 20% Test for each of the 
temperatures in the test

• Merge all the subsets

• All the temperatures are represented in the dataset.



Health Monitoring

82

• Data for training:
• 𝑉𝑖𝑛 = 42 𝑉 and 𝑉𝑖𝑛 = 100 𝑉. Δ𝑉𝑖𝑛 = 1 𝑉

• 𝐼𝑙𝑜𝑎𝑑 = 2 𝐴 and 𝐼𝑙𝑜𝑎𝑑 = 6 𝐴. Δ𝐼𝑙𝑜𝑎𝑑 = 0.25 𝐴.

• 𝑇𝑏𝑎𝑠𝑒 = 40 º𝐶 and 𝑇𝑏𝑎𝑠𝑒 = 70 º𝐶. Δ𝑇𝑏𝑎𝑠𝑒 = 1 º𝐶. For evaluation  Δ𝑇𝑏𝑎𝑠𝑒 = 3 º𝐶

• 𝑟𝑑𝑠_𝑜𝑛 increase between 0 and 0.25 for training.

• 𝑟𝑑𝑠_𝑜𝑛 increase between 0 and 0.9 for evaluation.

• Inductance between 67.2 μ𝐻 and 84 μ𝐻. Δ𝐿 = 0.1μ𝐻
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• Converter outputs to estimate:
• Duty cycle

• Normalized ripple

@ 𝑉𝑖𝑛 = 42.17 𝑉
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Duty cycle in degraded converters seems higher when 
𝑟𝑑𝑠_𝑜𝑛 increases

Healthy
Degraded

∆𝑖𝑙_𝑛𝑜𝑟𝑚 is not affected by increasing 𝑟𝑑𝑠_𝑜𝑛



Health Monitoring

85

Duty cycle is almost the same when L changes

Healthy
Degraded

∆𝑖𝑙_𝑛𝑜𝑟𝑚 is affected by changes in L
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• NN structure
• Tip: Every few layers constrict the width

• NN as universal function approximators.
• A network with infinite length has a minimum width 

of the number inputs plus 1.

• Depth and width are free parameters

• We constrict the network each 6 layers (free 
parameter)

• Trial and error 13 layers, 29 neurons per 
layer, shrink to 5 every 6 layers)

• Activation function Rectified Linear

• Single output
• A NN for estimating 𝐷

• A NN for estimating ∆𝑖𝑙_𝑛𝑜𝑟𝑚
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• Results:
• Identifying 𝑟𝑑𝑠_𝑜𝑛 degradation through 𝐷 cycle estimation 

Mean absolute error in training dataset
Mean absolute error in test dataset with degraded converters

Healthy converters 
correctly identified

Healthy converters 
identified as 

degraded

Degraded 
converters correctly 

identified

Degraded 
converters 

identified as 
healthy

BA =
1

2
⋅

TP

TP + FN
+

TN

TN + FP
= 62%

TN FP

FN TP

Much better results when 𝑟𝑑𝑠_𝑜𝑛 increase duplicates.
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• Results:
• Identifying 𝐿 degradation through ∆𝑖𝑙_𝑛𝑜𝑟𝑚 estimation 

Mean absolute error in training dataset
Mean absolute error in test dataset with degraded converters

Healthy converters 
correctly identified

Healthy converters 
identified as 

degraded

Degraded 
converters correctly 

identified

Degraded 
converters 

identified as 
healthy

BA =
1

2
⋅

TP

TP + FN
+

TN

TN + FP
= 98.7%

TN FP

FN TP
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• Conclusions at the time of submitting the final report:
• Changes in 𝑟𝑑𝑠_𝑜𝑛 imply very subtle changes in Duty cycle.

• The approach works well with bigger changes
• Bigger increase in 𝑟𝑑𝑠_𝑜𝑛

• Changes in ∆𝑖𝑙_𝑛𝑜𝑟𝑚 due to L changes

• Before the final presentation changes were made
• Activation function tanh

• Inclusion of normalization stages

• Amplify the duty cycle changes through estimating 𝑒(1+𝐷)
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• Results:
• Identifying 𝑟𝑑𝑠_𝑜𝑛 degradation through 𝑒 1+𝐷  cycle estimation 

Mean absolute error in training dataset
Mean absolute error in test dataset with degraded converters

Healthy converters 
correctly identified

Healthy converters 
identified as 

degraded

Degraded 
converters correctly 

identified

Degraded 
converters 

identified as 
healthy

BA =
1

2
⋅

TP

TP + FN
+

TN

TN + FP
= 74.3%

TN FP

FN TP

Much better result. However more False Positives
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• Conclusions of Machine Learning approach
• Interesting results (after last changes)

• Key failure indicators found

• Much work to be done
• Real converter data

• Data resolution

• NN structure and training

• System implementation
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• Health Monitoring conclusions
• 3 techniques researched

• Kalman Filter most mature
• Manage temperature changes

• Almost ready for implementation

• Heatmaps and Machine learning promising but at a very low maturity
• A lot of work needs to be done
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• Topology
• Single power stage

• 4 switch Buck Boost: SAR, BDR, CDR

• GaN Based

• High effciency

• Decentralized control
• Based on DC bus signaling
• 3 roles achieved (MPPT, battery charge,…)
• Good bus regulation

• Seamlesly transitions

• Health monitoring
• 3 techniques researched
• Premature yet interesting results



Health Monitoring of digitally
controlled flexible converters

Thanks for the attention
Questions?
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