

Dok. Nr./No.:	22N-ASLLAM-RP-0004			
Ausgabe/Issue:	1	Datum/Date:	07.07.2021	
Überarbtg./Rev.:		Datum/Date:		
Seite/Page:	1	von /of:	8	

S25 Design Description

The ArianeGroup S25 thruster is a bipropellant rocket engine delivering a nominal 23N (5lbf) thrust using the storable propellants monomethyl-hydrazine (MMH) as fuel and nitrogen tetroxide (N₂O₄, MON-1, MON-3) as oxidizer

The current **S25 design** includes all features which make ArianeGroup's bipropellant thrusters outstanding since decades:

- Flight proven, from the shelf components: Due to a common thruster interface, the S25 engine shares its flow control valve portfolio with the 4N and the 10N thrusters. This includes the metallic sealing and trimming components.
- **Double cone vortex injection:** As derived from ArianeGroup's bipropellant thruster family up to 400N, the S25 thruster implements an injector where the two propellant components are sprayed by two coaxial swirl atomizers into the combustion chamber. This guarantees for a very well balanced coolant distribution and thus balanced temperature distribution throughout the entire chamber and an optimum propellant atomization and mixing and thus optimum reaction and thruster performance.
- Super-alloy heat barrier: In order to minimise dribble volumes, hence maximise the pulse mode performances, the injector thermal isolation/decoupling is performed with a fuel film cooled conduction barrier made of a high resistant NiCr based super-alloy. The current engine is designed without an additional bird cage heat barrier.
- Uncoated Platinum Alloy Chamber and Nozzle: Because ArianeGroup is following the strategy of not using coated materials since the very beginning of its space propulsion activities, the thruster employs a platinum-based alloy for the hotter throat area. Protective coating of high temperature resistant but oxidizing materials have always been deemed as solving one problem by creating a new one. Defective coating may rapidly lead to failure of a thruster. Thermal cycles of a million of thruster pulses during a satellite life can cause coating defects, as can improper thruster handling during AIT. Application of thermal sensors on chamber and nozzle during ground tests are considered to be prohibitive. All those potential constraints of a coated chamber material are not encountered in conjunction with ArianeGroup's Pt chamber approach.

Figure 1: S25-1 PQM thruster

	S25	Dok. Nr./No.:	22N-ASLLAM-RP-0004		
		Ausgabe/Issue:	1	Datum/Date:	07.07.2021
		Überarbtg./Rev.:		Datum/Date:	
ananeGroup		Seite/Page:	2	von /of:	8

The S25-1 EM1 is the first Engineering Model of a 22N bipropellant RCT family equipped with a dual seat valve (Moog Inc.), designed for both, long steady state and pulse mode operation, operating in both pressure regulated and blow-down mode. The S25-1 design remains free from ITAR restrictions (EAR compliance rules and regulation applied for the torque motor valves from Moog Inc.).

Through its reduced thruster dribble volumes and high combustion efficiency, the thruster is also designed to achieve high efficient on-mode pulse capabilities and a reduced plume contaminant production.

S25-1; -2 and -3 series

The S25-1; -2 and -3 series are only to be distinguished by the valves coil designs, i.e. nominal command voltage, which can be adapted from nominal 28 to 51 VDC. The thrust chamber remains identical for all versions. The valve assembly (except coils) remains identical as well.

Req. Description	S25-1	S25-2	S25-3
Valve denomination	Moog 051-457	Moog 051-215B	Moog 051-219B
Nominal command voltage	28VDC	42VDC	51VDC
Qualification status (valve)	Qual by sim	Flight proven	Flight proven
Flight heritage (valve)		e.g. Rosetta, Alphabus	e.g. JUICE

Table 1: S25 with dual seat torque motor valve options

Flight monitoring

The upper combustion chamber temperature can be monitored in flight via a PT200 or PT1000 sensors. The baseline design can accommodate two sensors (primary and redundant) in a same bracket, welded on the combustion chamber wall.

As an alternative a flange thermistor, and additional FCV thermistors can be accommodated on customers demand in a later stage of the development program (an easily be taken from the established 10N stock).

S25

Maiden Qual Frame

Maiden Specification	Thruster characteristics (PQM)
Nominal thrust	23 N
Thrust range	18 29 N
Minimum SSF ISP	295s (at nominal thrust) / development target is $300 \pm 3s$
Minimum (unrestricted) impulse bit	100 mNs
Nominal flow rate	7,81 g/s
Inlet pressure range	9 24 bar (trimming related)
Flow rate range	5 9,5 g/s
Nominal mixture ratio	1,625
Mixture ratio range	1,5 2,2
Nominal chamber pressure	8,5 bar
Dimensions - overall length - throat diameter - nozzle exit diameter	< 230 mm 4,3 mm 74,4 mm
Nozzle expansion ratio	300:1
Mass	< 680 g (dual seat torque motor valve configura- tion)
Feed line connection	per SAE AS4395E02 or ¼" weld interface
Mounting flange	screwed 3 x M6 alignment studs
Injector / chamber and nozzle material	Stainless steel / NiCr superalloy and Pt-alloy
Injector type	Built-in double cone vortex injector (all welded design)
Cooling concept - Chamber - Nozzle	Fuel-film and radiative cooling Radiative cooling
Valve concept	Dual seat series redundant bipropellant valve (torque motor)
- Seat material	PTFE
- воау, manifold, fittings and bending tubes material	CRES
Insert sealing	Gold plated stainless steel omega seals
Propellants (fuel/oxidizer)	MMH / N2O4; MON-1 ; MON-3 or MON-25 (tbc)

Extract from LAM internal specification as per 22N-ASLLAM-DVM-0001.

Maiden Specification	Thruster characteristics (PQM)
Unconstrained MIB	100 mNs
IBIT std deviation	< 15% (3 sigma)
Centroid delay	5 ms < tc-del < 30 ms
Raise time 90% RT ₉₀	RT ₉₀ < 20 ms
Decay time 10% DT ₁₀	DT ₁₀ < 13 ms
PMF capabilities: · Pulse train · Single pulse · Duty cycles [s]	5 ms < ton < 5.5 hours MIB ≤ 100 mNs 0.1 s < Command period < 600 s
SSF capability (single burn)	> 5.5 hours
Total propellant throughput	> 900 kg
Total number of pulses	> 500 000 pulses
Total number of thermal cycling	≥ 600

Validation against vibration loads

Extract from LAM internal specification as per 22N-ASLLAM-DVM-0001 (Environmental loads – as per S10-18)

Figure 2: Shock specification

Figure 3: Sinus vibration specification

		Dok. Nr./No.:	22N-ASLLAM-RP-0004		
	805	Ausgabe/Issue: 1 Datum/Date:	07.07.2021		
	Überarbtg./Rev.: Da	Datum/Date:			
arianeGroup		Seite/Page:	6	von /of:	8

Figure 4: Random vibration specification - lateral and axial direction

S25

Performance prediction

SSF ISP > 295 s PMF:

Figure 6: Performance prediction Impulse bit vs on-time

Dok. Nr./No.:	221
Ausgabe/Issue:	1
Überarbtg./Rev.:	
Seite/Page:	8

22N-ASLLAM-RP-0004 1 Datum/Date: 07.07.2021 Datum/Date: 8 von/of: 8

Interface control drawing

S25