

Starting Point: S22 Heritage Versions

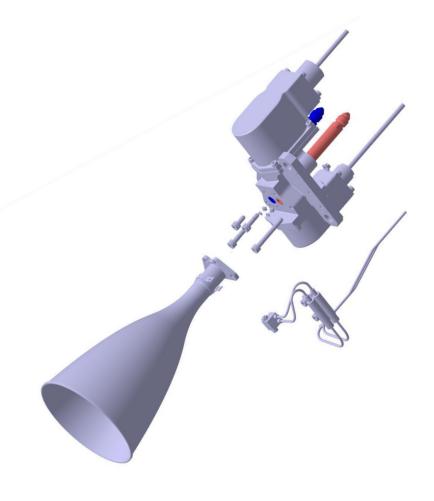
Status End 2003, see also AIAA-2003-4777

S22-01 (Solenoid valve <u>)</u>	S22-02 (Torque motor valve)	S22-03 (Titanium Lightweigt valve)		
Clamped injector / Chamber Two COTS double seat solenoid FCV's	Full welded Injector / Chamber Modified Standard 10N double seat FCV	Clamped injector / Chamber Development double seat FCV		
Test Program: SSF Performance Mapping PMF Performance Mapping PMF Thermal Stability	Test Program: SSF Performance Mapping SSF Margin Tests SSF Long Duration Runs PMF Performance Mapping PMF Thermal Stability	Test Program: SSF Performance Mapping PMF Performance Mapping PMF Thermal Stability		

S22-02 Design including lessons learned (DOC No: TP42-TN-02-016) is Baseline for 2021 Revitalization

S25 Design

Design Considerations for 2021 GSTP Project are based on actual Customer Needs


Heritage

S4/S10/S22/S400 biprop engines

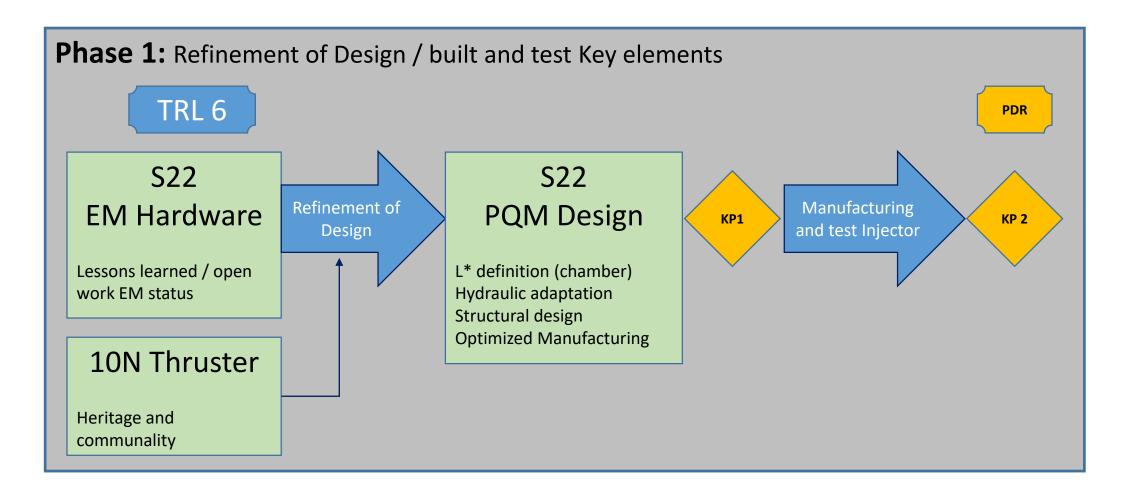
- S22 low cost engine
- S10 ARTES program wrt material obsolescence
- S4 ARTES low impulse injector tech demonstrator

Components

- Maximised communalities with the established S10 engines (valve and peripheral thermal equipment; test equipment; procedures, procurement; etc.)
- Built-in trimming orifices
- Coax. vortex injection
- Uncoated Platinum alloy chamber
- Super-alloy heat barrier and nozzle extension

Valve

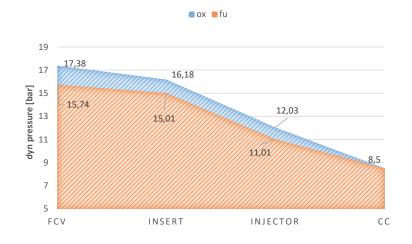
- Valve portfolio is shared with S4 and S10: dual seat torque motor valve with nominal 28; 42;51VDC supply voltage
- Optional single seat version
- Hydraulic interface screwed AN2 or weld ¼" Ti interface
- structural interface via 3 alignment studs


Temperature sensors / heaters

- Flight sensor: PT1000 primary and redundant chamber sensor (option)
- Optional additional thermistors (flange / valve cap) and heaters

S25 GSTP Program (Phase 1)

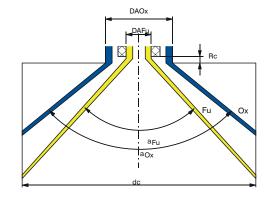
Actual Work Content



Injector Design

Injector Design

Global \(\Delta \pi \) Requirement for injector defined based on pressure drop cascade


- Injector pessure drop based on necessary
 - Atomization, functional working of injector
 - decoupling from feed system (experience: Δp ≥ pc/3)

Injector Design Parameters

Pressure drop requirements

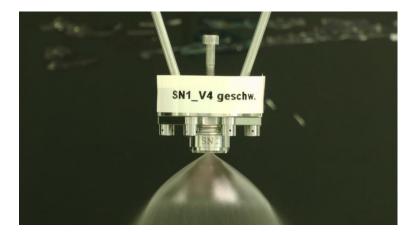
	$dp_{0x}[bar] \\$	dp _{Fu} [bar]	
Injector min	3,00	3,00	
Injector max	4,62 max	6,02 max	

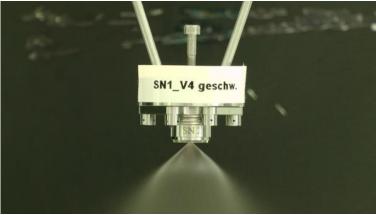
Injector Design Parameters (double swirl)

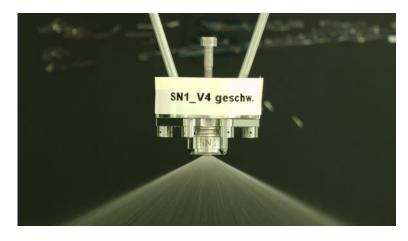
OX nozzle outlet diameter	DA _{Ox}
FU nozzle outlet diameter	DA_Fu
OX spray angle	\mathbf{a}_{Ox}
FU spray angle	\mathbf{a}_{Fu}
Recess	Rc

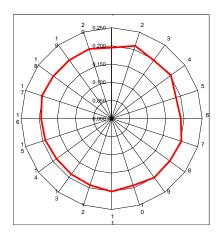
Injector Design Variations

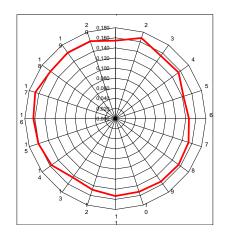
Parameter Variations

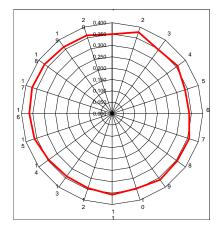

- Number of Slots (Channels)
- Slot manufacturing method (morphology / tools used)
- Sealing / tolerance concept (gaps)
- Recess


	Int. level	Item	Model	dp	spray	atomisati on	population	note
	3	Fu 3 channels	MK1	х		х	10	With channel morphology variation
Part	3	Ox 5 channels	MK1	х		х	2	With channel morphology variation
1	3	Ox 4 channels	MK2	x		х	10	With channel morphology variation
	3	Ox 3 channels	MK3	х		х	2	With channel morphology variation
Part	2	Radial gap var.	PQM	х	x	х	3	
2	1	Recess var.	PQM	х	х	х	3	
Part 3	1	Hot fire demo	PQM	х			1	Forecast GSTP phase 2

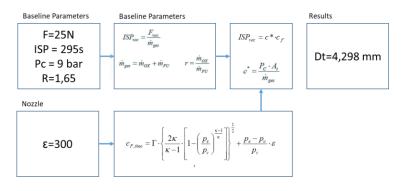


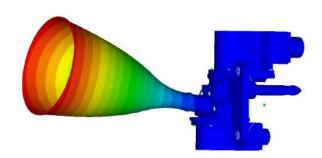

Injector Test Results – Pressure drop, spray angle and propellant distribution measurement



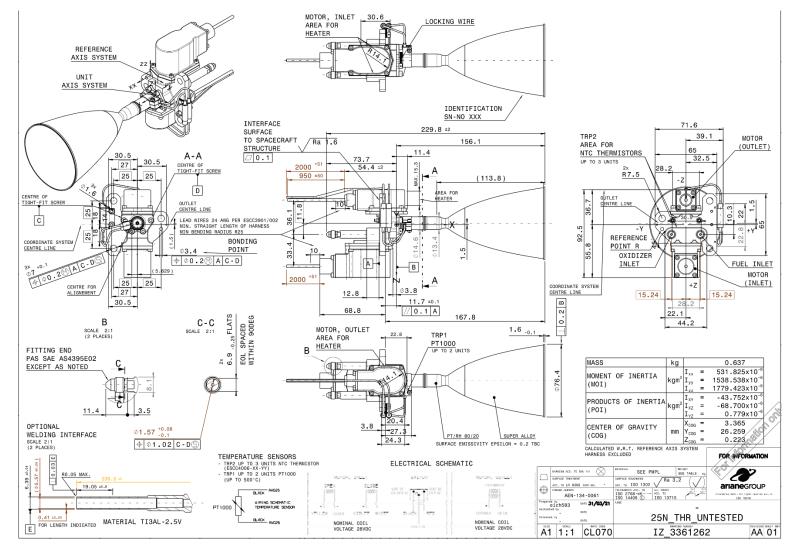

OX alone MK3 SN1V4

FU alone MK3 SN1V4


OX + FU combined MK3 SN1V4



PQM Design


PQM Thruster sizing was performed

388 Hz Bending Mode y

Bendin

S25 GSTP Program (Proposal for Phase II)

Phase II is not part of the actual activity

