10-July-2024, ESTEC – Final Project Presentations

LaSol – Large Lens Soldering Bond-Match - Laser-based Bonding of optical Components to CTE-matched Substrates

Dr. Thomas Peschel, Grucheska Rosario-Rodriguez, Dr. Erik Beckert / F-IOF

Agenda

Part 1 – Soldering for Optics

- Motivation
- Solderjet Bumping (SJB), comparison with other technologies
- Part 2 LaSol
 - Design of mounts for large lenses
 - Manufacturing, Assembly and Integration
 - Testing
- Part 3 Bond-Match
 - Material combinations, demonstrator and mount designs
 - Manufacturing, Assembly and Integration
 - Testing

10-July-2024, ESTEC – Final Project Presentations

Part 1 - Soldering of Optics

Dr. Erik Beckert

Motivation – Joining of Optics in Mounts

Motivation – Bonding of Optics

Motivation – Pro's and Con's of optical, polymer-based Adhesives for Bonding

Temperature Stability	< 120° C
Vacuum Compatibility	-
Radiation Stability	
Long-Term Stability	-
Transparency	+ +
Electrical / thermal Conductivity	+/-
Stress Compensation	+ +

Solderjet Bumping - Technology

- Solderjet Bumping (SJB)
 - Reflow of Solder Preforms by IR-Laser
 - Pulse Energy up to 5 J, 1..25 ms
 - Various Soft Solder Alloys to be processed: e.g. AuSn, SnAgCu, SnAg, SnCu, SnBi, AuSi, AuGe…
 - Spherical Preform Ø 60..760 μm
 - Solder Application under local inert Atmosphere (N2)
 - Flux-free, no Pre-heating
 - Jetting of liquid Solder contactless
 - Free Space Application 6 DOF
- SJB courtesy of Packaging Technologies GmbH

Solderjet Bumping - Technology

Solderjet Bumping - Requirements

- Mandatory: Adherent Metallization
 - Surfaces Polished, Stability against thermal Shock
 - Ti/Pt/Au (0.5 μm) Batch Sputtering (PVD)
- Metallization technology -> component's size!

Other Technologies

Fraunhofer

- Laser reflow
- Thin Film 80Au20Sn
- Planar bonding surfaces
 - 3DOF active alignment

Fraunhofer

- Ohmic resistance heater reflow
- Various solder alloys, thick
- Planar bonding surfaces

 6DOF active alignment, realignment possible

- Global (oven?) reflow
- Various solder alloys, thick layer (?)
- Various bonding surfaces
 - Passive alignment

10-July-2024, ESTEC – Final Project Presentations

Part 2 – LaSOI (A0/1-9092/17/NL/PS)

Dr. Erik Beckert

- The objective of the current activity is to devise and experimentally test an optimum approach for the design, manufacture and test of high stability opto-mechanical mounts for large optical lenses which have an application, in high resolution (spectral and spatial) Earth Observation satellites and within the UV, Visible and NIR wavelength regime.
- [...] use a parametric approach to design, quantify and test the performance of an optical mount for large lenses. This shall include addressing the challenging requirements such as the positioning accuracy, the long-term stability, low outgassing contamination, the low induced stress on the glass material and reliable operation in space environment (thermal and vacuum aspects).
- Design and manufacture a set of mounted lens samples based on, for example, a selection from the following commonly used glass materials; LaK9, N-BK7G18, CaF2, Fused Silica, ZnS and ZnSe.
 [...]

Work Logic

Design (WP3, WP5) – Involved Material

	Lenses						
Material	Fused Silica	Lak9 G15	CaF ₂	Invar 1.3912	TiAl6V4 3.7165	X6CrNiMoTi1 7-12-2 1.4571	Solder SAC305 Sn3Ag0.5Cu
Young's modulus [GPa]	73.2	108.0	75.8	141.0	114.0	200.0	43.0
Poison number	0.167	0.288	0.260	0.290	0.340	0.290	0.400
Density [g/cm³]	2.20	3.53	3.18	8.05	4.43	7.95	7.43
CTE [ppm/K]	0.56	6.30	18.85	1.30	8.50	16.40	22.4
Thermal conduc- tivity [W/m/K]	1.37	9.71	0.88	10.15	6.60	12.00	56.3
Yield strength [MPa] (metals), Ultimate strength [MPa] (brittle mat.)	80	70*	157	276	830	635	35

Design (WP3, WP5) – Mount Designs – Parametric Hexapod and Compensator Designs

- Hexapod: 6 bonding interfaces, classical hexapod strut structure
- Compensator: 6 bonding interfaces, groups of 2 with compensating geometry
- Both are fully constrained

Design (WP3, WP5) – Mount Designs – Parametric Hexapod and Compensator Designs

Lens dummy	,		Load [g]	38.1	Strength		
Radius	0.06	m	Force/Pad (worst case)		Solder strength	30	MPa
Thickness	0.014	m	Factor in-plane	0.33333333	Factor of safety	2	
Volume	0.000158336	m ³	Factor axial	0.16666667	Assumed strength	15	MPa
					•	•	
				Worst case Force/Pa	d		
Material	Density	Mass [kg]	Total force [N]	F_tan [N]	F_ax [N]	F_tot [N]	Min. area [mm ²]
	[kg/m³]						
SQ	2202	0.3487	130.31	43.44	21.72	48.57	3.24
CaF2	3180	0.5035	188.19	62.73	31.37	70.14	4.68
LAK9G15	3530	0.5589	208.91	69.64	34.82	77.85	5.19
SQ CaF2 LAK9G15	[kg/m ³] 2202 3180 3530	0.3487 0.5035 0.5589	130.31 188.19 208.91	43.44 62.73 69.64	21.72 31.37 34.82	48.57 70.14 77.85	3.24 4.68 5.19

- Analytical calculation of required interface (pad) area per bonding geometry
- Based on equivalent acceleration load for vibration and shock
- Input for detailed design and numerical simulation

Design (WP3, WP5) – Mount Designs – Detailed Design and Simulation of Compensator Designs

Local bond geometry on sphere

Design (WP3, WP5) – Mount Designs – Detailed Design and Simulation of Compensator Designs

Eigenfrequencies

Lens material	Silica	N-LAK9	CaF₂
Mount material	Invar	TiAl4V6	X6CrNiMoTi17-12-2
1	645.44	490.53	623.9
2	757.61	600.31	732.1
3	758.32	600.69	732.7

e.g. 10 K ambient temperature change

t	Lens material	Silica	N-LAK9	CaF₂
	Mount material	Invar	TiAl4V6	X6CrNiMoTi17-12-2
	r.m.s. surface deformation [nm]	8.19	8.16	9.17
	pv. surface deformation [nm]	33.54	33.90	38.32
	MoS for the solder	-0.81	-0.79	-0.43
	MoS for the glass	-0.64	-0.69	0.02
	MoS for the solid-state hinges	30.54	41.86	10.61

Axial deformation @ Δ10 K ambient

- Other load cases simulated: 60 K ambient and global optics/ mount temperature change, accellerations
- Summary: Eigenmodes >>250 HZ, plasticity in solder @ ∆60 K negative MoS due to FEM artifacts

Test Plan (WP6) – Measurement Types, Testing Infrastructure

- A) Visual inspection (optics, mount)
- B) Flatness by means of interferometry (optics)
- C) Displacement optics vs. mount by means of 3D coordinate measurement system
- D) Tip/Tilt optics vs. mount by means of auto-collimation telescope and 3D coordinate measurement system)
- E) Stress birefringence (optics) by means of polarimetry
- F) Wave front deformation (optics) by means of Shack-Hartmann wave front sensor

Shaker @ F-ENAS

Test Plan (WP6) – Measurement Procedure (planned)

No.	Test Type	Test Description	Remark
1	Demonstrator Measurement	Measurement Type A, B, E, F	Initial measurement of optics
2	Demonstrator Measurement	Measurement Type A – E (¥)	After optics in mount positioning
3	Demonstrator Measurement	ator Measurement Type A – E (F) After optics in mount attachment	
4	Demonstrator Measurement	Measurement Type A – E (F)	Before environmental load testing
5	Demonstrator Testing	Thermal Cycling ⁱ	Includes demonstrator measurement 3.6
6	Demonstrator Measurement	Measurement Type F	During demonstrator testing 3.5
7	Demonstrator Measurement	Measurement Type A – E (F)	After thermal cycling testing
8	Demonstrator Testing	Random Vibration ⁱⁱ	
9	Demonstrator Measurement	Measurement Type A – E (F)	After random vibration testing
10	Demonstrator Testing	Sine Vibration ⁱⁱⁱ	
11	Demonstrator Measurement	Measurement Type A – E (E)	After sine vibration testing

- F) Wave front deformation (optics) by means of Shack-Hartmann wave front sensor
 - Discarded due to complexity of integration into SJB and testing equipment

Technology Development (WP6) – SJB Parameterization

- DoE for SJB Parameters
 - Pulse energy (laser current) and duration
- Observation criteria
 - Bump area, shear force, visual damage
- DoE on both materials (component, mount)
- Final parameters used = common denominator

SJB Machine

K М N 0 Figure 28 - Process area A) Laser fibre B) Spot light C) N2 shower D) Adjustment process cam E) Tip height measurement F) Power sensor G) Capillary cam H) Laser beam trap Filter laser cleaning
 Light barrier sensor
 Vision cam
 Side light
 Ring light
 Process cam
 Work table

Lens Soldering Setup

MAI (WP6) - Demonstrators

Lens Material	Mount Material	Demonstrator Name	Name Extension	Remarks
SQ1	INVAR	1092-001-IN-01		
		1092-001-IN-02		
		1092-001-IN-03		Spherical bonding contact surface
		1092-001-IN-04		
		1092-001-IN-05	n.a.	
N-LAK9	TiAl6V4	1092-002-Ti-11		
		1092-002-Ti-12		Planar handing contact surface
		1092-002-Ti-13		Planar bonding contact surface
		1092-002-Ti-14		
CaF2	X6CrNiMoTi	1092-002-55-21	_CaF2_04	
	17-12-2	1092-002-55-22	_CaF2_05	Planar bonding contact surface
		1092-002-55-23	_CaF2_03	
		1092-002-55-24	_CaF2_R01	Planar bonding contact surface
		1092-002-SS-25	_CaF2_R02	CaF2 random orientation

- SQ1 MICROS Optics GmbH & Co. KG,
- N-LAK9 Hellma GmbH, and
- CaF2 POG Präzisionsoptik Gera GmbH

MAI (WP6) – Demonstrator Measurements

Lens Material	Mount Material	Demonstrator Name	Initial Characterization	Soldering performance evaluation
		1092-001-IN-01	P-V, B	broken
		1092-001-IN-02	P-V, B	P-V, B, CMM
SQ1	INVAR	1092-001-IN-03	В	P-V, B, CMM
		1092-001-IN-04	В	P-V, B
		1092-001-IN-05	В	P-V, B, CMM
		1092-002-Ti-11	В	P-V, B, CMM
NLaKO	TiAl6V4	1092-002-Ti-12	В	P-V, B, CMM
IN-Lany		1092-002-Ti-13	В	P-V, B, CMM
		1092-002-Ti-14	В	P-V, B, CMM
		1092-002-SS-21	В	P-V, B, CMM
		1092-002-SS-22	В	P-V, B, CMM
CaF2	X6CrNiMoTi17 -12-2	1092-002-SS-23	В	P-V, B, CMM
		1092-002-SS-24	В	B, CMM
		1092-002-SS-25	В	P-V, B, CMM

Exemplary P-V and birefringence before soldering

- Directly after soldering induced birefringence was 2 nm to 8 nm
- △P-V < 100 nm (but only measured one time, stativ P-V after soldering ca. 300..400 nm)

Testing (WP7) – Demonstrator Measurements

Lens Material	Mount Material	Demonstrator Name	Initial Characterization	Soldering performance evaluation	Operation Temperature Cycling	Non-operational temperature cycling	Intermediate characterization	Vibration testing	Final characterization
		1092-001-IN-01	P-V, B	broken	n.a.	n.a.	n.a.	n.a.	n.a.
		1092-001-IN-02	P-V, B	P-V, B, CMM	P-V, B	P-V, B	P-V, B	P-V, B, CMM	P-V, B
SQ1	INVAR	1092-001-IN-03	В	P-V, B, CMM	P-V, B	P-V, B	P-V, B	P-V, B, CMM	P-V, B
		1092-001-IN-04	В	P-V, B	n.a.	n.a.	n.a.	n.a.	n.a.
		1092-001-IN-05	В	P-V, B, CMM	n.a.	n.a.	n.a.	n.a.	n.a.
		1092-002-Ti-11	В	P-V, B, CMM	P-V, B	P-V, B	P-V, B	broken	n.a.
N-LaK9	TIALAVA	1092-002-Ti-12	В	P-V, B, CMM	P-V, B	P-V, B	P-V, B	P-V, B, CMM	P-V, B
N-Laky	TIAI0V4	1092-002-Ti-13	В	P-V, B, CMM	P-V, B	P-V, B	P-V, B	P-V, B, CMM	P-V, B
		1092-002-Ti-14	В	P-V, B, CMM	P-V, B	P-V, B	P-V, B	P-V, B, CMM	P-V, B
		1092-002-SS-21	В	P-V, B, CMM	P-V, B	P-V, B	P-V, B	P-V, B, CMM	P-V, B
		1092-002-SS-22	В	P-V, B, CMM	P-V, B	P-V, B	P-V, B	P-V, B, CMM	P-V, B
CaF2	X6CrNiMoTi17 -12-2	1092-002-SS-23	В	P-V, B, CMM	P-V, B	P-V, B	P-V, B	P-V, B, CMM	P-V, B
		1092-002-SS-24	В	B, CMM	P-V, B	P-V, B	P-V, B	P-V, <mark>B</mark> , CMM	P-V, B
		1092-002-SS-25	В	P-V, B, CMM	P-V, B	P-V, B	P-V, B	P-V, B, CMM	P-V, B

B – Birefringence

P-V – Interferometry incl. Rms

CMM – 3D CMM

Testing (WP7) – What happened?

Lens Material	Mount Material	Demonstrator Name	Comments
SQ1	INVAR	1092-001-IN-01	Soldering failed, broken SQ1 material after soldering (see discussion)
		1092-001-IN-02	Demonstrator ok
		1092-001-IN-03	Demonstrator ok
		1092-001-IN-04	Only soldered, not tested nor characterized, demonstrator saved for ESA
		1092-001-IN-05	Only soldered, not tested nor characterized, demonstrator saved for ESA
N-LAK9	TiAl6V4	1092-002-Ti-11	Demonstrator for testing purposes, broken during vibration
		1092-002-Ti-12	Demonstrator ok
		1092-002-Ti-13	Demonstrator ok
		1092-002-Ti-14	Demonstrator ok
CaF2	X6CrNi	1092-002-SS-21	Demonstrator ok ([111] CaF2 orientation)
	MoTi17-	1092-002-SS-22	Demonstrator ok ([111] CaF2 orientation)
	12-2	1092-002-SS-23	Demonstrator ok ([111] CaF2 orientation)
		1092-002-SS-24	Demonstrator for testing (random CaF2 crystal orientation), broken CaF2 material after soldering
		1092-002-SS-25	Demonstrator for testing (random CaF2 crystal orientation), broken CaF2 material after soldering

Testing (WP7) – Impressions

Birefringence 1092-002-Ti-12 before and after thermal cycling

P-V 1092-002-Ti-11 before and after thermal cycling

1092-002-SS-23 on the shaker

P-V and birefringence 1092-002-SS-23 after vibration

Testing (WP7) – Results for P-V and RMS (after Soldering vs. after Vibration)

Lens Mount Material Material		Demonstrator	$DP\text{-}V_{Mech}$	-sold [nm]	
		Name	Side A	Side B	
		1092-001-IN-01	bro	ken	
		1092-001-IN-02	47	103	
SQ1	INVAR	1092-001-IN-03	46	3	
		1092-001-IN-04	n.a.	n.a.	
		1092-001-IN-05	n.a.	n.a.	
SQ1	: Mean(±3s)		46±1	53±149	
	TiAl6V4	1092-002-Ti-11	bro	ken	
		1092-002-Ti-12	389	157	
N-LAK9		1092-002-Ti-13	158	17	
		1092-002-Ti-14	183	43	
N-LAK	9: Mean(±3s)		244±311	73±183	
		1092-002-SS-21	386	384	
	X6CrNi	1092-002-SS-22	415	408	
CaF2	MoTi17-	1092-002-SS-23	365	404	
	12-2	1092-002-SS-24	broken		
		1092-002-SS-25	bro	ken	
CaF2: Mean±3s			349±215	390±31	

Lens	Mount	Demonstrator	Dinterferon [n	n RMS _{Mech-Sold} m]
waterial	wateria	Name	Side A	Side B
		1092-001-IN-01	bro	ken
		1092-001-IN-02	-8	0
SQ1	INVAR	1092-001-IN-03	-4	-4
		1092-001-IN-04	n.a.	n.a.
		1092-001-IN-05	n.a.	n.a.
SQ1	: Mean(±3s)		-6±7	-2±9
		1092-002-Ti-11	bro	ken
	TAIGVA	1092-002-Ti-12	115	106
N-LAK9	TIAI0V4	1092-002-Ti-13	46	7
		1092-002-Ti-14	9	10
N-LAK	(9: Mean(±3s)		-57±162	-34±188
		1092-002-SS-21	-59	-61
	X6CrNi	1092-002-SS-22	-62	-64
CaF2	MoTi17-	1092-002-SS-23	-60	-61
	12-2	1092-002-SS-24	broken	
		1092-002-SS-25	bro	ken
CaF2: Mean+3s			-60±5	-62±5

 $\Delta P-V$

 ΔRMS

Testing (WP7) – Results for Birefringence and 3D CMM (after Soldering vs. after Vibration)

Lens	Mount	Demonstrator	Demonstrator DBirefringeMech-sold [nm] Lens Mount Demonstrator		(CMMsold [mm] CN			CMM _{Mech} [mm]		DC	DCMM _{Mech-Sold} [µm]			
Material	Material	Name		Materia	l Material	aterial Name		Y	//	X	Y	//	Х	Y	11
SQ1		1092-001-IN-01	broken			1092-001-IN-01				1	broken				
		1092-001-IN-02	11.8			1002 001 IN 02	0.020	0.000	0.000	0.022	0.009	0.092	7	10	0
	INVAR	1092-001-IN-03	4.7			1092-001-111-02	-0.029	-0.088	0.082	-0.022	-0.098	0.082	/	10	0
		1092-001-IN-04	n.a.	SQ1	INVAR	1092-001-IN-03	-0.004	-0.086	0.138	0.002	-0.096	0.138	6	10	0
		1092-001-IN-05	n.a.			1092-001-IN-04	n.a.	n.a.	n.a.	n.a.	n.a.	a. n.a.	n.a.	n.a.	n.a.
SQ1	Mean(±3s)		8.2±15.6			1092-001-IN-05	-0.224	0.0561	0.062	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
		1092-002-Ti-11	broken			1092-002-Ti-11	0.012	0.074	0.035			bro	ken		
	TiAl6V4	1092-002-Ti-12	5.0			1092-002-Ti-12	0 113	-0.023	0.032	0.113	-0.023	0.032	0	0	0
IN LARS		1092-002-Ti-13	6.5	N-LAK	TiAl6V4	1032-002-11-12	0.115	-0.025	0.032	0.115	-0.025	0.052	0	0	0
		1092-002-Ti-14	8.7			1092-002-11-13	0.026	-0.052	0.012	0.026	-0.052	0.012	0	0	0
N-LAK	9: Mean(±3s)		6.7±7.9			1092-002-Ti-14	0.031	-0.065	0.015	0.031	-0.065	0.015	0	0	0
		1092-002-SS-21	1.6			1092-002-SS-21	-0.025	-0.05	0.015	-0.025	-0.05	0.015	0	0	0
	X6CrNi	1092-002-SS-22	2.7		X6CrNi	1092-002-SS-22	-0.007	0.026	0.032	-0.007	0.026	0.032	0	0	0
CaF2	MoTi17-	1092-002-SS-23	9.5	CaE2	MoTi17-	1092-002-55-23	0.041	-0.033	0.068	0.041	-0.033	0.068	0	0	0
	12-2	1092-002-SS-24	broken		12-2	1002 002 55 25	0.011	0.055	0.000	0.011	0.055	0.000	0	, S	Ű
		1092-002-SS-25 broken		12-2	1092-002-55-24					broken					
CaF	2: Mean±3s		4.6±13.3			1092-002-SS-25					broken				

 $\Delta \text{Birefringence}$

 ΔCMM

Final Compliance Statement I

- Requirement 1 Minimum optical element diameter: 100 mm
 - Initial compliance: Y, Final compliance: Y, Comments:
 - Limitation in size regarding the mass of the component vs. the available attachment area.
 - Demonstrator assemblies had a mechanical diameter of 120 mm, and an optical aperture of 100 mm for the optical elements attached within respective mounts.
- Requirement 2 Wavelength Range: 300 nm to 2 µm, Requirement 3 Radiation Environment: LEO and GEO orbits
 - Initial compliance: Y, Final compliance: Y, Comments:
 - Solder alloy Sn3Ag0.5Cu used as bonding medium, and chosen laser-soldering process are suitable for given wavelength range.

Final Compliance Statement II

- Requirement 4 Reflective elements: shall not be included
 - Initial compliance: Y, Final compliance: Y, Comments:
 - The laser-based soldering technology is also suitable for reflective optical elements, if their material's thermal conductivity is less than ca. 100 W/m/K.
- Requirement 5 MOC Contamination level: < 10-7 g/cm2
 - Initial compliance: Y, Final compliance: P, Comments:
 - The laser-based soldering technology is inherent clean, it does not use flux. The demonstrator assembly took place in a cleanroom environment class 10.000. No dedicated particle nor contamination measurements carried out during the project.

Final Compliance Statement III

- Requirement 6 Stress Induced Birefringence: <1 nm/cm (<2.5 nm/cm) over clear aperture</p>
 - Initial compliance: P, Final compliance: P, Comments:
 - Birefringence was measured by means of polarimetry within the optical aperture of the optical components before and after soldering, and after testing. High standard deviation 3σ up to >10 nm. Directly after soldering induced birefringence was 2 nm to 8 nm, after testing it annealed to ca. 1 nm.
- Requirement 7 Maximum level of transmission loss: < 1%
 - Initial compliance: Y, Final compliance: Y, Comments:
 - Was considered by design and analysis, see also comment about Requirement 8.
- Requirement 8 Coating effects: shall not be included
 - Initial compliance: Y, Final compliance: Y, Comments:
 - Localized, non-transparent, and wettable metallization is a mandatory pre-requisite for the laser-based soldering process, to be applied outside of intended optical aperture of the optical components.

Final Compliance Statement IV

- Requirement 9 "Exotic" materials (Beryllium, KBr, laser crystals...): shall be excluded
 - Initial compliance: Y, Final compliance: Y, Comments:
 - Tested CaF2 material can be considered as an exotic material, being very sensitive vs. thermal shock and thus being highly critical for the intended laser-based soldering process.
- Requirement 10 Aging effects (creep, change of material properties e.g. temporal CTE change): Shall be taken into account
 - Initial compliance: Y, Final compliance: Y, Comments:
 - Aging effects were taken into account by analysis and expertise from past projects.
- Requirement 11 Operational thermal range: -40 °C to + 70 °C, Requirement 12 Thermal cycling: Minimum of 8 cycles over the thermal range
 - Initial compliance: Y, Final compliance: Y, Comments:
 - Bonding geometries were designed to withstand this load at a certain safety margin, thermal cycling load was tested on the assembled demonstrators.

Final Compliance Statement V

- Requirement 13 Random vibration environment, Requirement 14 Sine vibration environment
 - Initial compliance: Y, Final compliance: Y, Comments:
 - Bonding geometries were designed to withstand this load at a certain safety margin, first eigenmode of the chosen assembly designs were 645.4 Hz (SQ1 vs. INVAR), 490.5 Hz (N-LAK9 vs. TiAl6V4), and 623.9 Hz (CaF2 vs. X6CrNi MoTi17-12-2).
 - Random and sine vibration load was tested on the assembled demonstrators, the following demonstrators survived: 2/3 for SQ1 vs. INVAR, 3/4 for N-LAK9 vs. TiAl6V4, 3/5 for CaF2 vs. X6CrNi MoTi17-12-2

Final Compliance Statement VI

- Requirement 15 Displacement of the mounted optical element after thermal and mechanical loads (line of sight): < 1 µm in any directions
 - Initial compliance: P, Final compliance: Y, Comments:
 - Displacement measured by 3D coordinate measurement machine. SQ1 vs. INVAR demonstrators: 6 μm to 10 μm (non-optimized bonding area geometries), N-LAK9 vs. TiAl6V4 and CaF2 vs. X6CrNi MoTi17-12-2 demonstrators: displacement below CMM uncertainty of ca. 1 μm.
- Requirement 16 Tilt of the mounted optical element after thermal and mechanical loads (line of sight): < 1 Arc-sec in any direction
 - Initial compliance: P, Final compliance: P, Comments:
 - Tilt calculated based on the CMM measurement for Requirement 15 (base length ca. 100 mm): displacement below CMM uncertainty of ca. 1 μm.

Final Compliance Statement VII

- Requirement 17 Maximum change of the transmitted WFE: 1/20 of the wavelength (RMS)
 - Initial compliance: P, Final compliance: N, Comments:
 - Wavefront measurement were discarded
- Requirement 18 Number of mounts to be designed, manufactured, tested and delivered: 1 for crystalline glass (CaF2), 1 for amorphous soft glass (e.g. LAK9), 1 for amorphous hard glass (e.g. Fused Silica)
 - Initial compliance: Y, Final compliance: Y, Comments:
 - 5 demonstrator assemblies per material combination envisaged, only 4 realized for N-LAK9 vs. TiAl6V4, and only 3 survived testing.
 - 5 assembled SQ1 vs. INVAR demonstrators, only 3 tested, and only 2 survived.
 - 5 assembled, tested, and characterized CaF2 vs. X6CrNi MoTi17-12-2 demonstrators, 3 survived testing procedure (CaF2 [111] crystal orientation).

Final Compliance Statement VIII

1092-001-IN-03 (Fused Silica vs. INVAR)

1092-002-Ti-14 (LAK9 vs. Ti)

1092-002-SS-21 (CaF2 vs. 1.4571)

Main Findings and Lessons learned

- 1. Avoid localized mechanical stress (Hertzian contact stress) at mount to component interface
 - Pre-stressed brittle material (glass) release stress when being subject to thermomechanical stress from soldering -> chipping
 - Even thermo-shock insensitive material (Fused Silica) cracked!
- 2. Crystal orientation drives thermo-shock resistivity of sensitive materials
 - CaF2 [111] orientation vs. Random orientation
 - [111] orientation suitable for localized thermo-shock during soldering

Thank you for your attention.

Questions?

Dr. Erik Beckert

10-July-2024, ESTEC – Final Project Presentations

Part 3 – Bond-Match (A0/1-9472/18/NL/AR)

Dr. Erik Beckert

Statement of Work

- The technical requirements for the technologies to be investigated arise from the objective to align and bond precision optics made of various, "exotic" optical materials to CTE-matched substrate materials by means of an anorganic bonding technology. [...]
- The four aspects of i) optics alignment, ii) anorganic bonding medium for the fixation of the alignment state by bonding, iii) "exotic" and broad variability of materials to be bonded, and iv) generic environmental conditions pose the boundaries for the technical requirements [...].

Materials

Component	Lens dummy I	Lens dummy II	Laser Crystal I	Laser Crystal II	Lens mount (CaF2)	Lens mount (SQ1)	Mount for laser crystal	Solder
Material	CaF ₂	SQ1	BBO	КТР	Steel 1.4571	Invar 36	Kovar	SAC305
Young's modulus [GPa]	75.8	73.2	75.3 (⊥) 26.8 ()	136 (⊥) 162 ()	200	141	138	43
Poisson number	0.26	0.167	0.186 (xy) 0.268 (xz, yz)	0.150.2	0.29	0.29	0.29	0.4
Density [g/cm ³]	3.18	2.2	3.85	3.3	7.8	8.05	8.36	7.43
CTE [ppm/K]	18.85	0.56	4 (⊥) 36 ()	11 (⊥) 0 ()	17.5	1.3	5.86	22.4
Thermal Conductivity [W/m/K]	9.71	1.37	1.2	2033	15	10.15	17.3	56.3
Heat Capacity [J/kg/K]	854	741	490	707	500	515	460	283
Tensile Strength [MPa]	157	80			650	276	517	35

Designs – Lens Dummies

- Flexure on one side integrated
 - Decouple soldering structure from mount
 - Important for thermal load compensation
 - Note: not meant for crystal temperature levelling

Soldering structure

- 3x 120° on front surface
- Designed for mechanical load incl. Marging
 - Note: proved to be not sufficient
- Fiducials

- Glued into mount
- Positions defined by mechanical references

Designs – Laser Crystals

Crystal assembly front view

Crystal assembly back view

- Decouple soldering structure from mount
- Important for thermal load compensation
- Note: design can be reversed, depending on numerical aperture direction
- Soldering structure
 - At both sides
 - Designed for mechanical load incl. marging
 - Note: proved to be not sufficient
- Fiducials
 - Glued into mount
 - Positions defined by mechanical references

Designs – Numerical Analysis – Eigenfrequencies Lens Dummy Assemblies

- Eigenfrequencies well above 2 kHz
- Quasi-static system response 133.5 g (3σ rms) for vibrational excitation, 600 g for shock

Mode No.	Eigenfreq	Eigenfrequency [Hz]					
	CaF2	SQ1					
1	17671.83	17585.48					
2	19231.82	19199.40					
3	19242.87	19213.33					

Designs – Numerical Analysis – Eigenfrequencies Laser Crystal Assemblies

- 1st Eigenfrequencies at 1.4 kHz
- Fundamental mode = rX, effective masses of this mode wrt. linear vibrations are negligible
- Next mode starts at 4.1 kHz
- Quasi-static system response @ 4.1 kHz 133.5 g (3σ rms) for vibrational excitation, 600 g for shock

Mode No.	Frequency [Hz]					
1	1442.340					
2	4073.033					
3	11969.34					
4	13961.02					
5	14326.72					
6	15843.62					

Designs – Numerical Analysis – Example thermal Load

- FEM done @ 10K for BBO
- Linear extrapolation to ∆60K (Ambient .. -40° C)

Component	Maximum stress at -40 °C [MPa]
Optical element	48
Mount	237
Solder	109

• 109 MPa = artifacts, real stress ca. 0.13 MPa

Designs – Numerical Analysis – Example mechanical Load

• FEM done @ 1g in Z direction

Linear extrapolation to 600g

Component	Maximum stress at 600 g in Z [MPa]						
Component	CaF2	SQ1					
Optical element	6.78	4.75					
Mount ring	109	67.8					
Solder	9.66	6.60					

Designs – Numerical Analysis – Summary

- Demonstrators will survive the respective environmental loads (△60K, 600g)
 - Note: Critical statement!
- Excessive stresses occur locally at singular points of the solder interface
 - However, total joint forces will remain below critical value
- Laser crystal demonstrator has a first Eigenfrequency below 2 kHz
 - However, the respective effective masses are very small
 - This mode will have negligible influence on the vibration response

Designs – Assembly and Test Environment – Lens Dummy Assemblies

- Passive alignment lens vs. mount
 - Lens vacuum gripper
 - Mount clamp
- Lens clamped vs. mount by adjustable spring force

Designs – Assembly and Test Environment – Laser Crystal Assemblies

- Hexapod and vacuum gripper for mirror
 - Tip/tilt alignment crystal vs. mount
- Autocollimation telescope
 - Measurement of tip/tilt alignment
- Goniometer for soldering on both sides

Test Approach, Procedures and Equipment

Assemblies within Thermal Vacuum chamber @ F-IOF

Assemblies on shaker @ F-ENAS

Initially derived test plan

- Used measurement equipment
 - Autocollimator

- Interferometer
- Polarimeter

Demonstrator Assembly

Demonstrator Assembly Results – Initial Measurements vs. Post-Soldering Measurements

- SQ1 Lens Dummy (n=10)
 - ΔP -V 26 nm ± 53 nm (3 σ)
- CaF2 Lens Dummy (n=14)
 - ΔP -V 87 nm ± 205 nm (3 σ)
- BBO Laser Crystal (n=14)
 - Tip/Tilt 264 μ rad ± 1253 μ rad (3 σ), Δ P-V 30 nm ± 93 nm (3 σ)
 - 5 broken or out of range
- KTP Laser Crystal (n=12)
 - Tip/Tilt 386 μ rad ± 1529 μ rad (3 σ), Δ P-V 5 nm ± 14 nm (3 σ)
 - 3 broken

KTP laser crystal before and after soldering

Poor survival rate!

Demonstrator Assembly Results – Initial Birefringence Measurements after Soldering

Demonstrator Type	Material	Component No.	Material	Mount No.	Name	Birefringence [nm]
Long	21	11	AR	11	1128-001-10-02_SQ_Test01	15
Lens	SC	12	NI	12	1128-001-10-02_SQ_Test02	11

Demonstrator Testing Results – Initial Measurements vs. Post-Vibration

- SQ1 Lens Dummy (n=10)
 - ΔP -V 29 nm ± 90 nm (3 σ)
 - 3 broken
- CaF2 Lens Dummy (n=14)
 - ΔP -V 91 nm ± 217 nm (3 σ)
 - 7 broken

- BBO Laser Crystal (n=14)
 - Tip/Tilt 157 μ rad ± 514 μ rad (3 σ), Δ P-V 29 nm ± 90 nm (3 σ)
 - 5 broken or out of range
- KTP Laser Crystal (n=12)
 - Tip/Tilt 812 µrad ± 2632 µrad (3 σ), Δ P-V 5 nm ± 14 nm (3 σ)
 - 7 broken

Demonstrator Testing Results – Final Birefringence Measurement

Demonstrator Type	Material	Component No.	Material	Mount No.	Name	Birefringence [nm]	∆Birefringence Final – Post Soldering [nm]
Long	21	11	AR	11	1128-001-10- 02_SQ_Test01	13	2
LEIIS	SC	12	N	12	1128-001-10- 02_SQ_Test02	12	1

Demonstrator Assembly and Testing Conclusions I

Demonstrator Lens, SQ1 component, INVAR mount

- 3 out 10 assemblies broke during the complete test campaign, the surviving 7 assemblies were used for P-V measurements,
 - Mean change in PV was 29 nm, at a 3σ of 90 nm,
- The surviving 7 assemblies were not used for tip/tilt measurements, due to the lack of sufficient reference surfaces on the mount for autocollimation,
- 2 additional assemblies were used for birefringence measurements,
 - The mean change in birefringence was 2 nm,
- 2 more additional assemblies were used for testing purposes.

Demonstrator Assembly and Testing Conclusions II

- Demonstrator Lens, CaF2 component, Stainless Steel mount
 - 7 out 14 assemblies broke during the complete test campaign, the surviving 7 assemblies were used for P-V measurements,
 - Mean change in PV was 91 nm, at a 3σ of 217 nm,
 - The surviving 7 assemblies were not used for tip/tilt measurements, due to the lack of sufficient reference surfaces on the mount for autocollimation,
 - None of the assemblies were used for birefringence measurements,
 - 4 additional assemblies were used for testing purposes, and broke during the testing campaign.

Demonstrator Assembly and Testing Conclusions III

- Demonstrator Laser Crystal, BBO component, KOVAR mount
 - 5 out 14 assemblies broke during the complete test campaign, the surviving 7 assemblies were used for P-V measurements,
 - Mean change in PV was 15 nm, at a 3σ of 36 nm,
 - Surviving 7 assemblies were used for tip/tilt measurements,
 - Mean tip in Rx was 155 μ rad, at a 3 σ of 51 μ rad (goal: <5..20 μ rad),
 - Mean tip in Ry was 200 μ rad, at a 3 σ of 145 μ rad (goal: <5..20 μ rad),
 - None of the assemblies were used for birefringence measurements,
 - 2 more additional assemblies were used for testing purposes.

Demonstrator Assembly and Testing Conclusions IV

- Demonstrator Laser Crystal, KTP component, Super INVAR mount
 - 7 out 12 assemblies broke during the complete test campaign, the surviving 5 assemblies were used for P-V measurements,
 - Mean change in PV was 21 nm, at a 3σ of 24 nm,
 - The surviving 5 assemblies were used for tip/tilt measurements,
 - One assembly could not be measured at all (out of range),
 - One other assembly could only be measured in tip, while tilt was out of range,
 - The mean tip in Rx was 244 μ rad, at a 3 σ of 520 μ rad (goal: <5..20 μ rad),
 - The mean tip in Ry was 847 μ rad, at a 3 σ of 2035 μ rad (goal: <5..20 μ rad),
 - None of the assemblies were used for birefringence measurements.

Final Compliance Statement I

Requirements - Materials and Dimensions

- Coated, uncoated and encapsulated optical components, component's diameters and lenghts up to 10 mm, material CaF2, MgF2, rad hard (e.g. BK7), non-linear (e.g. LBO), active medium (e.g. YAG), and CTEmatched substrates
- Adjustment range +/- 1° (rotation in Z axis), best resolution <0.3 mrad
- Initial compliance: Y, Final compliance: Y, Comments:
 - Soldering on coatings not advised, but in principle possible
 - Experimentally tested materials: CaF2, Fused Silica, BBO, KTP
 - Matched mount materials: 1.4301, INVAR, KOVAR

Final Compliance Statement II

- Requirements Design
 - Cleanliness according to ESA ECSS-Q-70-01A rev.1, space-worthy materials selection wrt flammability, outgassing, susceptibility to stress corrosion etc., operational lifetime ca. 4 years (reliability >0.97) for inorbit operation
 - Initial compliance: Y, Final compliance: Y, Comments:
 - Laser-based soldering process is inherently clean, no use of flux nor other organics
 - Used SAC305 bonding medium used in many space applications for electronics and opto-electronics already, at high lifetimes

Final Compliance Statement III

- Requirements Environmental stability
 - Alignment stability 5..20 µrad vs thermal cycling, survival acceleration, vibration, and shock.
 - Initial compliance: Y, Final compliance: N, Comments:
 - Stability considered by design, only thermal cycling and vibration experimentally conducted.
 - 1..2 order of magnitude higher de-alignment than required
 - Low principle survival rate
 - In-sufficient design of bonding geometries wrt accuracy and strength, compared to heritage \Im

Final Compliance Statement III – comparable Heritage*

	IOF	-1-4	IOF	-2-9	IOF	-3-8	IOF	-3-9	IOF	-4-4	
	rot X	rot Y	rot X	rot Y	rot X	rot Y	rot X	rot Y	rot X	rot Y	
Δ M R2 to M R1 [arc sec]	2	2.5	1.9	2.3	4.6	0.8	3.0	-0.7	5.5	-2.7	Vacuum
∆ M R2a to M R2 [arc sec]	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.	
Δ M R3 to M R2a [arc sec] ¹	1.9	-1.6	0.4	-2.4	3.1	0.9	2.1	-3.0	-0.9	-0.8	full non-op
Δ M R4 to M R3 [arc sec]	1.0	2.0	2.8	2.5	0.0	3.2	3.5	0.2	0.6	2.2	
Δ M R5 to M R4 [arc sec]	<mark>0.3</mark>	<mark>-0.5</mark>	<mark>-1.2</mark>	<mark>0.5</mark>	<mark>-1.9</mark>	<mark>-1.0</mark>	-3.9	<mark>0.8</mark>	-3.9	<mark>-0.5</mark>	1
Δ M R6 to M R5 [arc sec]	<mark>-0.2</mark>	<mark>0.3</mark>	<mark>1.1</mark>	<mark>-0.3</mark>	<mark>-0.1</mark>	<mark>-10.4</mark>	<mark>3.2</mark>	<mark>-1.3</mark>	<mark>0.3</mark>	<mark>0.2</mark>	
Δ M R7 to M R6 [arc sec]	<mark>0.2</mark>	<mark>-0.2</mark>	<mark>-1.1</mark>	<mark>0.2</mark>	<mark>0.5</mark>	<mark>10.6</mark>	<mark>0.1</mark>	<mark>-0.1</mark>	2.3	<mark>-1.3</mark>	op
Δ M R8 to M R7 [arc sec]	<mark>-0.4</mark>	<mark>0.3</mark>	<mark>0.9</mark>	<mark>-0.2</mark>	<mark>1.5</mark>	<mark>0.3</mark>	<mark>-0.3</mark>	<mark>0.4</mark>	<mark>-0.4</mark>	<mark>1.8</mark>	
Δ M R9 to M R8 [arc sec]	<mark>0.4</mark>	<mark>-0.3</mark>	<mark>-0.8</mark>	<mark>0.2</mark>	<mark>-1.8</mark>	<mark>-0.7</mark>	<mark>-1.4</mark>	<mark>-1.1</mark>	<mark>-1.8</mark>	<mark>-0.4</mark>	
Δ M R10 to M R9 [arc sec]	<mark>-0.4</mark>	<mark>0.3</mark>	<mark>0.8</mark>	<mark>-0.2</mark>	<mark>1.8</mark>	<mark>0.5</mark>	<mark>1.8</mark>	<mark>1.0</mark>	<mark>1.9</mark>	<mark>0.6</mark>	V
∆ M R11 - M R10 [arc sec]	<mark>-2.4</mark>	<mark>0.0</mark>	<mark>0.6</mark>	<mark>-0.6</mark>	<mark>0.6</mark>	<mark>-0.3</mark>	<mark>-0.6</mark>	<mark>-0.4</mark>	<mark>0.3</mark>	<mark>-1.4</mark>	spec.non-op
∆ M R12 - M R11 [arc sec]	-0.7	<mark>-0.5</mark>	<mark>-2.0</mark>	<mark>-0.1</mark>	<mark>-0.3</mark>	<mark>-0.1</mark>	<mark>1.0</mark>	<mark>1.4</mark>	3.0	<mark>0.6</mark>	Vibr.
	······································										
Δ M R12 - M R2 [arc sec]	-0.4	-0.3	1.4	-0.5	3.3	3.0	5.6	-2.3	1.5	0.8	

Main Findings and Lessons learned

1. Avoid soldering close to edges of components

• Micro-cracks from component's manufacturing processes are critical for mechanical stability

2. Avoid complicated, tiny bonding geometries

Difficult to clean, results in metallization adhesion problems

3. Design for accuracy AND strength

- Larger margin of safety required, consider solder volume contracting during process
- 4. Lots of staff changes during the duration of the project

Thank you for your attention.

Questions?

Dr. Erik Beckert

Contact

Dr. Erik Beckert Department Opto-mechatronical Components and Systems Tel. +49 03641 807 338 erik.beckert@iof.fraunhofer.de

Fraunhofer IOF Albert-Einstein-Straße 7 07745 Jena www.iof.fraunhofer.de