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Background
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ADAMBackground

• Laser Interferometer Space Antenna (LISA) Mission
• LISA is designed to be the first ever gravitational wave 

observatory in space
• The mission comprises three spacecraft that each contain two 

free-floating test masses (TMs)
• Gravitational waves cause picometer changes in the distances 

between the TMs, measured interferometrically across a 
distance of approximately 2.5 million km between spacecraft

• Most gravitational waves are expected to be visible at 
frequencies between 10-4 Hz and 1 Hz, driving the need for low 
frequency verification methods

• Despite nominally non-magnetic TMs (a gold-platinum alloy), 
the interferometer is very sensitive, meaning even small 
magnetic field variations can result in an acceleration force

• Studied in great detail on LISA Pathfinder (LPF)!
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ADAMBackground

• LISA Requirements
• Magnetic noise is one part of the 

total TM acceleration noise, with 
contributions from low frequency 
(LF) sources directly in the 
measurement band

• High frequency continuous 
magnetic spectral density as well 
as amplitude modulated 
narrowband sources will generate 
acceleration noise in the 
measurement band (labelled 
Eddy Current or EC)
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ADAMBackground

• LISA Requirements
• The LF allocation can be further split into:

• Interplanetary magnetic field (IMF) 
fluctuations coupling to the TM induced 
magnetic moment and a local field 
gradient

• Local (on-board) field fluctuations 
coupling to the TM induced magnetic 
moment and a local field gradient

• Field gradient fluctuations coupling to 
the TM remanent magnetic moment

• On LPF, the in-flight observed magnetic 
acceleration noise was dominated by the 
first effect

• … and overall much lower than worst-case 
expectations!
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ADAMBackground

• LISA Requirements
• The resulting system level magnetic amplitude spectral density (ASD) can be directly measured at system 

level, but once allocated into unit level (assuming 25 units of equal contribution), the levels are challenging to 
meet due to the smaller unit contribution compared to the expected background environmental noise

• Unit level test requirements considerably more challenging than for LPF!
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ADAMBackground

• LISA Requirements
• The magnetic field ASD can 

be converted into an 
equivalent magnetic moment 
(at a given frequency), 
assuming the distance from 
a unit to the closest TM is 
0.5 m

• From experience, most units 
behave like a magnetic 
dipole at sufficient distance

• Useful metric if unit is 
characterised in terms of 
magnetic multipoles
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Study History
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ADAMStudy history

• As performed
• ITT issued in April 2021
• Proposal submitted in June 2021
• Invitation to negotiation received in July 2021
• Negotiation in September 2021
• Study kick-off in October 2021
• Preliminary concept review (PCR) October 2022
• Demonstration frame constructed Summer 2022
• Design review (DR) May 2023
• Final frames constructed Summer 2023
• Test readiness review (TRR) September 2023
• Test review board (TRB) February 2024
• Final presentation (FP) April 2024

• Scheduled
• Final software/hardware delivery May 2024
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ADAMObjectives

• Current ESA Magnetic Test Facilities and ADAM
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Mobile Coil Facility (MCF) Multi-Magnetometer
Facility (MMF) AC Magnetic Facility Advanced DC and AC 

Magnetic Facility (ADAM)

• DC frequencies
• Earth field compensation using 

Helmholtz coils
• Turntable used to measure 

around device under test 
(DUT)

• DC frequencies
• Multiple sensors on 

mechanical slide to measure 
around DUT

• AC frequencies
• Multiple sensors on tripods 

surrounding DUT
• Takes advantage of signal 

space separation techniques

• Quasi-DC to AC frequencies
• Multiple sensors on ultra-stable 

CFRP frames
• Takes advantage of:

• signal space separation
• correlated noise removal



Objectives
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ADAMObjectives

• Scheme of Work
• Develop efficient unit level verification and characterisation methods combining quasi-DC

[0.1 mHz – 1 Hz] fluctuations and AC magnetic emissions, and covering the special needs
of LISA, while constituting a step further applicable to all future science missions requiring
magnetic cleanliness control.

• Build on previous AC magnetic work, but focussing on the detailed characterisation, identification and 
mitigation of very low frequency (≈ mHz) noise contributions:
• Thermal couplings

• Sensor frame TED
• Sensor thermal sensitivity
• DAQ

• Intrinsic Sensor noise
• Intrinsic DAQ noise
• Environmental noise
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Preliminary Investigations and Trade-off Outcomes
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ADAMPreliminary Investigations

• Identification of main disturbance sources at low 
frequencies
• To assist the main trades, a systematic approach was taken to 

identify all possible disturbance sources and their relevant impacts, 
including:

• Sensor scaling with temperature
• Sensor offset
• Sensor rotation and translation
• Thermoelastic distortion of the sensor mechanical support
• Floor tilt
• Local field changes and distortions

• Demonstration measurements and analysis showed the main 
disturbance sources of relevance are temperature induced 
sensor rotation and translation, driven mainly from the sensor 
mechanical support distortion
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ADAMPreliminary Investigations

• Mitigating against temperature induced sensor rotation and translation
• Three options were investigated to mitigate this effect:

(1) The use of compensation coils in order to minimise ambient field pick-up during sensor 
rotation & translation

(2) The generation of a pilot tone of known signature in order to track the sensor rotation and 
translation, with post test correction in data analysis

(3) Minimisation of sensor rotation and translation by manufacturing an ultra-stable sensor array 
support frame
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ADAMMitigating noise due to sensor rotation & translation 
– Option 1
• Compensation Coils

• To determine the effectiveness of placing the sensor array 
inside a set of magnetic compensation coils, some trial 
measurements were performed with an array of sensors inside 
and outside the MCF

• It was shown that the impact of thermal patterns e.g. from 
ambient heating cycles could be improved through the use of 
compensation coils

• Unfortunately the current source used to drive the coils actually 
introduces additional low frequency noise (10 mHz – 1 Hz)

• Without active compensation, external field variations are not 
compensated for, only the DC component will be compensated

• Active compensation was considered, but the complexity and 
increase in current noise does not justify its adoption
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FDH MCF compensation 
coil trade-off measurements



ADAMMitigating noise due to sensor rotation & translation 
– Option 1
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• Compensation Coils

See next slide



ADAMMitigating noise due to sensor rotation & translation 
– Option 2
• Pilot Tone

• One way to track the movement of sensors with 
temperature would be to use a pilot tone signal

• Several demonstration measurements were performed to 
determine the merits of such an approach

• One major drawback of the method is that to generate a 
large enough signal at all sensors in the frame would 
require either one strong pilot tone coil in the centre 
(generating a large field at the DUT) or multiple pilot tone 
coils outside the sensor array, resulting in higher 
complexity

• The pilot tone coil itself would need mounting onto a stable 
mechanical support, and in the end it was deemed not 
necessary to use such a signal if the sensors could 
themselves be mounted onto a sufficiently stable platform
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ADAMMitigating noise due to sensor rotation & translation 
– Option 3

• Ultra-Stable Sensor Array Support Frame
• Wooden tripods as used for previous study were suspected to be 

responsible for thermally induced sensor translation / rotation
• Relatively high CTE and potentially CME

• Replaced by frame made from CFRP
• Very low CTE
• Non-magnetic  / non-metallic
• Relatively stiff

• A demonstration frame with an equal distance to all FGMs of 
600 mm was used, which resulted in performance close to but still 
above the requirement
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Prototype demonstration 
frame design



ADAMMitigating noise due to sensor rotation & translation 
– Trade-off Outcome

• Preferred Option
• Based on the above tests, an Ultra-Stable Sensor Array Frame was selected for subsequent 

test facility implementation
• Best ‘out-of-the-box’ performance (of the three options)
• Low cost

– Relative to large set of compensation coils (even without active compensation)
• No added complexity in terms of control or data analysis
• Potential concern

– Uncompensated environment can generate field-induced effects (soft magnetic materials)
– Thought to be tractable via correlated noise removal
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ADAMAdditional Investigations

• Signal Space Separation
• The use of this technique was already established from 

the previous AC magnetics study, but its effectiveness 
at sub-Hz frequencies was proven during the trade-offs

• Test Time
• For LPF testing, a test duration was selected equivalent 

to 1/10th the lowest frequency range of interest, which 
for LISA would translate into ~30 hours

• Demonstration measurements show that the required 
sensitivity at the lowest frequencies can still be 
achieved within a day of testing, even during a day shift

• A direct test approach is therefore recommended, with 
a minimum measurement time of 3 hours, although the 
impact, risk and proposed mitigation for an accelerated 
test option is also considered in the documentation
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Facility Design – Hardware 
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ADAMFacility Design
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ADAMFacility Design

25 18.04.2024 ADAM.2021-4169.FP.001, ADAM Final Presentation

Small sensor 
frame: DUT 
centre to sensor 
distance

6x sensors at 300 mm

8x sensors at 450 mm

Small sensor 
frame: Internal 
accessible 
volume

(depth) 520 mm

(width) 520 mm

(height) 480 mm

Medium sensor 
frame: DUT 
centre to sensor 
distance

6x sensors at 400 mm

8x sensors at 600 mm

Medium sensor 
frame: Internal 
accessible 
volume

(depth) 720 mm

(width) 720 mm

(height) 600 mm

Removeable bar and rest

• Two final CFRP frames were constructed 
to cover a range of DUT sizes / distances



ADAMFacility Design
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Small sensor 
frame: Overall
size

(depth) 700 mm

(width) 925 mm

(height) 1557 mm

Medium sensor 
frame: Overall
size

(depth) 900 mm

(width) 1135 mm

(height) 1682 mm

Test table 
dimensions

(depth) 500 mm

(width) 500 mm

(height) 910 mm



ADAMFacility Design
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Small frame with 
test table and 
synthetic DUT

Medium frame with 
test table and 
synthetic DUT



ADAMFacility Design
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Carbon fiber struts

FGM harness bundle

FGM
FGM carbon fiber bracket

Frame brass fixings

FGM brass fixings

Test table

Thermocouple harness

Space to route harness 
to vertical strut



ADAMFacility Design
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Levelling capability

Centering capabilitySturdy 
transport 
case



ADAMFacility Design
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FGM x 16

SCM x 8

8 Channel DAQ x 6

Thermal hardware 
monitoring system



Facility Design – Software Processing
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ADAMVerification Methods
Model Based Verification
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ADAMVerification Methods
Fitting Model: Multipole Expansion based on Sperical Harmonics
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Expansion by Orthogonal Functions
• Vectorial basis functions (field vectors)
• with vectorial arguments (evaluation points)
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ADAMVerification Methods
Signal Space Separation
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Principle: Include model of environmental disturbance in the model fitting

Geometrically, Signal Space Separation (SSS) is a oblique projection:
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ADAMVerification Methods
Processing Scheme
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Measurement Data
in Time Domain

Multipole Coefficients
of Inner Sources 

in Time Domain

Multipole Coefficients
of Outer Sources 

in Time Domain

Field Prediction at
Point of Spec.
in Time Domain

Measurement Data
in Frequency Domain

Multipole Coefficients
of Inner Sources 

in Frequency Domain

Multipole Coefficients
of Outer Sources 

in Frequency Domain

Field Prediction at
Point of Spec.

in Frequency Domain
Verification of field and
gradient requirement

Magnetic Test

Performance metric



ADAMVerification Methods
Disturbance Sources
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Reduced Model

Model Residuum

DuT

Sensors PoS

Disturbances 
from sensors 

and DAQ

Setup 
Uncertainty

(1)

(2) (4)

(5)
(7)

(8)

Fitting
(3)
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Measurement 
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ADAMPerformance Tests
Sensor Noise

 Noise floor of measured by sensor supplier Sensys:
• 1x Sensys FGM3D/100 Sensor (4 kHz variant)
• 4-layered Mu-metal box for shielding
• DAQ: Keithley Digital multimeter DMM6500.
• +/-100 mV voltage range (+/-1 µT)
• Sampling rate: 25 Hz
• Total sampling time: 48 hours

 Extraction of noise model.
 Random sequence generator with pseudo white noise and shaping filter 

to reproduce same noise model.
 Simulation of virtual test with uncorrelated sensor noise on each sensor 

channel followed by fitting DuT model.
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Sensor noise below requirement 
but also not negligible 



ADAM

 DEWESoft Sirius modules tested by
• 5V PSU (=50 µT), +/-10V input range, Dual-Core
• 5V PSU (=50 µT), +/-10V input range, Single-Core
• Channel shorted, +/-10V input range, Dual-Core
• Channel shorted, +/-10V input range, Single-Core
• Channel shorted, +/-1V input range, Dual-Core

 Automatic fan control generates disturbance at 3.8 mHz (~4.4 min period)
 Extraction of noise model by sampling average amplitude density.
 Random sequence generator with pseudo white noise and shaping filter to 

reproduce same amplitude density spectrum.
 Simulation of virtual test with uncorrelated sensor noise on each sensor channel 

followed by fitting DuT model

Performance Tests
DAQ Noise
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Noise floor of the DAQ is in the range of requirement.

Contribution of the 5V PSU unclear at the moment. Performance of 
software shielding (see following slide about software shielding) 
indicates that DAQ noise is lower than measured here with 5V PSU.

DAQ fan control



ADAMPerformance Tests
Consistency with Intermagnet Data

Comparison of ambient test with Intermagnet observatories:
• Black Forest Observatory (BFO)
• Fürstenfeldbruck (FUR)
• Airbus FN, with demonstrator frame, all sensor channels overlayed

39 18.04.2024 ADAM.2021-4169.FP.001, ADAM Final Presentation

BFO
FUR

Airbus



ADAM
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5 V PSU, 10 V range, Dual-Core ON

shorted, 10 V range, Dual-Core OFF

FGM noise

Performance Tests
‘Software Shielding’

Simplest software shielding (independent of fitting):
1. Estimate homogeneous field component by averaging over all 

14 sensors. 
2. Remove homogenous field component from each sensor.

 ‘Software shielding’ efficiency by factor of up to 50
 Pre-processing step has no impact on fitting.
 Noise floor is significantly reduced, close to sensor and DAQ 

noise. For comparison, at IABG the field noise level is at 
2 nT/ 𝐻𝐻𝐻𝐻 at 1 mHz.
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ADAMFacility Design
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Sync

USB

Coaxial BNC
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USB
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FGMs

…

…

USB

RS-232

…

Thermo-Couples

Operator
PC

Electrical Setup



ADAMFacility Design
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• Software description
• The latest design includes:
• DEWESoft 2023.1

• Configures DAQ hardware in preparation for the test (input voltage range, coupling, anti-aliasing, etc.), 
manages sensor sensitivities, provides live preview of TD and FD data, data recording and export

• Leica 3D Disto
• Used for laser positioning system, control of laser with virtual view finder, acquisition of 3D position of 

targeted points, export of point cloud
• MATLAB / Octave

• Signal processing toolbox and optional distributed computing toolbox for improved processing speed
• Functionality packed into a custom ADAM library, used for:

• Thermal data logger control, template project folders, DUT definition, individual measurements and 
log test characteristics, test data processing vs requirements, export of plots for test reports



ADAMFacility Operation
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P4
Test Measurement / Ambient Characterization
• Measure ambient field without DuT
• Check data consistency and noise floor to be below 

requirement

P3
Positional Calibration
• Scan markers on frame and all sensor
• Use additional environment markers to merge different views

P2
Electrical Preparation
• Setup DAQ and sensor conditioning
• Connect sensors

P1
Hardware Preparation
• Assemble sensor frame and test table
• Mount sensors
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ADAMFacility Operation
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T4 Start testing
• For each measurement:
− Export test data and make entry in list of tests.
− Run processing script.

T3
Small Positional Calibration
• Scan markers on frame (one side only) and on DuT.
• If front bar was removed, also scan marker on this sensor.

T2
DuT Setup
• Place DuT on test table. 
• Setup EGSE and test harness.

T1
Preparation
• Prepare test folder on test PC from template.
• Preconfigure general settings, DuT definition, list of tests, req.

• Unit Level Test

S10 Bx (average = 15.812 uT) (42) RW Shield, 24h test

WORKDAY NIGHT

2023-10-25,00:00 2023-10-26,00:00

date

-1.5

-1

-0.5

0

0.5

1

1.5

B(
t)-

m
ea

n(
B(

t))
 in

 T

10 -7



Facility Performance Demonstration
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ADAMFacility Performance Demonstration

• Test configurations
• Small frame, medium frame, and large tripod configuration (the latter for comparison only)
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ADAMFacility Performance Evaluation
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• Test Performance in Terms of Noise Leakage
1. Measuring ambient field without DuT
2. Fitting of multipole model at assumed DuT position.
3. Prediction of field and field gradient at PoS with 

model of inner sources (and for information purpose 
also with model of ambient outer sources).

4. Computation of Amplitude Spectral Density (ASD) 
and comparison with requirement at PoS.

• Test Performance in Terms of Model Capability
1. Same test as above but with synthetic DuT.
2. Comparison between predicted emission as 

computed with identified model and expected 
emission based on simulation model of the DuT.



ADAMFacility Performance Demonstration

• Test configurations
• Without DUT, or with synthetic DUT (dipole, quadrupole, loop)
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ADAMFacility Performance Demonstration

• Test configurations
• Driving signal with broadband and narrowband noise, or an amplitude modulated signal
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ADAMFacility Performance Demonstration

• Test configurations
• With or without SCMs and FGMs installed simultaneously
• Result: the field bias generated by the SCMs has no visible impact on the FGM test performance
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ADAMFacility Performance Demonstration

• Test result: small frame
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x-component time domain example



ADAMFacility Performance Demonstration

• Test result: small frame noise floor
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ADAMFacility Performance Demonstration

• Test result: small frame noise floor
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ADAMFacility Performance Demonstration

• Test result: small frame noise floor
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ADAMFacility Performance Demonstration

• Test result: all frames noise floor
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ADAMFacility Performance Demonstration

• Test result: small frame with DUT
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ADAMFacility Performance Demonstration

• Test result: small frame with DUT – amplitude modulation
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ADAMFacility Performance Demonstration

• Test result: induced field effects – large mu-metal RW shield (‘worst case’)
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ADAMFacility Performance Demonstration

• Test result: induced field effects – large mu-metal RW shield (‘worst case’)

- Correlated noise removal works very well – RW induced magnetism perfectly correlated with environment
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ADAMFacility Performance Demonstration

• Test result: correlation technique applied to synthetic DUT data
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Conclusions and Next Steps
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ADAMConclusions

• Major progress has been made on understanding (and mitigating against!) low frequency noise 
contributions, best results were achieved by:

• Ultra-stable sensor array CFRP support frame – minimising thermally-induced sensor rotation and 
translation and environmental magnetic field pick-up at source

• Discovery of DAQ thermal sensitivity and link to internal fan control
• This meant that more costly and more complicated solutions, such as large (active) compensation coils 

or ultra-stable pilot tone generators, were not necessary to meet the LISA requirements
• Test performance in terms of minimum noise floor predicted at the PoS in 0.5 m distance from the DuT 

with an equivalent DuT model fitted inside the facility representing the ambient noise leakage into the 
DuT model:

• Noise floor of the S-frame is verified to be comfortably below the LISA requirement
• Noise floor of the M-frame is verified to be in the same range as the LISA requirement
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ADAMConclusions

• Optimal crossover when switching from FGM to SCM confirmed to be approximately 3 kHz
• Potentially, due to GRS shielding, LISA unit level tests might require FGM measurements only

• A Synthetic DuT has been tested as a dipole, quadrupole and large loop with excellent results of the 
fitted model compared to the expected field at the PoS as simulated based on the measured current

• Both broadband and narrowband emissions
• Test hardware and processing scheme is verified to be able to resolve amplitude modulated signals with 

a carrier frequency around 200 Hz and a modulation frequency of 1 mHz
• Excellent agreement even for carrier frequency amplitudes of order 50pT

• Extended processing technique to remove correlated signatures very successful
• Necessary to handle field-induced effects in unshielded environment
• Confirmed that it has no impact on intrinsic DUT emissions (not correlated with external field)
• Correlated component could in principle be used to quantify field-induced contributions
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ADAMNext Steps and Future Improvements

• Next steps
• Complete remaining final report documentation
• Deliver software/hardware and install at ESA premises in May 2024

• Future potential improvements
• One outcome of the testing was that the DAQ noise could be reduced by using a lower field limit

• If the facility magnetometers were placed onto an adjustable bracket, such that the orientation would 
result in two sensor axes being < 1 V, technically a lower noise limit could be achieved

• Having understood the fundamental contributions to the low frequency noise floor, another logical step 
would be to scale the same technique up to a larger number of sensors
• This would allow to:

• Fit higher order spherical multipoles to handle more complex sources
• Fit the same order of multipoles but with lower noise through averaging

• Systems with several hundred measurement channels (!) can be found in the literature
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Thank you!



Any Questions?
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