

DEVELOPMENT AND INTEGRATION OF EMBEDDED SENSORS FOR ADVANCED MANUFACTURING PROCESSES (DIESAMP)

Final Presentation – Jan 2025

- The work described in this report was done by employee(s) of the consortium made by Maana Electric SA and LIST-MRT. The property of the contents resides in the consortium only.
- This document summarizes the overview of consortium, as a support for discussions with potential team members, partners, investors.
- The information shared in this document is strictly confidential and should not be shared, distribute, forward, print, copy or act upon any information contained without prior consent in writing by Maana Electric SA representing the consortium.

- Presentation of the DIESAMP project.
- Results of the trade-off studies and concept selection
- Product and Breadboard design
- Results of Breadboard testing
- Future developments

Confidential All rights reserved Maana Electric SA 2024

3

Select and develop a space products integrating embedded sensors using Advanced Manufacturing (AM) techniques and mature the concept to TRL 4/5 through breadboarding and testing.

PRIME CONTRACTOR

$$\begin{array}{c} M \Delta \Delta N \Delta \\ \Xi L \Xi C T R \end{array} \right) C$$

Expertise: System integration **Product selection** Product design and manufacturing Project management

Technical coordination: Luca Celiento

Confidential All rights reserved Maana Electric SA 2024

SUBCONTRACTOR

- **Expertise**: Sensor selection
 - Sensor design and manufacturing Testing
- **Technical coordination**: Sebastjan Glinsek

PROJECT SCHEDULE

 $\begin{array}{c} M \Delta \Delta N \Delta \\ \Xi L \Xi C T R \end{array}$

$M \Delta \Delta N \Delta \\ \equiv L \equiv C T R C$

SPACE PRODUCT SELECTION

SPACE PRODUCT SELECTION

Application survey: traditional space applications

Antennas

Printing process of Antenna over hemispherical surface(left), 9 FBG sensors placed on inner layers and surface on a Mars ROVER divider sample (right).

Pressure vessels

Composite tanks with embedded optical-fibers sensors (NASA). Confidential All rights reserved Maana Electric SA 2024

Multi-Layer Insulation

MLI Blankets showcasing internal fibre netting.

Structures

Pre-wiring embedding of the fabricated Cubesat demonstrating multiple fabricating points (left), back side of the Smart Panel with embedded sensors (right).

Radiators

Technological Overview of Deployable Panel Radiator (left), Breadboard of embedded DPR (right).

$M \Delta \Delta N \Delta$ ELECTR)C

SPACE PRODUCT SELECTION

Application survey: deployable structures

Solar Arrays

Instrumentation and sensors embedded in the Rollout Panel of the ISS ROSA flight experiment.

Human-rated inflatable structures

Integrating FBG Sensors woven within the VECTRAN webbing (Left), Embedded Sensors for inflatable habitat by LUNA (Right).

Inflatable Reentry Vehicle Experiment (IRVE, right) and LOFTID Flight Demonstrator post launch (right).

Confidential All rights reserved Maana Electric SA 2024

Solar Sails

Deployed Solar Sail Mockup at DLR (left) and deployed/folded (center/right) solar sail feasibility model.

Inflatable systems for re-entry

Objective: selection of a shortlist of an application to be developed during the activity **Figures of Merits**: weighted through Analytic Hierarchy Process (AHP)

Figure of merit	Definition	Multiplier
Life-cycle	Impact of the embedding the sensors through advanced manufacturing techniques through product life cycle.	[x0.04]
Technological benefit	Benefit of sensor embedding to the performance of the mission of the product.	[x0.29]
Economic benefit	Advantage in terms of revenues resulting from the embedding of sensors.	[x0.29]
Manufacturing adaptability	Qualitative impact of the complexity of the manufacturing process of the product with the embedded sensors.	[x0.12]
Manufacturing complexity	Complexity of the testing campaign, either because of availability of reactants or safety concerns	[x0.08]
Cost	Assessment of the cost increase to embedding of sensors in comparison to the standard configuration in terms of CapEx and OpEx.	[x0.18]

SPACE PRODUCT SELECTION

Trade and product selection

Applications	Score
Antenna	0.51
Composite Structure	0.67
Pressure vessels/tanks	0.52
Multi-layer insulation	0.66
Radiators	0.56
Deployable solar array	0.81
Deployable solar sail	0.47
Human rated inflated structure	0.45
Inflatable systems for re-entry vehicle	0.54
ISRU radiators	0.16
ISRU crucibles	0.38

- Mechanism for stowing can be either **rollable or foldable**.
- Can be scaled up for other classes of satellites.

• The Minimum Viable Product (MVP) is a lightweight **flexible solar array**.

• Interesting for the **small sat market** as a low cost, low mass solution for the power generation, currently not existing on the market.

SPACE PRODUCT SELECTION

Product and sensors requirements

ID	Туре	Text	Manufacturing implemented:
DSA-MIS-001	Mission	The DSA shall provide a peak power of 50W BOL to a CubeSats platform in LEO orbit.	 Rigid cells on a foldat recommend sockets and
DSA-MIS-002	Mission	The DSA shall provide a minimum of TBD% of the BOL power peak after 1 year of mission in LEO orbit.	• Flexible ce bendable bl cells withi
DSA-MIS-003	Mission	It shall be possible to integrate 2 DSA modules in 1U CubeSat.	Due to constr implemented. sensors shall
DSA-MIS-004	Mission	It shall be possible to launch the DSA on board of Ariane 5 (TBC), Falcon 9 and the Vega (TBC).	PCB), it shall k embedded in t Selected sense

ng depends if either flexible or rigid cells are

s cannot be bended and must be integrated dable blanket. The use of **flexible-PCBs** is nded. Sensors can be integrated on a ind encapsulated.

cells can be integrated with flexible or blanket. It is recommended to laminate the thin bottom and covers together with ons and sensors.

straints with supply chain, rigid cells were ed. To be compatible with such technique, all be thin (i.e. <50% of thickness of flexible I be possible to connect them to **electrodes** n the PCB and encapsulate them on Kapton.

nsors shall monitor **strain** and **temperature**.

$M \Delta \Delta N \Delta$ ELECTR)C

SPACE PRODUCT SELECTION

Relevant environment definition

Sensors shall be able to monitor the DSA during:

- **Launch**: monitoring of DSA status.
- **Orbital life:** monitoring of deployment operations, operational conditions and real-time predictions of performance degradation.

Vibrations and thermal-vacuum are identified as relevant environment for the sensors. Other environmental conditions (e.g. plasma and radiation) are not relevant for manufacturing process and sensors operability at TRL5.

Property	Value	Unit
Pressure	10-5	mbar
Temperature (hot)	+120	°C
Temperature (cold)	-60	°C

Frequency [Hz]	PSD [g ² /Hz]
20	0.0044
100	0.0044
300	0.01
700	0.01
800	0.03
925	0.03
2000	0.00644
GRM	5.13

Relevant thermal vacuum environment

Confidential All rights reserved Maana Electric SA 2024

Band [Hz]	Amplitude [g]
2÷50	1.0
50÷100	0.9
2÷25	0.8
25÷100	0.6

Relevant launcher environment for sine loads

Relevant launcher environment for random vibrations

$M \Delta \Delta N \Delta \\ \equiv L \equiv C T R C$

SENSORS SELECTION

Commercial temperature sensors

Lavenuta, QTI Sensing Solutions, White Paper

- Change of resistance in semiconductor with temperature.
- NTC (decrease with temperature) and PTC (increase with temperature) types.
- Common in space applications (ESCC No. 4006/014).

Thermocouples fluxteq.com

- Junction of two metals producing temperature-dependent voltage.
- Different types available (K-, J-, etc.) wide usable temperature range.
- Flexible geometry possible.
- Common in space applications.

RTDs

4006/015).

Commercial strain sensors

Inkjet-Printing process

$M \Delta \Delta N \Delta$ ELECTR)C

SENSORS SELECTION

Inkjet-Printing of sensors

Cross-section

- conductor insulation
- substrate

Top-view

- ullet
- ullet
- ullet
- Encapsulation: \bullet (inkjet)

Temperature sensor: **RTD-type** Strain sensor: **strain-gauge-type**

Substrate: aluminium, Kapton® Insulation: polyimide (inkjet), SU-8 (inkjet) Conductor: Ag (inkjet) polyimide (inkjet), **SU-8**

Inkjet-Printing of sensors

Temperature Sensors

Confidential All rights reserved Maana Electric SA 2024

19

Wire Connections

Commercial sensors

- Pre-connected sensors: commercial thermocouples, thermistors and FBGs
- RTDs and strain gauges: soldering

Ink-jet Printed sensors

Ag epoxy

Printed connections

Advantages and Disadvantages

Type of Sensor	Sensor Technology	Advantages		
Temperature	Commercial Thermocouples	Self-powered, simple, inexpensive, wide variety availa wide temperature range (at least from -184 °C to 1260 °C), fast thermal response, (0.1-10 s typically), ma technology. Measuring points can be very small.		
	Commercial RTDs	Stable and accurate (0.01 °C), more linear than thermocouple, fair temperature range (-269 °C and + °C), mature technology.		
	Commercial Thermistors	Fast response (0.05 – 2.5 s), accuracy (better than 0.0 Fair temperature range (-100 - +300 °C).		
	Inkjet-Printed RTDs	Linear, sensitivity comparable to commercial RTDs , accuracy (<1 °C). Adaptable fabrication, additively manufactured, tunable resistance, inherent contact with the object of interest, low profile .		
Strain	Optical Fiber Bragg Gratings	Sensitivity (few με) and range (up to 10 ⁴ με), fast respo (100 Hz). Vacuum compatible, small size, radiation resistant.		
	Commercial Strain Gauges	Sensitivity (few με) and range (up to 10 ⁴ με), fast respo (100 Hz), low profile and flexible.		
	Inkjet-Printed Strain Gauges	Sensitivity and response comparable to commercial gauges. Flexible fabrication, additively manufactur tunable resistance, inherent contact with the object of interest, low profile.		

	Disadvantages
able, ture	Non-linear, low-voltage response (~tens of µV per °C), reference required, less stable and sensitive (above 1 °C) compared to RTDs and thermistors. Require manual handling, gluing, and fixing during the application.
400	Expensive, current source required, small change of resistance, self-heating. Require manual handling and gluing during application.
°C).	Non-linear, limited T-range (-60 °C to +160 °C), self- heating, required external supply. Require manual handling and gluing during application.
, fair	Less sensitive than commercial RTDs, operational range tested so far (-70 °C - +100 °C). Technology in development.
onse	Need for pre-load, temperature-sensitive, extremely
	difficult integration into existing hardware.
onse	difficult integration into existing hardware. Require manual handling and gluing during application, which requires personnel skilled in the art.
onse e d , of	 difficult integration into existing hardware. Require manual handling and gluing during application, which requires personnel skilled in the art. Less mature technology, require temperature compensation. Operational range tested so far (-70 °C - +100 °C)

Figures of Merit and sensors technology trade-off

FoM	Definition	Multiplier	Sensor	Score
Requirements compliance	Benchmarking towards the product, manufacturing and sensor requirements	40%	Commercial thermistor	0.28
	Placement on different areas and at		Commercial thermocouple	0.35
Adaptability of integration	different levels, which must be accessible with the process. Precision of positioning can play an important role	15%	Commercial RTDs	0.38
Cost	Cost of the sensor and integration process	11%	Inkjet-printed RTDs	0.75
Innovation	Potential to innovate the market with new		Optical Fibre Bragg Gratings	0.24
potential	features	14%	Commercial strain gauges	0.53
Integrability with product	Flatness and thickness to be adaptable with intended thin-sensors requirement	20%	Inkjet-printed strain gauges	0.75

$M \Delta \Delta N \Delta$ ELECTR)C

Same chipset re-configured for RTD

Included high-resolution ADC of 24 bits

Low power consumption (3.3 V and 5 V supplied voltage buses, <20 mA in full dynamic operation).

Miniaturization and standardized communication protocols. Data transfer done by SPI communication protocol.

Chipset already considered in the Ten-Koh LEO satellite (Kyushu Institute of Technology, Japan, 2019)

ADS1220 chipset (Texas Instrument)

$M \Delta \Delta N \Delta$ ELECTR)C

SENSORS SELECTION

Data transfer technologies: Temperature Sensor

Removal of thermal drift - half-bridge integration with two similar strain gauges arranged perpendicularly on the same surface location

Included high-resolution ADC of 24 bits

Low power consumption (3.3 V and 5 V supplied voltage buses, <20 mA in full dynamic operation).

Miniaturization and standardized communication protocols. Data transfer done by SPI communication protocol.

Chipset already considered in the Ten-Koh LEO satellite (Kyushu Institute of Technology, Japan, 2019)

ADS1220 chipset (Texas Instrument)

MAANA ELECTR)C PRODUCT PRELIMINARY DESIGN

The Deployable Solar Array (DSA) specifications

Specification	Value	Unit
Length	870	mm
Width	270	mm
Power EOL	54	W
Voltage EOL	18.5	V
Current EOL	2.9	А
Number strings	6	-
Number cells/string	8	-
Thickness substrate	230	μm
Thickness CIC	280	μm
Deployable mech.	Inflation	_

Confidential All rights reserved Maana Electric SA 2024

One DSA in deployed configuration

MAANA ELECTR)C PRODUCT PRELIMINARY DESIGN **Segment and Sensors**

Highlight of the segmented structure of the DSA, where each pair of PV cells forms a rigid segment connected to other segments by FPC

Diagram showing the position of the strain and temperature sensors on one segment of the DSA

MAANA ELECTR)C PRODUCT PRELIMINARY DESIGN **The Flexible-PCB (FPCB) structure**

Coverlay(white)	Coverlay(1MIL)		25.00	μm		
(1mi AD: 30 µm)	Adhesive	Ni/Au	30.00	μm	5.00	μ m
	Copper		35.00	μm	35.00	μm
	Adhesive		12.00	μm	12.00	μm
FCCL (1 Mil 1 Oz ED) S/S Side	Polyimide		25.00	μm	25.00	μ m
	Adhesive		12.00	μm	12.00	μ m
	Copper		35.00	μm	35.00	μ m
Coverlay(white) (1mi AD: 30 µm)	Adhesive	Ni/Au	30.00	μm	30.00	μ m
	Coverlay(1MIL)		25.00	μm	25.00	μ m

Stack of the FPCB along its thickness

The rear-side view of the deployed DSA, showing the deployable mechanism with proposed inflatable branching of the inflatable tubes. Highlight of the interface with the gas-management system and the physical holder of the Kapton substrate.

Diagram of the deployment operations of the DSA: first the folded segments are inflated along the main axis, later the lateral rows unfold transversally.

$M \Delta \Delta N \Delta$ ELECTR)C

BREADBOARDS DESIGN

The DSA-PV and the DSA-M

Requirement Description The DSA-PV breadboard shall verify the performance of the DSA with DSA-PV-MIS-001 embedded sensors in relevant environment subject to scaling effects.

The DSA-M breadboard shall verify the performance of the DSA with embedded sensors when subject to launch and deployment loads.

The different environmental conditions are tested on two separate breadboards

Confidential All rights reserved Maana Electric SA 2024

A small and compact breadboard designed for testing materials and geometries in thermal-vacuum environmental conditions.

A breadboard designed for testing representative mechanical loads and stresses, replicating the mechanical behavior and structural integrity of the DSA.

$M \Delta \Delta N \Delta$ ELECTR)C

BREADBOARDS DESIGN

DSA-PV: architecture and FPC design

CAD representation of the DSA-PV

- A. Electrical and data lines through bridges
- **B.** Electrical back line on bottom level
- C. Circular pad for rear-cell connection

FPC design of the DSA-PV

D. Electrical and data output on bottom level E. Data line on bottom level F. Rounded corners to reduce stress when folding

DSA-PV: electrical and data architecture

On the right, the CAD of the folded DSA-PV. On the left, a highlight of the connection bridges once the segments are folded (right top) and when the breadboard is in deployed configuration (right bottom).

DSA-M: architecture and FPC design

CAD representation of the DSA-M

- A. Copper-reinforced interface with mounting holes.
- **B.** Loop for fixture to CubeSat and deployment testing.
- **C.** Direct ribbon to FPCB connection.
- D. Parallel electrical lines for two strings.

FPC design of the DSA-M

$\begin{array}{c} \mathsf{M} \Delta \Delta \mathsf{N} \Delta \\ \mathsf{E} \mathsf{L} \mathsf{E} \mathsf{C} \mathsf{T} \mathsf{R} \end{array}$

DSA-M: electrical and data architecture

DSA-M: Inflation and deployment system

Sensors design

Top and side-view of the flexible PCB design for integration of printed sensors.

Design of the strain (left) and temperature (right) sensors .SU-8 encapsulation footprint is highlighted with the light area.

BREADBOARDS DESIGN

DSA breadboards' Data Management System

General view of the measurement chain and with analogue-to-digital data conversion for strain gauge monitoring. Similar diagram for RTD sensors.

Power supply	Voltage range: from 2.7V to 5.5V Power consumption: Standby mode: <100uW; acquisition/ transmission mode: <50mW
ADC with integrated PGA	Programmable gain from 1V/Vto128V/V Effective resolution of 20 bits SPI interface Data rate up to 1kSps
Microcontroller	SPI interface Integration of RTC for sleep mode
Can controller	SPI interface CAN V2.0B implementation Data rate up to 1Mbps
Data transferred	Temperature: minimum 16bits Deformation: minimum 16bits Status: 16bits Setting parameter data: 32bits
Software	ECSS-E-ST-50-15C CANbus extension protocol

$M \Delta \Delta N \Delta \\ \equiv L \equiv C T R C$

a C

BREADBOARD ASSEMBLY & INTEGRATION

00

Sensors: manufacturing and integration

Confidential All rights reserved Maana Electric SA 2024

Two strategies were evaluated:

- In-situ printing, which integrates sensors directly into the array for better contact and efficiency but requires material compatibility.
- **Ex-situ printing**, which simplifies compatibility by printing sensors separately but requires an additional attachment step.

The second was preferred to match surface finishing of FCB.

Flow of integration of printed sensors into the DSA breadboards:

- Printing of the gauge and the pads.
- 2. Spray-coating of an encapsulant.
- 3. Gluing sensors onto the flexible PCB.
- 4. Application of Ag epoxy.

ASSEMBLY & INTEGRATION

Sensors-level testing and verification

Sensors were tested by integration on prototype FPC. Thermal tests performed in environmental chamber at 1 atm for 10 cycles between -60°C and 120°C.

Confidential All rights reserved Maana Electric SA 2024

Confidential All rights reserved Maana Electric SA 2024

Sensors also tested in vacuum chamber from ambient pressure to 3x10-3 Pa (3x10-5 mbar) in <10 minutes.

DSA-PV: assembly and integration

Sensor	s	Sensors	Assembly 1 ^s	cell	Name		A/I	De
manufactu	uring	embedding	of all segme	ents	Sensors' manufactu	ring	A	Th in
			Assembly 2 ⁿ	^d cell	Sensors' embedding)	I	Th se
		Curing of epoxy	of all segme	ents	Assembly of each seg	1 st cell jment	A	Ha cu ep th th gu in at
					Assembly i of each seg	2 nd cell jment	A	Th ar in in se pc pr cc
2					Curing of FPC epoxy	cell-to-	A	Th m te

escription

ne sensors are manufactured following the process outlined section 5.4.1

ne sensors are integrated following the process outlined in ection 5.4.1

alf of the PV cells are cleaned. Silicone adhesive pieces are ut and attached to the FPC surface. Bi-component silver poxy is mixed. Epoxy is laid on the back contact surface of he first cell. The first cells of each segment is placed on top of e adhesive in correct position. Each cell is gently pressed to uarantee uniform spreading of the silver epoxy. The terconnection of the front connection of the first cells are tached on the FPC though silicone adhesive.

ne remaining PV cells are cleaned. Silicon adhesive pieces re cut and attached to the FPC surface. Bi-components silver poxy. A small droplet of epoxy is applied on top of the terconnections of first cells and on the pads of the terconnections of the second cell. The second cells of each egment are placed on top of the adhesive in the correct osition. The interconnections of the second cells are gently ressed on top of the epoxy droplets to guarantee electrical ontact.

ne FPC with the PV cells on top is cured at 120°C (TBC) for 15 ninutes (TBC). The breadboard is cooled down to room mperature.

DSA-PV: inspection

Inspection

Pass/Fail criteria

The sensors are individually compliant to pass/f criteria of "Physical Inspection".

The FPC does not show delamination, discontinuo pattern of the electrical circuits, damage or oxidation the exposed contact pads, damage (cracking wrinkling) of the Kapton substrate.

The FPC can be bent on the flexible junctions without any damage to the laminated structure.

The sensors are properly glued to the laminate structure.

The PV cells do not show macro-cracks or damage to Inspection successful. The two cells near the strain the cell substrate, to the cover glass, to the sensors (cells #2 and #6) are slightly delaminated at interconnectors and diodes. The PV cells are securely the start of the cell (right of Figure 26). The presence of glued to the Kapton substrate without any evident sign non-flat surface due to excessive encapsulation of of delamination. sensors incentivized delamination of the cell from the adhesive. The cells look anyway solidly attached to the PCB.

It is possible to connect the breadboard to the Correctly connected and data connection confirmed. interfaces with the data management system and electrical load.

	Status after testing
fail	 Inspection successful. Two defects were found. 1) The silver epoxy used to perform the electrical connection was not very flat with some "spikes". These defects can induce localized stresses which may damage the cell during integration procedure. 2) Yellowing of the silver epoxy detected after curing of cell's connection (left of Figure 26). Resistance of the sensors consequently increased. As strain values of individual gauges in strain sensors are still close to each other, this change is considered acceptable.
ous of or	FPC does not show delamination of its structure. FPC does not show cracking nor wrinkling of its structure. Electrical circuit continuity checked with multimeter.
out	The FPC was not bent to preserve as much flatness as possible, recommended for optimal execution of TVAC.
ed	Sensors still glued and with electric contact to the FPC.

DSA-PV: functional test

A Light Box based on LED has been used to test PV performance of a flexible solar array. The setup is conceptually similar to the one presented in the previous review (Pedivellano, 2023) but improved as it proved a completely closed (i.e. repeatable) test environment. The PV performance is read by an **electrical load** KORAD KEL 102.

CAD of the Light Box to monitor PV performance degradation during testing campaign.

Confidential All rights reserved Maana Electric SA 2024

Electrical load KORAD KEL 102

DSA-PV: functional test

Repeatability of PV performance reading has been tested on 6 repetitions on DSA-PV. Shading 1 and 2 cells has been also performed to verify ability to detect failure.

DSA-M: assembly and integration

				Name	A/I	D
Folding of segments	Sens	cturing	Sensors embedding	Folding c segments	of A	Tł fr
			4	Sensors' manufacturing	А	A
Curing of epoxy	Assembly	/ 2 nd cell	Assembly 1 st cell	Sensors' embedding	Ι	A
	or all se	gments	or all segments	Assembly 1st ce of each segment	II A	A: p
Manufacturing of array holders	Assem inflatabl	bly of e tubes	Integration of FPC with inflatable tubes	Assembly 2nd ce of each segment	II A	Tł cu ar
				Curing of epoxy	А	A
			0 0 10 T	Manufacturing of array holders	of A	Tł m
				Assembly of inflatable tubes	of A	Th ac Th an in tv of
				Integration o FPC wit inflatable tubes	of h	Th Th If th as

Confidential All rights reserved Maana Electric SA 2024

escription

he FPCB is bended on the folding lines leaving the bridges ee to bend following their natural curvature.

s in Sensors integration.

s in Sensors integration.

as for DSA-PV. The interconnections of the front connection are pressed on the epoxy droplet to guarantee electrical contact.

he mechanical cells are cleaned. Silicon adhesive pieces are ut and attached to FPC surface. The 2nd cells of each segment re placed on top of the adhesive in the correct position.

s in DSA-PV.

he two array holders are printed with ABS 3D printing nachine. Pneumatic threads are machined and assembled.

he tubes are inserted in pneumatic thread and heated up to dhere. Pneumatic interface is closed on the inflatable tube. he end of the inflatable tube is glued with silicone adhesive ind secured in the front holder. The gas-supplying system is nterfaced with the rear holder and is activated to check if the wo tubes exhibit any buckling during inflation. If so, the length of the tubes between the two holders must be re-assessed.

he integrated FPCs are secured to the front and rear holders. he gas-supplying system is gently activated to check the natching between the tubes assembly and the FPCs assembly. the tubes exhibit buckling or the FPCs look under-deployed, ne tolerance of positioning of the front holder and the FPCs ssembly shall be assessed.

DSA-M: inspection

Cracks induced in the cells #3, #4 and #8 after folding manually the array

Cracks in cells #1, #7 and #8 were experienced after the packing of the array

Physical Inspe

Pass/Fail crite

The sensors compliant to "Physical Insp

The FPC does and electrical

The FPC can b junctions and glued to the la

The PV cells the substrate damage to the cover glass, to and diodes.

The inflation adhesion wi holders and d of damage (cu the walls.

The data m electrical loa system can be

ection				
ria	Status after testing			
are individually pass/fail criteria of ection".	Inspection successful. Yellowing of the silver epoxy was again detected (as for DSA-PV) after curing of cell's connection. Resistance of the sensors again increased as already reported for DSA-PV. The change is considered acceptable as the resistances of strain sensors remained close.			
not show mechanical incompliances,	Inspection successful.			
be bent on the flexible sensors are properly aminated structure.	Inspection successful.			
are securely glued to and do not show cell substrate, to the the interconnectors	Damages were reported on cells after bending and packing.			
tubes have good th the pneumatic lo not show any sign uts or perforation) on	Inspection successful.			
nanagement system, and gas-inflation e interfaced.	Inspection successful.			

$M \Delta \Delta N \Delta \\ \equiv L \equiv C T R C$

BREADBOARD TESTING

1

.

BREADBOARD TESTING

DSA-PV: Test plan

Name	Description	Environment	Pass/Fail criteria
TVAC Cold	The test is checked-in with Sensors Functional and PV functional tests.	TVAC (-60°C)	•The breadboard passed a Phys Inspection, PV Functional and
TVAC Hot	AC Hot The breadboard is tested in TVAC at the specified temperature (TRP of set temperature ±5°C). The dwell time is set to 1 hour. Temperature ramp at ≤2°C/min. After, Physical Inspection is performed as well as Sensors Functional and PV Functional tests in laboratory environment.	TVAC (+120°C)	 Functional tests before testin The temperature profile is followith respect to set temperature and dwell time. The sensors function with record performance and accuracy dutest. The breadboard passed a Physical Science and Science and
TVAC Cycling	The test is checked-in with Sensors Functional and PV Functional tests. The breadboard is tested in TVAC at the specified temperature following a cycle between minimum and maximum temperature (TRP of set temperature ±5°C). The dwell time is set to 1 hour. Temperature ramp at ≤2°C/min. The test is performed for 4 cycles. After, Physical Inspection is performed as well as Sensors Functional and PV Functional tests in laboratory environment.	TVAC (-60°C÷ 120°C)	Inspection, PV Functional and Functional tests before testing •The performance of the sensor same of those recorded before TVAC testing, within uncertain precision.

sical Sensors owed re, TRP

uired ring the

sical Sensors rs is the e the nty of

BREADBOARD TESTING

DSA-PV: testing setup

Confidential All rights reserved Maana Electric SA 2024

Testing was performed at external service provider Lunar Outpost LU. TVAC set-up with the DSA-PV demonstrator.

- a) The DSA-PV integrated on a thermal plate.
- b) Thermal filler (Sigraflex® graphize foil) which was placed between the two thermal plates.
- c) Flange with the KF50 feedthrough.
- The DSA-PV integrated on d) thermal plate with attached thermocouples.
- The whole set-up covered with e) MLI.

BREADBOARD TESTING

DSA-PV: Tests results

Pass/Fail criteria

The breadboard Inspection, PV Sensors Functio testing.

The temperature with respect to se and dwell time.

The sensors fund performance and the test.

The breadboard Inspection, ΡV Sensors Functio testing.

The performance same of those re TVAC testing, wi precision.

Status	after	testing
--------	-------	---------

passed a Physical Functional and onal tests before	All tests were successfully performed.
profile is followed et temperature, TRP	Temperature profiles according to the test plan. Slight deviation of pressure (~10 ⁻⁴ mbar instead of 10 ⁻⁵ mbar) during TVAC hot and TVAC cold is considered a minor deviation.
ction with required d accuracy during	Real-time data taken during testing revealed expected behavior. Drift of the resistance values was observed during TVAC hot in one of the temperature sensors, while it was very minor in the others.
passed a Physical Functional and onal tests after	All tests were successfully performed.
of the sensors is the ecorded before the thin uncertainty of	Temperature and strain sensors give very similar resistance and voltage reading before and after the tests. The exception is one of the temperature sensors, which shows a resistance drift during first TVAC hot test.

BREADBOARD TESTING

DSA-M: Test plan

Name	Description	Environment	Pass/Fail criteria
Deployment Functional	The test is checked-in with Sensors Functional and PV functional tests. The DSA-M is integrated on the CubeSat structure. A Functional test is performed as in "Sensors Functional" while the DSA-M is in being deployed from the CubeSat structure. The configuration is held until equilibrium configuration is reached. After, Physical Inspection is performed as well as Sensors Functional and PV Functional tests in laboratory environment.	Laboratory	 The temperature sensors delivinformation about the baselingenvironment. The sensors can read with required accuracy the value of baseline environment. The strain sensors can uniquelidentify folded vs. stowed configurations. Check-out inspection and test not highlight any difference in sensors' status before and after execution of the Functional test. Check-out inspection does not highlight any degradation of the FPC and inflation mechanism.

BREADBOARD TESTING

DSA-M: Test plan

Name	Description	Environ.	Pass/Fail criteria
Random Vibrations	The test is checked-in with Sensors Functional and PV	Single-axis run. vibrations	• The temperature sensors delivered information about the baseline
Sine load	functional tests. The DSA-M is integrated on the CubeSat structure which is then mounted on the dispenser mock-up (mounted on the shaker) simulating the mechanical interface with the launcher. The test is performed operating the shaker on the desired axis. After, Physical Inspection is performed as well as Sensors Functional and PV Functional tests in laboratory environment.	Single-axis sine load	 environment. The sensors can read with required accuracy the value of baseline environment. The strain sensors can uniquely identify the vibratory environment vs. static folded of stowed configurations. Check-out inspection and tests not highlight any difference in sensors' status before and after execution of the Functional tests Check-out inspection does not highlight any degradation of the PV assembly, of the FPC and inflation mechanism.

DSA-M: Tests setup

Deployment test

Setup of deployment test: the DSA-M mounted in stowed configuration (top-left), a highlight of the data interface of the DSA-M (bottom-left), the DSA-M released from stowed configuration (top-right) and the DSA-M deployed with inflation

Random and sine vibration

Setup of x-axis vibratory test od DSA-M: the mechanical interface (left), the DSA-M mounted (center), the accelerometer (right)

BREADBOARD TESTING

$M \Delta \Delta N \Delta$ ELECTR)C

DSA-M: Deployment test

Strain sensors reading during deployment test. Different colors denote different stages of deployment: "pressed", "released" and "inflated".

eria	Status after testing
ture sensors deliver about the baseline	Test successful.
can read with required value of the baseline	Temperature sensors showed only minor drift of the resistance values.
nsors can uniquely ed vs. stowed ns.	Test successful.
spection and tests do any difference in the us before and after the Functional test.	Inspection successful.
spection does not degradation of the , of the FPC and chanism.	Inspection successful. Pre-existing damage did not propagate. Comparison between pre- and post- test PV functional confirms that the deployment did not degrade the performance of the panel.

BREADBOARD TESTING

$M \Delta \Delta N \Delta$ ELECTR)C

DSA-M: Random and sine vibrations tests

Pass/Fail criter

The temperatu information ab environment.

The sensors car accuracy the va environment.

The strain sens identify the vib vs. static folded configurations.

Check-out insp not highlight a sensors' status execution of th

Check-out insp highlight any d assembly, of th mechanism.

Readings of the strain sensors during random vibrations test on the x (top), y (center) and z (bottom) axes. Grey area highlights the time Contrations.

All rights reserved Maana Electric SA 2024

ia	Status after testing
re sensors deliver out the baseline	Test successful.
n read with required alue of the baseline	Test successful.
ors can uniquely oratory environment d or stowed	Both strain sensors #3 and #4 identify the vibratory environment in both x and z directions. Instead, strain sensor #2 identifies the environment for test in x direction, while sensor #1 is not able to distinguish the environment from static reading. It must also be remarked that no sensor was able to identify vibrations in the y direction.
ection and tests do ny difference in the before and after e Functional test.	Visual inspection successful. The sine tests executed before and after the random vibration tests do not highlight any sensible difference in sine response,.
ection does not legradation of the PV le FPC and inflation	Visual inspection successful. Pre- existing cracks did not propagate during the test. The sine tests performed before and after each random vibration test are congruent for all three axis.

$\begin{array}{c} M \Delta \Delta N \Delta \\ \Xi L \Xi C T R \end{array}$

EUTURE DEVELOPMENTS

FUTURE DEVELOPMENTS

Product applicability to space missions

Conventional applications

Deployable solar array of several reference missions: ISS' SAW (top left), UltraFlex (top center), ROSA (top-right), iROSA deployed in front of SAW (bottom left) Eurostar Neo (bottom center) and SLIM (bottom right).

Solar arrays developed in the frame of the VSAT project: Honeybee Robotics' LAMPS (left), Lockheed Martin's Multi-mission Modular (MM) Solar Array (center-left), Astrobotics' VSAT (center-right). The 50kW scaled-up VSAT-XL by Astrobotics is shown on the right.

Lunar-surface segment

FUTURE DEVELOPMENTS

$\begin{array}{c} M \Delta \Delta N \Delta \\ \Xi L \Xi C T R \end{array}$

Development roadmap

Future development will include technical improvement of array (switch to thin and flexible PV cells encapsulated in polymeric films) and sensors' manufacturing (e.g. automatization of manual operations and switch to light annealing) and sensors' performance (e.g. eliminating resistance drift and temperature sensitivity of strain sensors).

Diagram of the preliminary roadmap for FLEX products line

$M \Delta \Delta N \Delta \\ \equiv L \equiv C T R C$

LET'S TOGETHER POWER HUMAN AMBITION BY PRODUCING ENERGY ANYWHERE

Confidential All rights reserved Maana Electric SA 2024 Joost van Oorschot Founder & CEO joost@maanaelectric.com +352 691 33 05 16

$M \Delta \Delta N \Delta \\ \equiv L \equiv C T R C$

BACK-UP SLIDES

TARGET TESTING CONDITIONS

0=	GE CF1: To monitor array temperature		Sine Load	Band [Hz]	Amplitude [g]	
JIIE			Longitudinal	2÷50	1.0	
\bigcirc				50÷100	0.9	
			Lateral	2÷25	0.8	
			25÷100	0.6		
	CF2: To monitor array strain field		Relevant launcher environment for sine loads			
			Frequency [Hz]	PSD [g ² /Hz]	
	CE3. To provide	structural unity	20		0.0044	
	CI S. TO PIOVICE Structural unity		100		0.0044	
			300	300		
			700) 0.01		
Property	Value	Unit	800		0.03	
Pressure	10-5	mbar	925		0.03	
Temperature (hot) +120 °C		°C	2000		0.00644	
Temperature (cold)-60°C		GRM		5.13		

Relevant thermal vacuum environment

Relevant launcher environment for random vibrations

Confidential

All rights reserved Maana Electric SA 2024

METHODS	LEVELS					STAGE				
Inspection Test	Equipment (sensors) Breadboard (PV/M)					Breadboard (TRL5)				
REQUIREMENT CATEGORY	SENSORS			DSA-PV			DSA-M			
	CF1	CF2	CF3	CF1	CF2	CF3	CF1	CF2	CF3	
Functional performance	I,T	I,T	N/A	I,T	I,T	I,T	I,T	I,T	I,T	
External Interfaces	I,T	I,T	N/A	I,T	I,T	I,T	I,T	I,T	I,T	
<u>Mechanical testing</u>										
Sine load	N/A	N/A	N/A	N/A	N/A	N/A	Т	Т	Т	
Random vibration	N/A	N/A	N/A	N/A	N/A	N/A	Т	Т	Т	
<u>Thermal testing</u>										
Thermal vacuum (hot)	Т	Т	N/A	Т	Т	Т	N/A	N/A	N/A	
Thermal vacuum (cold)	Т	Т	N/A	Т	Т	Т	N/A	N/A	N/A	
Thermal vacuum (cycling)	Т	Т	N/A	Т	Т	Т	N/A	N/A	N/A	

Confidential

All rights reserved Maana Electric SA 2024