Al Supported NDI Methods for Ceramic Components ESA contract no. 4000141359/22/NL/RA/cb Simon Pirkelmann*, Gerhard Seifert, Fraunhofer HTL Final Review at ESTEC (Noordwijk), 11.07.2024

Project goal

- Develop X-Ray Computed Tomography towards a reasonably fast and reliable non-destructive testing (NDT) technique by combining it with ...
 - appropriate artificial intelligence (AI) algorithms, and
 - Finite Element (FE) analyses of the stress fields under application conditions
- Develop an algorithm for automatized control of the CT inspection process including autonomous identification and scanning of the critical regions to be scanned with high CT resolution
- The technology to be developed shall be suitable for all space-relevant ceramic materials and transferable to material testing in general.

Summary of performed works

- Development of image segmentation for ceramic CT images (WP1 + WP2)
 - Preparation of training data set based on data from previous project
 - Training and validation of the model
- Selection of demonstrator part (WP3)
 - Lower-end fitting part provided by Thales
 - Execution of CT scans at multiple resolution scales
 - Finite element (FE) mechanical simulations of part under application conditions
- Development of adaptive CT scanning strategy (WP3)
 - Algorithm for assessment of defects in combination with FE data
 - Iterative refinement of scanning resolutions at selected regions of interest

Revision: Image segmentation algorithm for ceramic CT images (WP1 + WP2)

- Preparation of training data set based on existing data from previous project
 - Utilization of CT scans of Si₃N₄ samples
 - Generation of training data from human-labeled defect locations
- Training and validation of the convolutional neural network for 3D segmentation of defects
 - Implementation based on (open source) nnUNet framework
 - Ability of the model to correctly label background, matrix and pores / regions of inhomogeneity
 - Evaluation using additional scans not used during training
 - Delivery of algorithm as Python package (TN3)

WP3: Selection of demonstrator part

- Si₃N₄ lower-end fitting part of a satellite was provided by Thales Alenia Space (TAS)
 - 3D geometry file and report of mechanical simulations
 - \rightarrow Used for 3D mechanical simulations at HTL
 - Physical component
 - → Used to demonstrate capabilities of the automated evaluation procedure

FE simulations of demonstrator part

- FE simulations of demonstrator part under operating conditions have been carried out (based on supplementary information provided by TAS)
- Boundary conditions:
 - Tensile:
 - Application of unit force of 1000 N along the central axis of the part
 - Bending:
 - Application of unit force of 1000 N orthogonal to central axis
- Resulting spatial distribution of stresses within the material serves as input for adaptive analysis

CT scans of demonstrator part

- CT scans of demonstrator part at different resolution scales have been carried out
- Variation of resolution between 87 and 10 microns

Scan ID	Scan type	Resolution	Voxels	Scan volume [cm³]
0	Full part, low-res	0.08687 mm =	1999x199	7900
		87 µm	9x3016	
1	Upper section, mid-	0.03682 mm =	1999x199	650
	res	37 microns	9x 3261	
2	Upper section, high-	0.01815 = 18	1999x199	41
	res	microns	9x1747	
3	Upper section,	0.01022 mm =	3890x389	24
	very high-res	10 microns	0x1492	

- Scanning time for scans 0 2: approx. 90 minutes each
- Scanning time for scan 3: approx. 180 minutes
- Scanning of full part at highest resolution scale would take several days worth of scanning time → not feasible

Previews of CT scans of demonstrator part

Defect analysis based on CT data

- Close-up reveals large number of inhomogeneities within the material (visible only at highest resolution scale)
- Defect segmentation algorithm was applied to the scanned image
- The algorithm was able to identify a number of pores in the image (including information about location, size, and shape)

Adaptive CT scanning procedure

 Aim: develop a methodology for optimized scanning of complex ceramic parts

Idea:

- Start with coarse scan of the part
- Combine information from FE analysis and defect locations at low-resolution
- Refine scanning resolution in selected regions-ofinterest (ROI) based on local critical defect size
- \rightarrow Could permit the presence of defects in regions of the part where low stresses are expected

Defect assessment routine

Inputs:

- K_{IC}: fracture toughness of material
- σ_f : tensile strength of material
- σ_{FE} , σ_{FE}^{max} : FE local stress distribution, maximum local stress from FE
- f: safety factor (≥ 1)
- 1. Calculate the global critical crack length of the material according to $a_{glob} = \frac{1}{\pi} \left(\frac{K_{IC}}{\sigma_f} \right)^2$.
- 2. Run segmentation algorithm for initial scan and mark all defects detected by the segmentation algorithm as *possibly critical*.
- **3.** For each defect voxel region, perform the following steps:
 - a. Determine equivalent defect size *a*.
 - b. If $a < a_{glob}$, mark the defect as *not critical*.
 - c. Otherwise, compute the local stress σ_{loc} at the defect using the finite element simulation result σ_{FE} of the part under application load.
 - d. Compute a local critical crack length by $a_{loc} = \frac{1}{\pi} \left(\frac{K_{IC}}{\sigma_{loc} f} \right)^2$.
 - e. If $a < a_{loc}$, mark the defect as *not critical*.
- 4. Mark all remaining defects as critical \rightarrow re-investigate at higher resolution scale.

Demonstration of defect assessment routine

- Defect assessment is demonstrated for highest-resolution CT scan (10 microns) of upper section of the demonstrator part
- Image segmentation algorithm successfully identifies regions of inhomogeneities

mm]

- Mapping of FE stresses from bending test to defect locations and assessment using Griffith's criterion
- With the given material parameters, external load and safety factor of f = 1 all defects are assessed as uncritical

Defects identified by segmentation algorithm Evaluated defects (green = uncritical)

Algorithm for adaptive scanning procedure

Inputs:

- K_{IC}: fracture toughness of material
- σ_f : tensile strength of material
- σ_{FE} , σ_{FE}^{max} : FE local stress distribution, maximum local stress from FE
- f: safety factor (> 1)
- 1. Determine resolution for initial scan W_0 based on critical defect size from Griffith's criterion:

$$r_0 = \frac{1}{\pi} \left(\frac{K_{IC}}{\sigma_{FE}^{max} f} \right)^2$$

- 2. Perform image segmentation and evaluate defects using defect assessment routine (see previous slide).
- 3. If any critical defects remain, set next resolution $r_i = \frac{r_{i-1}}{2}$
- 4. Generate scanner configuration files for taking new images W_i^j covering the locations of all critical defects
- 5. Resume adaptive algorithm at 2.
- 6. Terminate algorithm if:
 - No critical defects remain or
 - any defects have been confirmed as critical at two subsequent iterations or
 - minimum resolution $r_n < a_{glob}$ (global critical defect size) has been reached.

Demonstration of adaptive algorithm

- Working principle of the adaptive algorithm is demonstrated using hypothetical pore locations
- Initial scan of full part at resolution of 695 microns
- Application of defect segmentation algorithm to identify defect locations
- Evaluation of detected defects using assessment procedure
- Generation of scanner configuration for higherresolution scans parts of the image with critical defects
- Re-scanning of selected part \rightarrow scan images W_1^1, W_1^2, W_1^3

Initial scan W_0

Defect assessment for W_0

Demonstration of adaptive algorithm

- Second scan of central region of the part at halfed resolution of 347 microns
- Application of defect segmentation algorithm to identify defect locations
- Evaluation of detected defects using assessment procedure
- In this case, the algorithm would terminate, because a a defect is marked as critical at two subsequent iterations

Summary and conclusion

- An AI based method for defect detection and segmentation in CT images of ceramic components has been developed
- Information about detected defects is combined with data from FE analysis to enable assessment of defect under application conditions
- Defect assessment procedure is applied in adaptive fashion to enable iterative refinement of CT scanning resolution and reduce total scanning time
- Developed methodologies are demonstrated using a real Si₃N₄ ceramic part

Summary and conclusion

An AI based method for defect detection and segmentation in CT images of ceramic components has been developed

Developed methodologies are demonstrated using a real Si₃N₄ ceramic part

