Final Presentation

PROTECT AND ALLOW EXCHANGE OF MANUFACTURING DATA

PETER HAGSTROM (NEXOVA), NATHANAEL WYBOU (LABORELEC) & MICHAEL RAISON (SABCA)

Background

Modern manufacturing, assembly, integration and test (MAIT) for spacecraft manufacturing is increasingly more reliant on digitalization

- Industry 4.0
- Advanced manufacturing methods (e.g., additive manufacturing, cloud and distributed manufacturing, ...)

Data and physical realms more exchangeable and in the focal point of threat actors

MAIT – Industry

Specifications and Design to Cost Mechanical Manufacturing Electronic Manufacturing Surface Treatment Software Assembly Aerostructure equipping Testing and Qualification Maintenance and Upgrade 5/31/2024

Nexov

Selection Case

The grid fins with outsourcing of the additive manufacturing part as an example of design data to be exchanged with an external company.
In this story, the Main Engine Bay / Grid Fins were produced internally at the headquarters (M), the assembly was done at a subsidiary (A) and the 3D Printing had been outsourced. The separation from the design/modelling calculation model and results, the parameters definition and the final configuration mapping showed that the zero-trust by the technology was not necessary to implement in the meaning that the data was not usable for other purpose.

- Main Engine Bay industrialization and manufacturing: Build-to-print with most of the parts made on numerical machines and some composite parts in another site of the company (as an example of data transfer to another in-house division/other building and other site at 70 km)
- Thrust Vector Actuator System development and manufacturing: design and built to spec with close cooperation with a supplier for the health monitoring system (as an example of internal and external data transfer).
- Surface treatment project on which the additive manufacturing was based on a matrix of points instead of a complete data lake.

Selection Case cont.

5 Distinct use cases

- 3D printing Processes
- Introduction of ERP
- Collaboration between plants
- Health Monitoring Process
- Additive Layer
- **•***Focus on protection of data-items*

	Primary Assets		Supporting Assets
1	Product lifecycle Management Data	1	ERP Software
2	Project management, Contractual and Tendering data	2	MAIT Collaboration Platform
3	Crisis management Data	3	Internal Servers
4	Quality Assurance, Monitoring and Operational data	4	External Servers
5	Health, Safety and Environment	5	Workstations
6	Supporting Services Data	6	Removable Media
7	Personal Data	7	Scada Systems

Security Problem

Identify the most feared events

- Identify how malicious actors (Risk Origins) could reach their objective (Target Objective)
- $\circ~$ Use of EBIOS RM

16 critical risks highlighted

- Strategic Scenarios (high level path of attack) has been identified for each risk
- Use of MITRE ATT&CK

F	RO/TO pair						
Risk origin Target objective		Short name	Name				
		R1	Direct attack from a state related to sabotage PLM data for sabotage purposes				
	TO1 - Sabotage for destabilisation purposes (during a complicated political context)	R2	Attack through an ∏ provider from a state-related to sabotage PLM data for destabilisation purposes				
RO1 - State-		R3	Direct attack from a state-related to sabotage QA QC monitoring and operational data				
related		R4	Indirect attack from a state-related using transporters, logistics and packaging stakeholders to sabotage QA QC monitoring and operational data for destabilisation purposes				
		R5	Attack through an OT provider to sabotage QA QC m onitoring and operational data for destabilisation purposes				
RO2 -	02 - TO2 - Theft and		Direct attack from specialised outfits to still and exploit PLM datafor lucrative purposes				
Specialised outfits	exploitation of data for lucrative purposes	R7	Indirect attack from specialised outfits using a European private organisation to still and exploit PLM data for lucrative purposes				
		R8	Attack through an IT provider to still and exploit PLM data for lucrative purposes				
	TO3 - Theft and exploitation of data to gain commercial advantages	R9	Direct attack from a competitor to still and exploit project management contractual and tendering data for commercial advantages				
		R10	Indirect attack from a competitor using transporters, logistics and packaging stakeholders to still and exploit project management, contractual and tendering data to gain commercial advantages				
RO4 - Com petitor		R11	Attack through maintenance and cleaning services to still and exploit project management, contractual and tendering data for lucrative purposes				
		R12	Direct attack from a competitor to still and exploit data to gain commercial advantages				
		R13	Indirect attack from a com petitor using transporters, logistics and packaging stakeholders to still and exploit data to gain commercial advantages				
		R14	Attack through tem porary services providers to gain commercial advantages				
RO1 - State-	TO4 - Theft and	R15	Direct attack from a state-related to still and exploit crisis management data for spying purposes				
related	for spying purposes	R16	Attack through security guardians from a state-related to still and exploit crisis management data for spying purposes				

Security Problem – EBIOS RM

EBIOS Risk Manager

- Published by ANSSI, the French cybersecurity agency
- Organized around 5 workshops
 - Scope and security baseline
 - Risk origins
 - Strategic scenarios
 - Operations scenarios
 - Risk treatment
- Focus on intentional attacks

Nexc

https://cyber.gouv.fr/publications/ebios-risk-manager-method

Security Problem – MITRE ATT&CK

MITRE ATT&CK framework

- https://attack.mitre.org/
- Globally-accessible knowledge base of adversary tactics and techniques based on real-world observations
- 3 Matrices
 - Enterprise
 - Mobile
 - ICS

lelow are the ta	ctics and techni	ques representi	ng the MITRE A	TT&CK [®] Matrix f	for ICS.				Version Perce	salink	illor (?	
Initial Access	Execution	Persistence	Privilege Escalation	Evasion 7 techniques	Discovery 5 techniques	Lateral Movement 7 techniques	Collection	Command and Control	Inhibit Response Function	Impair Process Control 5 techniques	Impact	
Drive-by	Autorun image	Hankolat	Explicitation for	Charige	Network	Default	Adversary-in-	Commonly	Activate Finmeare	Brude Force (/0	Damage to	
Contemporation	Change Characterize Mode	Models Program	EncaleTion	Evolutation for	Enumeration	Evening attended	Automated	Connection Prozy	Alarm Terroranner	Mudify . Parameter	Danial of	
acing .	Comment 4 line	thuilde	Hooking	Evasion	Newbwork	Hermote	Collection		Hises Command	Misitale Ferriwate	Control	
Dislation of	Interface	Firmwake		indicator Removal on Mont	satury www.an.Hout mainteng fait. dr Rupoctag sage	historica dad	Dute from Information Repositories	Ittendard Application Layer Protocol	Message		Dental of View	
Remple Services	Execution Through API	institut sugh API Infectice		Manuslading.		Credentials			Block Neporting. Minnade	tpont Reporting Message	Loss of Availability	
External Remote Services	Oraphical lines	System		Rooffit		m Lateral Tool Transfer Program	Data from Local System		Block Senal COM	Unauthorized Command Message	Loss of Control	
stamet.	Interface	Firmware		Spoul Reporting			Detect		Change Crademal		Loss of	
Accessible Device	Historiod	Valid Accounts		Message		Shiffing	sniffing	Dewnload	Openating Mode		Data Destruction	
Remote Services	Controller			System Binary Proay Execution		Fartuda Barvices	UO Image		Denial of Bervice		Loss of	
Replication	Tasking					Valid Appoints	State		Device		Protection	
Removable	Narive APt						Point & Tag		Heatertratestown		LOOK OF SAVETY	
Andra.	seruting						Identification		Manipulate 00 onlage		LOSS OF VIEW	
rogui Matter	Diver Execution						Program Upload		Settings		Currint	
Affactionent							Bereen Gaptura		Rootker		Manpulation of	
Supply Chars							Briffing		Bervice Stop		Vipse.	
Transant Cubas									System Fornware		Operational	

Image source: https://attack.mitre.org/matrices/ics/

Security Trends

Guidelines

Risk-based approach to security

Information security and classification

Security Requirement Statement

Define Roles and Responsibilities

Monitoring

Awareness and continued Training

ATT&CK°

Best Practices

Defence-In-Depth

- Multiple layers of security controls
- Network segmentation
- Access Control
- Encryption
- Detection Systems

Supply Chain Security

- Assess and establish agreements
- Secure development lifecycle practices
- Supply chain monitoring

Training

- Security Awareness Training
- Incident response training
- Compliance training

Incident Response

- Development and testing of incident response plans
- Policies

NIST SP 800-53 – Security and privacy Controls

NIST SP 800-82 – Guide to OT Security

National regulation (NIS-2, CCB – Cyber Fundamentals, ...)

ISO27k1, ISA/IEC 62443...

Guidelines Conclusions

Available security frameworks, controls and guidelines are already present

Many controls can be implemented using of-the-shelve technical solutions (encryption, account management, ..)

A risk-based approach and cyber-hygiene measures are critical

Distributed and Cloud-Manufacturing – New Security Challenges

- Automatic Request For Quotation
- Side-channel attacks
- $\circ~$ Protection of IPR
- Unfair competition

New Security Measures

Study application of 3 new cryptographic technologies:

- o Fully-Homomorphic Encryption
- o Secure Multi-party Computation
- o Zero-knowledge protocols

Three identified use-cases

- Finite-element calculation in untrusted environment
- ZKP for testing document properties
- Support for secure market-place using combination of MPC and ZKP

Fully Homomorphic Encryption

New Security Measures - Conclusions

Finite-element calculation in unsecure environment

- Complex computation
- Overhead in the FHE model renders it meaningless

ZKP for testing document properties

- Not practical, document is anyway available
- Selective disclosure using other means (encryption)

Support for secure marketplace using combination of MPC and ZKP

• Potential to use for more secure, however, needs wide adoption

Finite Element Calculation example

Awareness training / Security Demonstration

Demonstrator to simulate:

- Enterprise infrastructure
- MAIT Process
- Attacker Process
- Control Measures

Lightweight and fast

Strong Security Focus

Building on Operational Scenarios

Architecture

Physically based on a workstation laptop

- Scenario bridge-networking for HW-in loop
- AV and operator interface

Reserved dynamic resources provided through Terraform using containerization and virtualization

Web-application managing the process-flow and providing the operator the user-interface

Nex

Overview of DC1 - Printing between Company A and B

An engineering company (Company A) creates a design for a mechanical part, the design process involves rigorous testing and revisions to ensure an optimal performance.

The design is manufactured by a second company (Company B)

The production of the part needs to be secure to ensure that the design is not tampered with and that the finalized parts mechanical properties are as specified

Overview of DC1 -Printing between Company A and B

Overview of the information flow

Nexc

Production of PLM-data (initiate design)

Company A produce the data using specialized and advanced CAD software to create a 3D model.

The design involves rigorous testing and revisions to ensure that the part will have the correct mechanical properties.

It is important that the models are not tampered with since it can have both an effect on production costs as well as potentially safety risks.

STL

Processing of Data (slice)

Company B receives the file and inspects it, after the file will be sliced according to the specification

Slicing is the process of transforming a 3D model (e.g., STL file) into a GCODE file that can be handled by an additive manufacturing process (e.g., 3D-printing)

Ensure that the properties of the printed object are as specified, for instance infill rate

Slicing is configured correctly for materials (filament dimensions, temperature ..), machines (extruder width, printing speed ..) etc.

Any modification to the Gcode would lead to altered performance

Demonstration

DC1

Demonstration

Conclusions

Scenarios needs to be tailored for the real-world cases as implemented in the industry

The simulation is applicable to other domains as well, primarily within wider manufacturing but as soon as we see processes, complex supply-chains and cyber issues there is a potential to use the PAEMD demonstrator.

Demonstrator seems most useable in training and awareness campaigns, this due to the technical nature of the demos.

The use of containers means that asset management is a lot easier than traditional virtualization.

Nexovat engie

Limitations:

Networking is simplistic and various non-TCP/IP (canbus, i2c ...) connectivity is not natively supported, we need edge-computer providing these interfaces

Exploitation of vulnerabilities are limited, due to use of containers

Key Take-aways

The security is becoming more challenging due to digitalization, more heterogenous architecture and an increasingly complex supply-chain in the manufacturing sector

Manufacturing is in the focal point of adversaries; we see many directed attacks against ICT and OT we don't think this will change without good awareness and directed resources.

Spacecraft manufacturing is essential to safekeep European market and strategic position, why security needs to be on agendas and strategies.

Standard, controls and security practices are available for most cases, we need to ensure that the awareness and understanding of risk within the industry to ensure that sufficient investments are made into security

QA

Thank you!

