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Abstract—This document provides a high-level overview
of the work carried out under the ESA Contract No.
4000141763/23/NL/GLC/cb. It reports on a new software pro-
totype for designing and optimizing antenna systems using a
Bayesian Optimization (BO) framework integrated into TICRA
Tools. The prototype efficiently handles complex electromagnetic
(EM) design problems by leveraging meta-modeling and ad-
vanced acquisition functions tailored for multi-output Gaussian
Processes (MOGPs). The framework enables the automation of
data collection, meta-model construction, and optimization, sig-
nificantly reducing the computational burden of evaluating large-
scale antenna designs. Results demonstrate that the prototype
can offer substantial improvements in robustness, efficiency and
accuracy over traditional methods, providing antenna engineers
with a powerful tool for optimizing designs with thousands of
residuals, paving the way for advanced design tasks such as
uncertainty quantification and multi-objective optimization.

Index Terms—Machine learning, meta-modelling, space appli-
cations, antenna design software

I. INTRODUCTION

Modern antenna design for space applications, such as
telecommunications or Earth observation, requires high-
precision fine-tuning of both geometric and material param-
eters to meet stringent performance specifications. This ne-
cessity becomes even more pronounced as the design process
advances, making it mission-critical to achieve absolutely
optimal performance. Sub-optimal or non-robust designs can
be extremely costly in space applications, where resources
are scarce and failures can have significant consequences.
As such, ensuring robust and efficient antenna designs is
essential to avoid mission failures and maximize the return on
investment. In many cases, the fine-tuning task can effectively
be addressed using advanced simulation-based optimisation
software. However, general-purpose optimization algorithms,
including gradient-based methods [1] and meta-heuristics [2],
[3], typically lack robustness and rely on a large number of
computationally expensive electromagnetic (EM) simulations
to identify the optimal design parameters. These methods often
become computationally prohibitive for many practical appli-
cations, particularly in the final design stages, when full-wave
simulations are required to capture the complex interactions
of the antenna with itself and its environment. In such cases,
the evaluation of a single design may take hours, making
design optimization intractable within project deadlines. To
address the challenges of conventional optimization methods,
this work investigates data-driven meta-modeling for black-
box, compute-intensive antenna design tasks. In this context,

meta-modeling refers to machine-learning (ML)-based approx-
imations to full-scale EM simulators, built from carefully
selected simulation data. The key benefit is that meta-models
can in many cases effectively replace true EM simulations
for practical purposes, offering significantly faster evaluations
while retaining sufficient accuracy [4]. The primary target of
the proposed framework is computationally intensive antenna
design tasks, where conventional methods typically fall short.
The targeted tasks are characterized by one or more of the
following criteria:

• Expensive, black-box objective functions that, e.g., rely
on repeated full-wave simulations.

• First – and Second-Order Derivatives are unavailable and
expensive to approximate.

• Complex optimisation landscapes with multiple local
optima.

• Good starting guesses for the design parameters are
uncertain or not known.

• Design tasks involving many frequencies and design
criteria.

To allow antenna engineers to address such design tasks more
efficiently, the proposed framework uses Bayesian optimisa-
tion (BO), which is particularly well-suited for optimising
expensive black-box functions using low volume data [4]–
[6]. BO leverages a probabilistic meta-model, in this case a
Gaussian Process (GP) [7], to guide the search for the global
optimum. This approach is advantageous because it is sample-
efficient, gradient-free and yet efficient in navigating the search
space to find high-performing solutions with fewer evaluations.

Overall, the proposed meta-modelling framework offers a
robust alternative to conventional optimization methods. It
eliminates the need for gradient information, making it well-
suited for problems with expensive objective functions and
uncertain initial conditions. Additionally, by employing a BO
framework, the prototype provides a more efficient approach
than global search methods like genetic algorithms or particle
swarm optimization, offering faster convergence and reduced
computational costs.

To showcase the framework’s potential, this paper considers
a multi-criteria design problem, where the goal is to optimally
balance the conflicting objectives of gain and return loss for a
dual reflector system consisting of two rotationally symmetric
reflectors. This serves as a representative example of an
antenna design task, that would be both time-consuming and
computational expensive using traditional methods.



The report is structured as follows. Section II provides back-
ground on meta-modelling and Bayesian Optimisation. Section
III gives a high-level introduction to the Meta-modelling
framework and its key components. The multi-criteria case
study is presented in Section IV, while Section V draws overall
conclusions and discusses perspectives.

II. BACKGROUND

The primary objective of the meta-modelling framework is
to address large-scale, black-box optimization problems of the
form:

minimize h(r(x)) (1a)

subject to l ⪯ x ⪯ u, (1b)

where x ∈ Rn are the design variables, r : Rn → Rm is a
vector function that produces m residuals for a given design,
and h : Rm → R is a function that maps the vector of residuals
to a scalar objective function value.

For each design variable, lower and upper bounds are
specified in (1b). The vector residual function r(x) is defined
as:

ri(x) = wi(γi − fi(x)), (2)

where wi is the weight of the i’th residual, γi is the goal for the
i’th residual, and fi : Rn → R computes the i’th performance
of interest.

While many optimization problems (1) can be solved with
conventional gradient-based or global search algorithms, chal-
lenges arise when dealing with expensive, black-box objective
functions, as these rely on repeated full-wave simulations
to compute the residuals. In such cases, first- and second-
order derivatives may be unavailable or costly to approximate,
and the optimization landscape might have multiple local
optima, with uncertain or unknown starting points. Moreover,
if changes in objective function h, weights (w), or goals
(γ) are needed, the optimization must be restarted, wasting
expensive computations of the residuals r(x). This is often the
case, when multiple conflicting objectives must be balanced.
Here different weights (w), or goals (γ) must be adjusted to
represent different trade-offs.

A. Meta-Modelling

Given an expensive black-box function F : X ⊂ Ri →
Ro (e.g., an EM simulator), the goal of meta-modelling is
to construct a fast, cheap-to-evaluate approximation G(x) ≈
F (x), while ensuring sufficient accuracy within a subset of
the design space X :

max
x∈X

∥F (x)−G(x)∥ ≤ ϵ, given the tolerance ϵ > 0. (3)

Typically, G is a data-driven model built from an initial
training set D = {(xi, yi) | i = 1, ..., N}, where F (xi) = yi
are the observations for design sites X = {xi}Ni=1, and
xi ∈ Ri. Once trained and validated, the meta-model G can
be used in place of F , allowing faster evaluations, especially
useful in optimization - and risk/uncertainty quantification
tasks that would otherwise be computationally prohibitive or

practically infeasible, due to the need for a large number of
full simulations.

B. Gaussian Processes

There are numerous methods for constructing data-driven
meta-models, such as neural networks, reduced-order models,
polynomial chaos expansions, and support vector regressors
[8]. This activity specifically uses Gaussian Processes (GPs)
[7]. This choice is driven by the well-established use of
GPs in practical applications, including antenna design, and
its ability to build approximations for highly nonlinear engi-
neering simulations, especially in sparse data regimes [4]. A
Gaussian Process (GP) defines a distribution over functions,
where the distribution of function values at a finite set of points
{x1, x2, ..., xN} follows a multivariate Gaussian distribution
on the corresponding function values {y1, y2, ..., yN}. The GP
model is given by:

G(x) = µ(x;β) + Z(x; θ), Z ∼ N (0,K), (4)

where µ(x;β) is the mean function, often assumed to be linear,
and Z(x; θ) is a zero-mean GP with covariance matrix K
parameterized by hyperparameters θ. The covariance between
two points xi and xj is:

K(xi, xj | θ) = Cov(Z(xi), Z(xj)). (5)

Given training data D = {(xi, yi)}Ni=1, the GP provides a
predictive mean µD(x

∗) and variance σ2
D(x

∗) for any new
input x∗, derived as:

µD(x
∗) = k(x∗)⊤K−1y, (6)

σ2
D(x

∗) = K(x∗, x∗)− k(x∗)⊤K−1k(x∗), (7)

where k(x∗) is the covariance vector between x∗ and the
training points, and y is the vector of observed outputs. The
variance σ2

D(x
∗) is an uncertainty estimate, which can be used

to express confidence in predictions and as a means to guide
further sampling.

C. Bayesian Optimization

BO collects the properties of GPs into a framework for
robust, sample-efficient, black-box optimisation, specifically
targeting problems of the general type (1). The BO process
iteratively refines the GP meta-model, balancing exploration
of high-uncertainty regions and exploitation of promising
designs. The framework is illustrated in Figure 1, where the
key steps include:

1) Initial Sampling: An initial set of sample points is gen-
erated, often using low-discrepancy sampling methods,
to cover the design space.

2) Meta-Model Construction: A GP is trained on the
initial data, modeling both the objective function and
the uncertainty in its predictions.

3) Active Learning: Active learning uses the meta-model
to identify the most informative points in the design
space to sample next. An acquisition function, which
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Fig. 1. Bayesian Optimisation workflow

balances exploration and exploitation, guides this selec-
tion using the predictions and uncertainty estimates of
the meta-model.

4) Iterative Refinement: The selected design is evaluated
using the true function, and the GP is updated with the
new data. This process repeats until convergence or a
stopping criterion (e.g., computational budget) is met.

Overall, BO allows for efficient exploration and exploitation of
complex design spaces with minimal computational resources,
making it a valuable tool for addressing computational expen-
sive antenna designs tasks.

III. THE META-MODELLING FRAMEWORK

The following chapter provides a high-level overview of the
essential components required to develop an end-to-end BO
framework integrated into TICRA Tools. The framework is
driven by the need to adapt the concept of meta-modelling to
the specific challenges of electromagnetic (EM) design while
making it accessible to antenna engineers without requiring
expertise in machine learning. This chapter outlines the key
methods and design decisions that streamline the processes
of automated data collection, meta-model construction, and
optimization, particularly in complex antenna design tasks
where the number of residuals can reach into the thousands.

A. Multi-Residual Modelling

A key objective of the meta-modelling framework is the
efficient handling of multiple outputs, particularly in large-
scale antenna design tasks where the number of residuals can
grow rapidly. For example, optimizing the cross-polar far-field
magnitude across angular regions and multiple frequencies can
result in hundreds or even thousands of residuals. Addressing
this complexity requires a framework capable of modeling
many outputs simultaneously, while ensuring flexibility and
scalability.

In conventional BO, the focus is on constructing a meta-
model for a scalar objective function h(r(x)), which limits the
reuse of simulation data for different objectives. To overcome

this limitation, the proposed framework models the underlying
output functions fi(x), where:

ri(x) = wi(γi − fi(x)),

for i = 1, . . . ,m, allowing the reuse of data across different
optimization tasks. This approach enables modifications to the
goals γi, weights wi, and other parameters without needing
additional simulations, as these changes do not depend on x.

1) Single-Output Gaussian Processes: One approach for
modeling each residual function fi(x) is to use individual
Gaussian Processes (GPs) for each output. For each fi, a GP
is defined as:

fi(x) ∼ GP(µi(x),Ki(x, x
′)),

where µi(x) is the mean function and Ki(x, x
′) is the

covariance (kernel) function. Given a set of training data
D = {(xi, yi)}Ni=1, the posterior predictive mean and variance
for a new point x∗ are given by:

µi,D(x∗) = ki(x∗)
⊤K−1

i yi, (8)

σ2
i,D(x∗) = Ki(x∗, x∗)− ki(x∗)

⊤K−1
i ki(x∗), (9)

where Ki is the covariance matrix of the training data and
ki(x∗) is the covariance vector between x∗ and the training
points.

While this approach works well for a small number of
outputs, it quickly becomes computationally expensive as the
number of outputs m increases, due to the need to train and
update m separate GP models. The computational complexity
of training each GP model is O(N3), and with m outputs, the
total cost scales as O(N3m).

2) Multi-Output Gaussian Processes and High-Order Gaus-
sian Processes: To address the limitations of single-output
GPs, the proposed framework uses Multi-Output Gaussian
Processes (MOGPs) [9]. Instead of modeling each output
fi(x) independently, MOGPs capture correlations between the
outputs, improving efficiency and accuracy when outputs are
not independent. In this case, the vector of outputs f(x) =
[f1(x), . . . , fm(x)]⊤ is modeled as:

f(x) ∼ GP(µ(x),K(x, x′)),

where K(x, x′) is now a block covariance matrix that captures
both input correlations and correlations between outputs:

K(x, x′) =

K11(x, x
′) · · · K1m(x, x′)

...
. . .

...
Km1(x, x

′) · · · Kmm(x, x′)

 .

Each block Kij(x, x
′) represents the covariance between out-

puts fi and fj at inputs x and x′. This approach is more
efficient when the outputs are correlated, reducing the number
of independent models that need to be trained. However,
standard MOGPs face significant computational challenges,
especially for large-scale problems, as the complexity grows
cubically with the number of outputs m and data points
N . To overcome this bottleneck, the framework employs
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High-Order Gaussian Processes (HOGPs) [10], which extend
MOGPs by organizing the outputs into multi-dimensional
tensors. In HOGPs, the outputs are structured as a tensor
F ∈ Rm1×m2×···×mQ×N , where Q represents the number of
modes (e.g., angles, frequencies), and N is the number of input
points. The covariance structure is modeled using Kronecker
products, significantly reducing the computational complexity:

K = KX ⊗KQ ⊗ · · · ⊗K1,

where KX captures the input correlations and K1, . . . ,KQ

capture the correlations along the tensor modes. This structure
allows the complexity to scale more efficiently as O(N3 +∑Q

i=1 m
3
i ), making HOGPs suitable for large-scale multi-

output problems.
By employing HOGPs, it is ensured that the framework

can handle complex antenna design tasks with thousands of
outputs while maintaining computational efficiency. More-
over, the tensor structure of HOGPs enables better reuse
of simulation data across different tasks, ensuring flexibility
and scalability in optimization, uncertainty quantification, and
multi-objective design.

B. Model Construction

To build an efficient and accurate meta-model for BO,
several crucial decisions need to be made regarding data
collection, the number of initial samples, and model selection.
These aspects are important for minimizing computational
costs while ensuring sufficient coverage of the input space.
This section highlights the selected strategies used in TICRA
Tools to automate these decisions, ensuring that antenna
enginners can benefit form meta-models without requiring ML
expertise.

1) Sampling Plan: The sampling plan determines how the
input space is explored with an initial set of true model
evaluations. Since each evaluation is computationally expen-
sive, the choice of a sampling plan is critical to capture
the model’s behavior efficiently. A variety of strategies were
investigated, including Full Factorial (FF), Latin Hypercube
(LHC), Space-filling LHC (S-LHC), and Quasi Monte Carlo
(QMC) [6]. After comparative studies, the Latin Hypercube
Sampling with Gradient Correction (LHC-GC) was selected as
the default due to its balance between computational efficiency
and space-filling properties. LHC-GC starts with a standard
LHC design and improves space-fillingness through gradient-
based corrections. The space-fillingness is measured using the
Morris-Mitchell criterion [11], which aims to maximize the
minimum distance between points:

Φq(X) =

 m∑
j=1

Jjd
−1
j

1/q

,

where dj are the unique distances between all point pairs in
the set X , and Jj counts how often each distance appears.
Minimizing Φq(X) ensures better space-fillingness, which
reduces redundancy and improves model accuracy. The LHC-
GC method strikes a pragmatic balance by improving the

uniform coverage of the space without the high computational
demands associated with space-filling LHC.

2) Number of Initial Sample Points: Determining the num-
ber of initial sample points is another critical factor, as too
few samples can result in overfitting, while too many can lead
to unnecessary computational cost. The minimum number of
samples Nmin depends on the complexity of the regression
model used in the GP. This minimum can be calculated as
follows:

Nmin =


1 + 1 for constant regression,
(D + 1) + 1 for linear regression,
1
2 (D + 1)(D + 2) + 1 for quadratic regression,

where D is the number of design variables. While this gives
the minimum required samples, additional samples are often
needed to ensure the GP can model deviations from the
regression model effectively. The selected approach follows
a heuristic that adds a buffer to the minimum sample count,
ensuring that the initial meta-model has enough data to capture
the true behavior of the objective function. A linear regression
model is typically paired with N = 2(D+1) samples, while a
quadratic model may use N = 1.25×Nmin, ensuring a balance
between computational cost and accuracy.

3) Model Selection Strategy: Model selection is an auto-
mated process where the goal is to identify the best GP meta-
model based on the initial dataset [12]. Each candidate model
Mk is defined by a combination of mean and kernel functions,
such as:

Mk = GP(µk(θ), Rk(θ)),

where µk(θ) is the mean function (e.g., constant, linear,
quadratic), and Rk(θ) is the kernel function (e.g., RBF,
Matern32, Matern52). The challenge is to automatically select
the best model that fits the dataset.

The process involves a grid search over combinations of
mean and kernel functions and uses hyperparameter optimiza-
tion to fit each model. The selected model is evaluated using
the Akaike Information Criterion (AIC). AIC was found to be
the most robust criterion for smaller initial sample budgets,
as it balances model fit and complexity, penalizing overly
complex models:

AIC(θ) = 2K + NLL(θ),

where K is the number of model parameters. AIC helps avoid
overfitting, making it a reliable choice in TICRA Tools for the
smaller to medium budgets used with BO.

Summary of Design Decisions

The selected strategies ensure that TICRA Tools can build
efficient meta-models for BO by automating the key decisions
involved in sampling and model construction:

• Sampling Plan: LHC-GC was chosen for its superior
space-filling properties and computational efficiency.

• Number of Initial Sample Points: A heuristic-based
approach, with additional buffer points, ensures that the
meta-model has sufficient data for accurate predictions.
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• Model Selection: The AIC criterion provides a robust,
automated approach to selecting the best GP model
for small to medium budgets, preventing overfitting and
ensuring reliable performance.

C. Active Learning - Design of Acquisition Functions

In BO, acquisition functions guide the search for optimal
points by balancing exploration and exploitation, with the goal
of minimizing the number of true function evaluations. The
acquisition function, α(x;D), is maximized to select the most
informative point for sampling:

x∗ = argmax
x∈X

α(x;D),

where D represents the data collected so far. For antenna
design, where optimization involves many correlated residuals,
the choice of acquisition function is critical for efficiency.

1) Default Acquisition Function: The Log-Expected Im-
provement (LogEI) is chosen as the default acquisition func-
tion in TICRA Tools due to its numerical stability and ef-
fectiveness in high-dimensional optimization problems [13].
It improves upon the traditional Expected Improvement (EI)
function by reformulating it in log-space, which prevents
vanishing gradients and enhances the stability of gradient-
based optimization.

The traditional EI measures the expected improvement over
the best-known objective value, f∗:

EI(x) = (µ(x)−f∗)Φ

(
µ(x)− f∗

σ(x)

)
+σ(x)ϕ

(
µ(x)− f∗

σ(x)

)
,

where µ(x) and σ(x) are the mean and standard deviation of
the GP at x, and Φ(·), ϕ(·) are the cumulative and probability
density functions of the standard normal distribution.

LogEI addresses numerical stability by applying a log
transformation:

LogEI(x) = logh

(
µ(x)− f∗

σ(x)

)
+ log(σ(x)),

where logh(·) is a numerically stable implementation that pre-
vents underflow and ensures non-zero gradients, even when the
improvement is small. This allows for reliable optimization,
especially in complex, multi-modal landscapes.

2) Scaling and Stabilizing Acquisition Functions: To ex-
tend acquisition functions for multi-output models, particularly
when residuals are correlated, Monte Carlo-based Expected
Improvement for Composite Functions (EI-CF) is used [14].
EI-CF accounts for the vector-valued nature of residuals and
computes the expected improvement over composite functions:

EI-CFn(x) = En [max (h(r(x))− f∗
n, 0)] ,

where h(r(x)) is a composite objective function of the
residuals r(x), and f∗

n is the best observed value. EI-CF
requires Monte Carlo (MC) simulations for estimation, which
increases computational complexity. To address this increase
in compute, the activity employs the following techniques:

a) Matheron’s Rule for Efficient Sampling: Matheron’s
rule [15] is employed to efficiently sample from the posterior
distribution of MOGPs, reducing the complexity of generating
samples from high-dimensional distributions.

b) Combining LogEI with EI-CF: To further stabilize the
MC-based acquisition functions, LogEI is combined with EI-
CF. This combination ensures that even small improvements
are captured, preventing vanishing gradients, and allowing
robust optimization in high-dimensional landscapes.

IV. CASE STUDY

To showcase the potential of the meta-modelling prototype
as a new means for solving computationally expensive an-
tenna design tasks, this case study addresses the common
challenge in antenna design of balancing conflicting perfor-
mance criteria. Specifically, the study focuses on optimizing
a dual-reflector antenna system consisting of two rotationally
symmetric reflectors, with a main reflector diameter of 1.5 m
and a subreflector diameter of 0.225 m (See Figure 2). The
system operates at 8 GHz and is modeled in CHAMP 3D
[16], providing high accuracy and relatively fast simulation
times, with each full-system simulation taking approximately
1 second on a standard laptop.

The optimization task involves shaping the geometry of
subreflector using eight design variables, where the primary
trade-off to balance is between maximizing gain and mini-
mizing return loss. Traditionally, balancing these conflicting
objectives requires single-objective optimization, where the
engineer manually adjusts goal weights to reflect the relative
importance of each performance criterion. This process is
time-consuming and inefficient, as the engineer must perform
multiple optimization runs to explore the various trade-offs.
Additionally, choosing appropriate weights is non-trivial, as
the performance criteria often differ in scale and units, making
it challenging to accurately reflect the engineer’s preferences.
As a result, this approach becomes computationally expensive,
time-consuming and the manual approach limits the ability to
dynamically explore multiple trade-offs during the optimiza-
tion process.

In contrast, the meta-modelling prototype overcomes these
limitations by integrating GP meta-models with multi-
objective optimization. In this case study, the NSGA-II multi-
objective algorithm [17] is combined with a meta-model to
find a set of optimal solutions. The idea is to only use true
function evaluations whenever the meta-model is uncertain in
its predictions, thereby significantly reducing computational
complexity. Of the 4000 evaluations required by NSGA-
II, only 134 needed full simulations, while the remaining
3867 evaluations were handled by the GP meta-model. This
approach reduced computational costs by 97%, making the ex-
ploration of complex design spaces both feasible and efficient.

The results, as shown in Figure 2, demonstrate the wide
range of potential trade-offs between gain and return loss,
known as the Pareto front. In a conventional setup, generation
of the frontier will often be practically intractable as each
data point represents a full single-objective optimisation. In
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Fig. 2. Right) Axially displaced ring focus dual-reflector system 8 variables for shaping of sub reflector. Left) The Pareto front of optimal trade-offs between
gain and return loss.

contrast, the combination of NSGA-II and meta-modelling
allows the engineer to perform visual inspection of the frontier,
providing a near complete picture of the possible trade-offs.
For instance, improving the gain by approximately 0.8 dB can
be achieved by accepting a reduction in return loss of around
1 dB.

Overall, this case study highlights the significant potential
of the meta-modelling framework to expand the scope of
antenna designs that can be explored within practical time
frames. By enabling engineers to efficiently navigate high-
dimensional design spaces and balance multiple performance
criteria with minimal computational overhead, the prototype
offers a scalable solution for addressing complex optimization
problems in antenna design.

V. CONCLUSIONS AND PERSPECTIVES

In conclusion, the developed meta-modeling prototype rep-
resents a robust and efficient alternative to traditional gradient-
based and global search optimization methods. By eliminating
the need for gradient information, the prototype is well-suited
for antenna design problems with expensive-to-evaluate objec-
tive functions, where good starting guesses are not known. The
Bayesian Optimization (BO) framework employed provides a
sample-efficient strategy that outperforms conventional global
methods, such as genetic algorithms and particle swarm opti-
mization, by exploring the design space more efficiently and
reducing computational costs.

While BO offers significant advantages for computationally
expensive, black-box problems, it is important to recognize its
situational limitations. In cases where good starting points and
derivative information are readily available, a local optimiza-
tion approach may still be preferable. Similarly, for inexpen-
sive objective functions with well-constrained search spaces,
global search methods can be more practical. BO, however,
fills a critical gap by addressing antenna design tasks where

conventional methods struggle, providing a complementary
tool for complex and challenging scenarios.

Moreover, the development of persistent meta-models ex-
tends the utility of this framework beyond mere optimization.
These models can be reused across different design tasks,
allowing for efficient data reuse and the flexibility to modify
objectives and constraints without repeating costly simulations.
As such, this activity has laid the technical foundation for
meta-models that adapt as new data becomes available, setting
the stage for broader applications in antenna design within
TICRA Tools and paving the way for future advancements of
antenna design software.
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