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Introduction

1 INTRODUCTION

The ESA activity Improve Mutation Testing in Space Software Systems, concerns the consolidation
and extension of the work performed within the project Applicability of Mutation Testing Method
for Flight Software, which was funded through ESA contract No. 4000128969/19/NL/AS. The cur-
rent activity led to the development of a framework and methodology referred to as Fault-based
Automated Quality Assurance (FAQAS); for simplicity, we therefore refer to the two activities as
FAQAS-1 and FAQAS-2.

Like FAQAS-1, FAQAS-2 is motivated by the need for high-quality software in space systems;
actually, the success of space missions depends on the quality of the system hardware as much
on the dependability of its software. Existing standards for space software development regulate
software quality assurance and emphasize its importance. Mission failures due to insufficient
software sanity checks are unfortunate examples of the necessity for systematic and predictable
quality assurance procedures in space software. In general, software testing plays a prominent role
among quality assurance activities for space software, and standards put a strong emphasis on the
quality of test suites. For example, the European Cooperation for Space Standardization (ECSS)
provides detailed guidelines for defining and assessing test suites. [9, 10].

Since one of the primary objectives of software testing is to identify software faults, an effective
way to assess the quality of a test suite consists of artificially injecting faults in the software
under test and verifying the extent to which the test suite can detect them. The approach is
known as mutation analysis [19]. In mutation analysis, faults are injected automatically into the
program through automated procedures called mutation operators. Mutation operators enable the
generation of faulty software versions referred to as mutants. Mutation analysis helps assess
the effectiveness of a test suite for a specific software system based on its mutation score,
which is the percentage of mutants leading to test failures. A mutant leading to a test failure (i.e.,
at least one test case of the test suite fails when executed with the mutant) is said to be killed (i.e.,
detected) by the test suite. The output of mutation analysis is the input for mutation testing [19],
which refers to the process of augmenting an existing test suite by deriving test cases that kill
mutants not already killed by the test suite (i.e., live mutants). Mutation testing shall be supported by
tools capable of identifying the inputs used in testing (e.g., through source code analysis). Mutation
analysis concerns test suite assessment and mutation testing concerns test suite augmentation.

FAQAS-1 aimed to investigate mutation analysis as a mean to evaluate the quality of software
test suites and mutation testing as a method to derive new software test cases in the context of space
software (i.e., embedded software executed onboard, in-flight space systems). Before FAQAS-1,
there was no work on identifying and assessing feasible and effective mutation analysis and testing
approaches for space software. Space software is different from other types of software (e.g., Java
graphical libraries or Unix utility programs); its characteristics prevent the adoption of well-known
solutions from enhancing mutation analysis scalability, identifying mutants that are semantically
equivalent to the original software, or redundant, and automatically generate test cases. First,
space software typically contains many functions to deal with signals and data transformation,
which may diminish the effectiveness of both compiler-based and coverage-based approaches to
identify equivalent and redundant mutants. Second, space software is thoroughly tested with large
test suites, thus exacerbating scalability problems. Third, it requires dedicated hardware, software
emulators, or simulators, which affect the applicability of scalability optimizations that use multi-
threading or other OS functions. The reliance on dedicated hardware, emulators, and simulators
also prevent the use of static program analysis to detect equivalent mutants and automatically
generate test cases.

FAQAS-1 led to the delivery of a toolset that includes the following tools:
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e MASS (Mutation Analysis of Space Software, TRL 5), a configurable tool with a user manual
that can be applied to whole software systems to perform code-driven mutation analysis.
Code-driven mutation analysis is a mutation analysis process that consists of creating faulty
versions of the software under analysis by modifying its source code. MASS includes means
to assure the scalability of the mutation analysis process by (1) restricting test case execution
to those test cases that exercise the mutated lines of code, (2) sampling the mutants to be
executed but relying on confidence estimation to compute an accurate mutation score, (3)
prioritizing the order of execution of test cases. MASS was installed on third-party premises
and independently used by third-party engineers in relevant cases.

e DAMAT (DAta-driven Mutation Analysis with Tables, TRL 4), a configurable tool with
a user manual that can be applied to whole software systems to perform data-driven
mutation analysis. Data-driven mutation analysis alters the data exchanged by software
components instead of mutating the implementation of the software under test. Data-driven
mutation analysis enables the injection of faults that affect simulated components (e.g.,
sensors), which is not feasible with traditional, code-driven mutation analysis. It works
by mutating, according to a fault model, the values assigned to selected data items in
the messages exchanged by software components. DAMAT was installed on third-party
premises and independently used by third-party engineers on the case study subjects of the
project.

e SEMusS (Symbolic Execution-based MUtant analysis for Space software, TRL 3), a config-
urable tool, provided as an extension of MASS to perform test generation through symbolic
execution [3]. Symbolic execution relies on the static analysis of the software under test, to
determine, through constraint solving [2], the variable assignments that lead the software
to certain states (e.g., reach a certain statement). SEMUs demonstrated effectiveness in gen-
erating test cases for standalone (e.g., not communicating through network) software units.
SEMUs has been installed on third-party premises and independently used by third-party
engineers on a subset of source files belonging to the case study subjects of the project.

e DAMTE (DAta-driven Mutation TEsting, TRL 2) is a prototype tool for the generation of test
cases that detect data-driven mutants. DAMTE relies on symbolic execution to identify test
inputs that trigger the generation of messages with data items containing values that enable
the execution of data mutation. DAMTE enables the generation of inputs for data producers
(in producer/consumer architectures) or client programs (in client/server architectures).
DAMTE is provided as an extension of DAMAT; unfortunately, some manual effort and
scaffolding is needed to apply it to new projects. DAMTE was applied to one case study
subject of FAQAS-1.

FAQAS-2 aims at assessing the generalizability of MASS and DAMAT, the two most advanced
tools in FAQAS-1, on new case study subjects, and improving their applicability, scalability, and
effectiveness, based on the observed results. Further, FAQAS-2 aims at improving the effectiveness of
FAQAS-1 test generation techniques (SEMuS and DAMTE), which are based on symbolic execution
(an approach that, at a high level, requires the static analysis of the whole software under test) and
hardly scale to complex software. Last, FAQAS-2 aims to provide guidelines and collect practitioners’
feedback on applying mutation analysis and testing in the nominal ECSS process and ISVV context.

FAQAS-2 led to the delivery of the following toolset:

e MASS (Mutation Analysis of Space Software, TRL 5), a consolidated version of the tool
developed in FAQAS-1 that (1) improves usability through a simplified user interface, (2)
increases reliability by repeating test executions in case of flaky test cases, (3) increase
scalability by natively supporting parallel execution through the mutation testing of one file
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a time, (4) extends applicability to systems that need to be executed in target environments
that can only be monitored, where the full installation of MASS and its dependencies is not
possible.

e DAMAT (DAta-driven Mutation Analysis with Tables, TRL 5), a consolidated version of
the tool developed in FAQAS-2 that (1) enables handling of both little and big-endian
architectures, (2) supports real-time platforms by delaying data recording to execution
termination, and (3) reduces overall execution time by executing shortest test cases first.

e MOTIF (MUtation TestIng with Fuzzing, TRL 3), a new tool that performs mutation testing
through fuzz testing [1, 17]. Fuzz testing consists of the the semi-random generation of
inputs driven by a genetic algorithm guided by code coverage. MOTIF replaces SEMUs, and
it demonstrated to be more effective than SEMUs since (1) it detects a higher number of
mutants, and (2) it can be applied to a larger set of software systems because it does not
inherit the limitations of symbolic execution.

e DAMTEF (DAta-driven Mutation TEsting with Fuzzing, TRL 2) a prototype tool for the gen-
eration of test cases that detects data-driven mutants and replaces DAMTE. DAMTEF relies
on fuzzing instead of symbolic execution to identify test inputs that trigger the generation of
the messages required for data mutation. DAMTEF outperforms DAMTE because it enables
not only the generation of inputs for data producers (in producer/consumer architectures)
or client programs (in client/server architectures) but, relying on fuzzing, can also generate
inputs for mutations targeting messages produced by server programs or consumed by
consumer or server programs. Like DAMTE, also DAMTEF is provided as an extension of
DAMAT; it relies on a manual process to enable automated test input generation. DAMTEF
has been applied to one case study subject of FAQAS-1.

Figure 1 provides an overview of FAQAS-2 tools and their dependencies.
In addition, FAQAS-2 led to the following methodologies and guidelines:

e astrategy to prioritise the inspection of mutants in order of relative code complexity (based
on cyclomatic complexity) and speed up the identification of live mutants leading to the
detection of faults;

a method for the manual selection of code-driven mutants, thus enabling the application of
code-driven mutation analysis;

a method for the application of mutation analysis and mutation testing in contexts where
software is developed in Java;

guidelines for the application of the FAQAS-2 tools and determine test suite adequacy in
ECSS nominal and ISVV contexts.

Last, FAQAS-2 achievements were disseminated in prestigious venues as follows:

e Presentation of the paper titled Data-driven Mutation Analysis for Cyber-Physical Sys-
tems [23], published on IEEE Transactions on Software Engineering, at the 45th IEEE/ACM
International Conference on Software Engineering, May 14th 20th, 2023, Melbourne, Aus-
tralia.

e Publication of the paper titled DaMAT: A Data-driven Mutation Analysis Tool [24], in the
Proceeding of the 45th IEEE/ACM International Conference on Software Engineering, and
presentation at the conference.

o Publication of the paper titled Fuzzing for CPS Mutation Testing [15], in the Proceeding of
the 38th IEEE/ACM International Conference on Automated Software Engineering (ASE’23),
and presentation at the conference.

e Publication of the paper titled MOTIF: A tool for Mutation Testing with Fuzzing [16], at the
17th International Conference on Software Testing Validation and Verification (ICST’24).
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Fig. 1. Overview of the FAQAS-2 toolset

e Presentation of FAQAS-2 at ESA ADCSS workshop 2024.

1.1 Project achievements

This section summarises the activity requirements and the results achieved.

R1-1 The contractor shall identify the case study subjects to be used to validate the improved
mutation analysis and testing process, and shall consider the following:

a) The selected case study subjects shall be provided together with data about the project
development history. More precisely, the contractor shall provide development informa-
tion extracted from versioning systems (e.g., Git repository backup) and issue tracking
systems (e.g., a dump of Jira database).

b) The set of case study subjects shall extend the set of case study subjects already
considered in FAQAS.
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c) The selected case study subjects shall be representative of the diverse types of space
software applications, including as a minimum embedded real-time software in the
space segment. The contractor may also use other software used for empirical evaluation
of software-testing research work.

d) The selected space software case study subjects shall have gone formal verification and
validation according to ECSS software standards [AD01], [AD02] (developed as SW
criticality A, B, or C), and coded in a typical language used in space applications (i.e., C
and C++).

e) The Agency will also propose specific case studies (e.g. a SW module that is re- used
across projects, such as the mathematical library LibmCS or a real-time operating
system like RTEMS improvement/RTEMS-SMP; a full SW system, such the on-board
software of an instrument control unit).

f) The selection of the case studies is to be agreed between the Agency and the contractor.

o The project has been validated on a large set of case study subjects that are described in Section 3.
R1-2 The contractor shall implement a methodology to efficiently identify test suite shortcomings
based on mutation analysis. For example, the contractor should identify from the set of
live mutants, a minimal subset to be inspected by engineers; such mutants shall represent
diverse and critical shortcomings of the test suite. We define a critical shortcoming as a
shortcoming that may prevent the identification of failures that may affect or partially affect
the success of a mission.
o SnT has empirically demonstrated that sorting mutants based on weighted cyclomatic com-
plexity speeds up the identification of faults.
R1-3 The contractor shall improve the FAQAS code-driven mutation testing tool (i.e., SEMuS); in
particular, the following items shall be considered:

a) Since SEMuS requires the explicit specification of input and output variables; the
considered solution shall automatically determine which variables are required to be
inputs or outputs.

b) Evaluate the feasibility of solutions to enable test generation for programs relying on
floating-point arithmetic.

c) Evaluate solutions (e.g., modelling of software components APIs) that enable applying
symbolic execution when the software includes external libraries or loosely coupled
components.

o Instead of improving SEMUs, SnT has developed MOTIF, which outperforms MOTIF and over-
comes its limitations.
R2-1 The contractor shall implement a methodology for test adequacy determination based on
code-driven mutation analysis; in particular, the following aspects shall be considered:

a) The methodology shall enable engineers to determine when the quality of a test suite

is sufficient to ensure certain quality objectives, some examples include:
L. absence of severe failures in deployed software
II. reduction of field failures (i.e., failures in deployed software)
II. fault detection rate (FDR) higher than FDR achieved by test suites satisfying ECSS
adequacy criteria (e.g., branch adequacy, MC/DC adequacy, code inspection)

b) Test suite assessment shall be based on the mutation analysis metrics (e.g., mutation
score); the objective is to define thresholds above which the mutation score provides
guarantees for specific quality objectives.

c) Additional mutation operators (e.g., higher order) might be considered.

o SnT has empirically defined a methodology to determine test suite adequacy based on mutation
analysis results, which is mentioned in Section 6.
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R2-2

R2-3

R2-4

R2-4

R3-1

1.1 Project achievements

The contractor shall define a methodology for ECSS standards and ISVV practices based
on code-driven mutation analysis. The methodology shall include instructions to draft a
verification report. The methodology shall be documented in the technical report [D3]
“Integration of mutation testing within ECSS & ISVV practices”.

The discussion on the adoption of FAQAS-2 methodology into ECSS Standards and ISVV are
reported in Section 6.

The contractor shall improve the maturity of the tool for code-driven mutation analysis
(i.e., MASS), considering the following aspects:

a) Since the current toolset does not provide interfaces for integrating the mutation
analysis methodology into existing build pipelines (e.g., Jenkins, TASTE), the contractor
shall define a test harness architecture that enables simple embedding of the MASS
methodology as a part of a continuous integration and continuous development (CI/CD)
pipeline.

b) Provide support to C++; MASS should support widely adopted C++ constructs (e.g.,
static variables).

The improvements made to MASS mainly concern: a) simplifying integration with Makefile-
based process; however we do not cover build pipelines such as Jenkins or TASTE because not
adopted by our partners. b) Provide support to C++; which has been demonstrated with the S5
case study.

The contractor shall prototype alternative solutions for code-driven mutation testing; such
solutions shall aim at overcoming SEMusS limitations related to the generation of test cases
for software using external libraries or loosely coupled components. Possible solutions
include concolic execution and fuzzing [RDO05].

a) The considered solutions shall be alternatives to what already implemented in FAQAS
(i.e., differential symbolic execution).

b) Based on an empirical evaluation, the contractor should decide whether to integrate
these alternative solutions into the tool developed by FAQAS (i.e., SEMuS) or to develop
a newly independent tool.

Section 2.2 reports on MOTIF:

(a) The execution of MOTIF with ESAIL demonstrates that the use of fuzzing is feasible

also in the presence of external libraries.

(b) MOTIF deals with arrays and data structures

(c) MOTTF generates executable test cases including test inputs and assertions.

SnT has developed MOTIF, a tool relying on fuzz testing as an alternative to symbolic execution
(i.e., the core of SEMUs) for the generation of test cases that kill mutants. MOTIF demonstrated
to be more effective than SEMUs although some complementarities had been identified. MOTIF
does not require the specification of input and output variables thus addressing R1-3-a. Also,
MOTIF can generate inputs for floating point variables thus addressing R1-3-b. MOTIF can
work with software that includes external libraries or loosely coupled components (i.e., R1-3-c).
The contractor shall improve the data-driven mutation analysis methodology, addressing
the following concerns:

- a) Simplify the applicability of the technique to case studies by reducing engineers’
manual intervention. For example, by proposing a solution that do not require the
definition of a fault model.

— b) The methodology shall support different types of data structures as required in the
case study subjects defined by [R1-1].

SnT applied DAMAT to BepiColombo to demonstrate the generalizability of the approach. To
enable the application of DAMAT to BepiColombo, SnT integrated the following improvements:
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2.1 Code-driven Mutation Analysis: MASS

— a) deferred logging of mutation information, to cope with real-time-requirements of SUT;
— b) support for Little Endian and Big Endian architectures;
— ¢) improved methodology to allow for a quicker mutation testing process when traceability
information is provided with test cases.
o Also, SnT has defined a solution that enables applying DAMAT on Java systems. It relies on
NI to mutate Java data.

R3-2 The contractor shall prototype solutions for data-driven mutation testing to cover the

mutants not killed by the existing test suite, addressing the following concerns:
- a) Implement an automated solution for generating test templates to drive the test
input generation.
— b) Integrate a solution to deal with loosely coupled components and external libraries.
o SnT has developed DAMTEF. It has been applied on GSL’s libParam, which was used for DAMTE,
and demonstrated to outperform the latter.

R4-1 The contractor shall implement a methodology for test adequacy determination based on
data-driven mutation analysis. The development shall be consistent (e.g., provide guidelines
for drafting verification reports) with requirement [R2-1].

o Contributions are discussed in Section 6.

R4-2 The contractor shall define a methodology for ECSS and ISVV practices based on data-driven
mutation analysis. The development shall be consistent (i.e., cover the same aspects) with
requirement [R2-2].

e See Section 6.

R4-3 The contractor shall improve the maturity of the data-driven mutation analysis tool. This
requirement includes integrating the mutation analysis tool (i.e., DAMAT) and the mutation
testing tool (i.e., DAMTE) into existing build infrastructures (e.g., TASTE, Jenkins).

o SnT improved DAMAT as follows:
— Introduced a feature to test a subset of mutants and test cases.
— Introduced an optimization feature to store mutation operation / fault model coverage
information on demand (based on a signal received by the SUT).
— An error-handling system was introduced to facilitate the use of the tool and to help fix
configuration problems.

R4-4 The contractor shall improve the maturity of the mutation testing tool. This requirement
includes integrating the mutation testing toolset (i.e., SEMuS and DAMTE) into existing
build infrastructures (e.g., TASTE, Jenkins).

o SnT conducted experiments to determine the best fuzzing configuration for MOTIF.
o SnT has integrated MOTIF and MASS, MOTIF configuration can now be generated after the
execution of MASS.

2 FAQAS METHODOLOGY

In the following, we describe how the results generated by the FAQAS toolset enable the assessment
and improvement of a test suite.

2.1 Code-driven Mutation Analysis: MASS

Figure 2 provides an overview of MASS . It consists of ten steps described below.

2.1.1  Step 0: Configure MASS. Step 0 concerns the configuration of our toolset. The main config-
uration choices to be made by the engineer before running mutation analysis are: Selecting the

source files to mutate (generally, all the source files of the SUT shall be considered for mutation);
Selecting the sampling strategy (if the test suite of the SUT takes more than one hour to be
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2.1 Code-driven Mutation Analysis: MASS
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Fig. 2. Overview of the MASS workflow

executed, we suggest to rely on the FSCI mutant sampling strategy, otherwise, engineers can
execute all the mutants); Enabling test suite reduction and prioritization (this choice enables
MASS to further reduce test execution time by executing only a portion of the selected test cases
based on statement coverage).

2.1.2  Step 1: Collect SUT Test Data. In Step 1, the test suite is executed against the SUT and code
coverage information is collected. More precisely, we rely on the combination of gcov [7] and
GDB [12], enabling the collection of coverage information for embedded systems without a file
system [22].

2.1.3 Step 2: Create Mutants. In Step 2, we automatically generate mutants for the SUT by relying
on a set of selected mutation operators, which are listed in Table 1.
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2.1 Code-driven Mutation Analysis: MASS

Table 1. Implemented set of mutation operators.

Operator|Description”
IABS {(0,-0)}
3 [|AOR {(opy,0p2) Topy,op, € {+,~,%,/,%} Aop, # op,}
B {(0py, 0p,) | 0py, 0p, € {+=,-=,%=,/=,%=} A op, # op,}
2 [CR Tx)[x€{1,-1,0,i+1,i—-1,-i}}
S [LCR {(opy, op,) Topy, op, € {8311} A op; # op,}
e {(Oplsopz) | 0py, 0p; € {&= 1=,8=} A op; # Opz}
{(opy, 0p,) | opy, 0p, € {& |,88} A op, # op,}
IROR {(opy, 0p,) Topy, 0p, € {>,>=,<,<=,==,1T=}}
{(e,!(e)) | e € {if(e),while(e)}}
SDL {(s, remove(s))}
IUOI {(v,-0), (v, v-), (v, ++0), (v, v++) }
IAOD {((troptz), t1), ((t1optz), t2) op € {+, -, %/, %}}
R [LOD {((tiopty), 1), ((tioptz), t2) [op € {8811}
S [ROD {((tiopty), t1), ((tioptr), t2) [op € {>,>=,<,<=,==,1=}}
© BOD__ [{((hoph). i), (- 0p ), 2) [0p € {& T, A1)
SOD {(((iop ). 1), ((hopt2), 1) Top € {» «}}
2 ‘LVR ‘{(11»12) [ (I, 1) € {(0,-1), (I, =11), (11, 0),
5 (true, false), (false, true) } }

*Each pair in parenthesis shows how a program element is modified by the mutation operator on the left; we follow standard syntax [14].
Program elements are literals (I), integer literals (i), boolean expressions (e), operators (0p), statements (s), variables (v), and terms ( ¢;, which
might be either variables or literals).

2.1.4 Step 3: Compile mutants. In Step 3, we compile mutants by relying on an optimized compila-
tion procedure that leverages the build system of the SUT. To this end, we have developed a toolset
that, for each mutated source file: (1) backs-up the original source file, (2) renames the mutated
source file as the original source file, (3) runs the build system (e.g., executes the command make),
(4) copies the generated executable mutant in a dedicated folder, (5) restores the original source file.

2.1.5 Step 4: Remove equivalent and redundant mutants based on compiled code. In Step 4, we
rely on trivial compiler optimizations to identify and remove equivalent and redundant mutants.
We compile the original software and every mutant multiple times once for each every available
optimization option (i.e., 00, -01, -02, -03, -0s, -Ofast in GCC) or a subset of them. The outcome
of Step 4 is a set of unique mutants, i.e., mutants with compiled code that differs from the original
software and any other mutant.

2.1.6  Step 5: Sample Mutants. In Step 5, MASS samples the mutants to be executed to compute
the mutation score. Our pipeline supports different sampling strategies: proportional uniform
sampling, proportional method-based sampling, uniform fixed-size sampling, and uniform
FSCI sampling. The strategies proportional uniform sampling and proportional method-
based sampling were selected based on the results of Zhang et al. [25], who compared eight
strategies for sampling mutants. The uniform fixed-size sampling strategy stems from the work
of Gopinath et al. [13] and consists of selecting a fixed number Njs of mutants for the computation
of the mutation score. We introduced the uniform FSCI sampling strategy that determines the
sample size dynamically, while exercising mutants, based on a fixed-width sequential confidence
interval approach. With uniform FSCI sampling, we introduce a cycle between Step 6 and Step
5, such that a new mutant is sampled only if deemed necessary. More precisely, MASS iteratively
selects a random mutant from the set of unique mutants and exercises it using the SUT test suite.
The result of each mutant execution (i.e., killed or live) is treated as a Bernoulli trial that is used to
compute the confidence interval according to the FSCI method. To compute the confidence interval
for the FSCI analysis, we rely on the Clopper-Pearson method since it is reported to provide the
best results [6].
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2.1 Code-driven Mutation Analysis: MASS

2.1.7 Step 6: Execute prioritized subset of test cases. In Step 6, we execute a prioritized subset of test
cases. We select only the test cases that satisfy the reachability condition (i.e., cover the mutated
statement) and execute them in sequence. To determine how dissimilar two test cases are and,
consequently, how likely they exercise the mutated statement with different values, we rely on
Cosine similarity.

2.1.8 Step 7: Discard Mutants. In this step, we identify likely nonequivalent mutants by relying on
code coverage information collected in the previous step. A mutant is considered nonequivalent
when the distance from the original program is non null, for at least one test case.

2.1.9 Step 8: Compute Mutation Score and Analysis Output. The mutation score (MS) is computed
as the percentage of killed nonduplicate mutants (hereafter, KND) over the number of nonequivalent,
nonduplicate mutants identified in Step 7):
~ |KND| .
" |LNEND| + |KND| M

The main output of MASS is a file named MASS_RESULTS. An example of the MASS RESULTS
report is presented in Listing 1. Within file MASS_RESULTS, the first metric to be inspected is
the Statement coverage (i.e., the percentage of statements being covered). Since MASS generates
mutants only for the statements being exercised by the test suite, a high mutation score in the
presence of a low statement coverage cannot indicate that the test suite has high quality.

The second metric to be inspected is the MASS mutation score. It provides an indication of
the quality of the test suite based on mutation analysis results. According to the literature on the
topic, achieving a high mutation score improves significantly the fault detection capability of a test
suite [20]; also, a very high mutation score (i.e., above 0.75) ensures a higher fault detection rate
than the one obtained with other coverage criteria, such as statement and branch coverage [4].

#i#HHH# MASS Output #it#Ht#

## Total mutants generated: 2807

## Total mutants filtered by TCE: 6918

## Sampling type: fsci

## Total mutants analyzed: 461

## Total killed mutants: 369

## Total live mutants: 92

## Total likely equivalent mutants: 53

## MASS mutation score (%): 90.44

## List A of useful undetected mutants: /opt/MLFS/RESULTS/useful_list_a
## List B of useful undetected mutants: /opt/MLFS/RESULTS/useful_list_b
## Number of statements covered: 1973

## Statement coverage (%): 100

## Minimum lines covered per source file: 2

5| ## Maximum lines covered per source file: 138

Listing 1. MASS output obtained with the MLFS case study subject.

Three additional relevant output files generated by MASS are filtered_live, useful_list_a and
useful_list_b. They contain the names of the live mutants. The file useful_list_a provides a list of
mutants that are likely non redundant with each other because when tested by the SUT test suite
they lead to a statement coverage profile (i.e., the set of statements covered during their execution)
that differs. The file useful_list_b provides a list of mutants that are likely redundant with the ones
appearing in the file useful_list_a. The mutants within file useful_list_a are sorted according to their
diversity (i.e., the mutants on top are likely very different from each other. The file filtered_live is
the union of the mutants appearing in the files useful_list_a and useful_list_b.

2.1.10 Step 9: Improve Test Suite. Step 9 can be performed manually or can automated through
SEMuS . It consists of deriving test inputs that kill live mutants.
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2.2 MOTIF
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Fig. 3. The MOTIF process.

To manually perform Step 9, engineers shall inspect all the mutants appearing in the file use-
ful_list_a. For each mutant, the engineer shall implement a test case capable of killing the mutant
(i.e., a test case that fails with the mutant but not with the original software). In general, since
a same test case may kill more than one mutant, we suggest to derive test inputs for a subset of
the mutants in useful list_a and then rerun the mutation analysis process. When rerunning the
mutation analysis process, engineers shall focus the mutation analysis on the mutants appearing
in useful_list_a and in useful_list_b. This is done by re-executing mutation analysis from Step 6
(Execute mutants).

When automated test generation with MOTIF is feasible, we suggest relying on MOTIF to
automatically generate test cases for all the mutants appearing in useful list_a and in useful_list_b.

2.2 MOTIF

MOTIF is a tool for code-driven mutation testing that relies on fuzzing; it’s workflow is shown
in Figure 3. MOTIF is started by running its Python entry point in a directory selected by the
end-user as the MOTIF workspace. The MOTIF workspace structure is shown in Figure 4; it includes
all the inputs required by MOTIF , which are the SUT source code, the mutants source code, a
configuration file for MOTIF , and a text file with the names of the mutants to kill. We rely on the
mutants generated by MASS.

MOTIF creates a directory where mutation testing outputs are stored (outputs in Figure 4). Its
sub-directories contain the outputs generated by each step of the MOTIF workflow, distributed in
one additional sub-directory for each mutant or mutated function.

In Step 1, MOTIF relies on the clang static analysis library [5] to build an abstract syntax tree of the
SUT and determine the types of parameters required by each mutated function. Such information
is used to generate a driver for mutation testing (fuzzing driver); an example is shown in Figure 5.
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2.2 MOTIF

Fig. 4. Structure of the directory for a MOTIF project

WORKSPACE/ #dir chosen by the end-user, any name is good
[—repos/  #dir created by MOTIF where the SUT will be compiled
— outputs/ #dir where mutation testing outputs are stored

|— 1-func—drivers/ #dir with fuzzing drivers for mutation testing
l: a_moudle.a_function/ #dir with the drivers for a mutated function
<.>/ #sub dirs, one per mutanted function
t— 2-func-inputs/ #dir with seed inputs generated by MOTIF
L_<.5/ #sub dirs, one per mutanted function
{— 3-mutant-funcs/ #dir with the mutants processed by MOTIF
<.>/ #sub directories, one per mutant
— 4-mutant-bins/ #dir with the compiled fuzzing drivers
[ #sub dirs, one per mutant
t— 5-fuzzing/  #dir with the outputs of the fuzzer
L<.5/ #sub dirs, one per mutant
L— 6-testcase/ #directory with the generated test cases
<>/ #sub dirs, one per mutant

— mutants.tar #tar with all the mutants

[—srctar  #tar with the source code project of the SUT
— live_mutants #text file including the list of mutants to kill
L— config.py #config file for MOTIF

Fig. 5. Example fuzzing driver for the ASNLib subject.

int main(int argc, char** argv){
load_file(argv[1]); // load the input file and extends it if needed
/* Variables for the original function */
T_POS origin_pVal; // for the first parameter
int origin_pErrCode; // for the second parameter
/* Variables for the mutated function x/
T_POS mut_pVal; // for the first parameter
int mut_pErrCode; // for the second parameter
/* Variables for the return values */
flag origin_return; // for the original
flag mut_return; // for the mutant
/* Copy the input data to the variables for the original function */
get_value(&origin_pVal, sizeof(origin_pVal), 0);
get_value(&origin_pErrCode,sizeof (origin_pErrCode),0);
log("Calling the original function");
origin_return = T_POS_IsConstraintValid(&origin_pVal, &origin_pErrCode);
/* Copy the same input data to the variables for the mutated function x/
seek_data_index(@); //reset the input data pointer
get_value(&mut_pVal, sizeof(mut_pVal), 0);
get_value(&mut_pErrCode, sizeof(mut_pErrCode), 0);
log("Calling the mutated function");
mut_return = mut_T_POS_IsConstraintValid(&mut_pVal, &mut_pErrCode);

log("Comparing result values: ");

ret += compare_value(&origin_pVal, &mut_pVal, sizeof(origin_pVal));

ret += compare_value(&origin_pErrCode,&mut_pErrCode, sizeof(origin_pErrCode));
ret += compare_value(&origin_return, &mut_return, sizeof(origin_return));

if (ret != 0){
log("Mutant killed");
safe_abort();

log("Mutant alive");
return 0;

The fuzzing driver declares two sets of variables (Lines 4-5 and 7-8) that are provided as input to
the original and to the mutated function, respectively. They are assigned with a byte-by-byte copy
of the same portion of the input file provided by the fuzzer (Lines 13-14 and 19-20); the copied
bytes match the size of the assigned variable.
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Fig. 6. Example test case for the ASNLib subject.

/*Variables with the data in the file killing the mutantx*/
const char input_data_pVal={0xFF,0xFF,...,0xFF};
const char input_data_pErrCode={@xFF,@xFF,0xFF,6@xFF}
/*Variables with the values observed after mutation testingx/
const char expected_pVal={0xFF,0xFF,...,0xFF};
const char expected_pErrCode={@xFF,0xFF,0xFF,0xFF};
const char expected_return={0x00,0x00,0x00,0x00};
/*Test casex/
int main(int argc, char** argv){
T_POS pVal;
int pErrCode;
int _return;
/*Initialize inputs*/
memcopy (&pVal, input_data_pVal, sizeof(pVal));
memcopy (&pErrCode, input_data_pErrCode, sizeof(int));
/* Invoke the original functionx/
_return = T_POS_IsConstraintValid(&pVal, &pErrCode);
/* Print output values of the original function */
printf_struct("pvVal (T_P0S)=", &pVal, sizeof(pVal));
printf("pErrCode (int) = %d\n", pErrCode);
printf("return (flag) = %d\n", _return);
/* Generated assertions enabling regression testingx/
assert( @==compare((char*)&pVal, sizeof(pVal)));
assert( 0==compare((char*)&pErrCode, sizeof(pErrCode)));
assert( 0==compare((char*)&_ return, sizeof(_return)));
return 0;

The original and the mutated functions are then invoked (Lines 16 and 22). The fuzzing driver
then compares the output generated by the original and the mutated functions (Lines 25-27). Since
in C, thanks to pointer and reference arguments, every parameter may be used to store outputs, we
compare all the parameters and return values of the original and mutated functions; our choice
cannot lead to inaccurate identification of killed mutants because, by definition, input parameters
are not modified. For pointers, we compare the pointed data (e.g., an int instance for intx).

When the outputs differ, the fuzzing driver stops its execution with an abort signal (Line 31) thus
letting the fuzzer detect the aborted execution and store the input file.

In Step 2, MOTIF generates seed files based on the types of input parameters for the function
under test. The generated files contain enough bytes to fill all the input parameters with values
covering basic cases. Precisely, for each primitive type, we have identified three seed values that
are representative of typical input partitions [15]. For example, for numeric values, we provide
zero, a negative, and a positive number. For each fuzzing driver, MOTIF generates at most three
seed files in such a way that every parameter of the function under test is assigned with each seed
value at least once.

In Step 3, MOTIF compiles the fuzzing driver, the mutated function, and the SUT using the fuzzer
compiler; compile commands can be specified in MOTIF ’s configuration.

In Step 4, MOTITF runs the fuzzer. The execution leads to the generation of fuzzing driver logs and
crashing inputs. MOTIF processes the corresponding logs to identify likely killed mutants, which
happens when either the execution aborts because the generated outputs differ for the original and
the mutated function, or there is a crash in the execution of the mutated function. Inputs leading to
apparently killed mutants are further processed to determine if the function under test generates
non-deterministic outputs: MOTIF executes them with an additional fuzzing driver, automatically
generated, that executes the original function twice. If outputs differ, then the function under test
is non-deterministic and the mutant has not been killed.
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In Step 5, MOTIF generates a unit test case that is similar to the fuzzing driver created for the
same function under test, an example is shown in Figure 6. Different from the fuzzing driver, the
generated test case declares a set of arrays initialized with data taken from the file that killed the
mutant (Lines 2-3, we use hexadecimal values); each array contains the bytes used by the fuzzing
driver to initialize one variable. Also, it declares a set of arrays (Lines 5-7) initialized with the data
observed, during the mutation testing post-processing step (Step 4), after the execution of the
original function. If the original function is not faulty, the data observed after the execution of the
original function can be used in test assertions for regression testing.

The main function initializes the variables passed to the function under test (Lines 14-15) and
then, after invoking the function under test (Line 17), prints out the variables’ values (Lines 19-21).
Such print instructions are necessary because the end-user should verify if the output values are
correct; otherwise, a fault has been found. Finding such faults is a key benefit of mutation testing,
which enables the detection of actual faults by exercising the software with inputs generated for
injected faults. If no fault has been detected, then the generated test case can be reused as-is for
regression testing; indeed, the test case includes assertions (Lines 23-25) automatically verifying
that the output variables match the expected ones.

2.3 Data-driven Mutation Analysis: DAMAT

Data-driven mutation analysis aims to evaluate the effectiveness of a test suite in detecting semantic
interoperability faults. It is achieved by modifying (i.e., mutating) the data exchanged by CPS
components. It generates mutated data that is representative of data that might be observed at
runtime in the presence of a component that behaves differently than expected in the test case; also,
it mutates data that is not automatically corrected by the software (e.g., through cyclic redundancy
check codes) and thus causes software failures (i.e., the mutated data shall have a different semantic
than the original data). For these reasons, data mutation is driven by a fault model specified by the
engineers based on domain knowledge.

The DAMAT fault model is a tabular block model. It enables the modelling of data that is
exchanged through a specific data structure: the data buffer. This was decided because it is a simple
and widely adopted data structure for data exchanges between components in CPS. The DAMAT
fault model enables the specification of the format of the data exchanged between components
along with the type of faults that may affect such data. We refer to the data exchanged by two
components as message. For a single CPS, more than one fault model can be specified (e.g., one
for each message type). The DAMAT fault model enables engineers to specify (1) the position of
each data item in the buffer, (2) their span, and (3) their representation type. Further, for each data
item, DAMAT enables engineers to specify one or more data faults using the mutation operator
identifiers. For each operator, the engineer shall provide values for the required configuration
parameters. Table 2 provides the list of mutation operators included in DAMAT along with their
description.

The DAMAT mutation operators generate mutated data item instances through one or more
mutation procedures, which are the functions that generate a mutated data item instance given a
correct data item instance observed at runtime. For example, the VAT operator includes only one
mutation procedure (i.e., setting the current value above the threshold) while the VOR operator
includes two mutation procedures, which are (1) replacing the current value with a value above the
specified valid range and (2) replacing the current value with a value below the valid range. The
operators VOR, BF, INV, and SS have been inspired by related work [8, 18, 21]; the operators VAT,
VBT, FVAT, FVBT, FVOR, IV, ASA, and HV are a contribution of FAQAS.

DAMAT works in six steps, which are shown in Figure 8. In Step 1, based on a methodology
provided with the DAMAt documentation, the engineer prepares a fault model specification tailored
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Table 2. Data-driven mutation operators

Fault Class

Description

Value above threshold (VAT)

Replaces the current value with a value above the threshold T for a delta (A).

Value below threshold (VBT)

Replaces the current value with a value below the threshold T for a delta (A).

Value out of range (VOR)

Replaces the current value with a value out of the range [MIN; MAX].

Bit flip (BF)

A number of bits randomly chosen in the positions between MIN and MAX are flipped.

Invalid numeric value (INV)

Replace the current value with a mutated value that is legal (i.e., in the specified range) but
different than current value.

Tllegal Value (IV)

Replace the current value with a value that is equal to the parameter VALUE.

Anomalous Signal Amplitude (ASA)

The mutated value is derived by amplifying the observed value by a factor V and by
adding/removing a constant value A from it.

Signal Shift (S9)

The mutated value is derived by adding a value A to the observed value.

Hold Value (HV)

This operator keeps repeating an observed value for V times. It emulates a constant signal
replacing a signal supposed to vary.

Fix value above threshold (FVAT)

In the presence of a value above the threshold, it replaces the current value with a value
below the threshold T for a delta A.

Fix value below threshold (FVBT)

It is the counterpart of FVAT for the operator VBT.

Fix value out of range (FVOR)

In the presence of a value out of the range [ MIN; MAX | it replaces the current value with
a random value within the range.
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to the SUT. Our methodology enables the specification of all possible interoperability problems in
the SUT while minimizing equivalent and redundant mutants.
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In Step 2, DAMAT generates a mutation API with the functions that modify the data according to
the provided fault model. These functions select the data item to mutate and the mutation procedure
to apply based on the mutant under test.

In Step 3, the engineer modifies the SUT by introducing mutation probes (i.e., invocations to the
mutation API) into it. Instead of modifying the SUT the engineer may modify the test harness (e.g.,
the SVF simulator); such choice depends on the software under test, if the test cases are executed
through a simulator, such choice prevents introducing damaging changes into the SUT (e.g., delay
task execution and break strict real-time requirements). The effort required by the engineer is
minimal; indeed, the exchange of data between components is usually managed in a single location
(e.g, the function that serializes the data buffer on the network) and thus it is usually sufficient to
introduce one function call for each message type to mutate.

In Step 4, DAMAT generates and compiles mutants. Since the DAMAT mutation operators may
generate mutated data by applying multiple mutation procedures, DAMAT may generate several
mutants, one for each data mutation operation (i.e., a mutation procedure configured for a data
item). The mutant generation is invisible to the end-user who does not need to modify the source
code further.

In Step 5, DAMAT executes the test suite with all the mutants including a mutant (i.e., the
coverage mutant) which does not modify the data but traces the coverage of the fault model. The
information collected by the coverage mutant enables the execution, for every mutant, of the
subset of test cases that cover the message type targeted by the mutant, thus speeding up mutation
analysis.

In Step 6, DAMAT generates mutation analysis results: fault model coverage, mutation op-
eration coverage, and mutation score. These metrics measure the frequency of the following
scenarios: (case 1) the message type targeted by a mutant is never exercised, (case 2) the message
type is covered by the test suite but it is not possible to perform some of the mutation operations
(e.g., because the test suite does not exercise out-of-range cases), (case 3) the mutation is performed
but the test suite does not fail.

Fault model coverage (FMC) is the percentage of fault models covered by the test suite. Since we
define a fault model for every message type exchanged by two components, it provides information
about the extent to which the message types actually exchanged by the SUT are exercised and
verified by the test suites.

Mutation operation coverage (MOC) is the percentage of data items that have been mutated
at least once, considering only those that belong to the data buffers covered by the test suite. It
provides information about the input partitions covered for each data item.

The mutation score (MS) is the percentage of mutants killed by the test suite (i.e., leading to at
least one test case failure) among the mutants that target a fault model and for which at least one
mutation operation was successfully performed. It provides information about the quality of test
oracles; indeed, a mutant that performs a mutation operation and is not killed (i.e., is live) indicates
that the test suite cannot detect the effect of the mutation (e.g., the presence of warnings in logs).
Also, a low mutation score may indicate missing test input sequences. Indeed, live mutants may be
due to either software faults (e.g., the SUT does not provide the correct output for the mutated data
item instance) or the software not being in the required state (e.g., input partitions for data items
are covered when the software is paused); in such cases, with appropriate input sequences, the test
suite would have discovered the fault or brought the SUT into the required state. Both poor oracles
and lack of inputs indicate flaws in the test case definition process (e.g., the stateful nature of the
software was ignored).

Finally, DAMAT generates a file named final_mutants_table.csv, which contains a list of all
generated mutants, the definition of the mutation operator that generated them and their status. It
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is used to determine how to improve the test suite; indeed, it specifies which anomalous values
where not discovered by the test suite.

2.4 Data-driven Mutation Testing: DAMTEF

DAMTEF support engineers in identifying test inputs so that all the mutants are applied (i.e.,
to have fault model coverage and mutation operation coverage reach 100%). It is applicable to
two common software architectures: the producer-consumer and client-server architecture (see
Figure 9). Different from DAMTE , it can generate inputs to support data-driven mutation analysis
with porbes applied on the server-side or on the receiving side of the client.

Producer-consumer

Producer Consumer
Input  [ee—— P Output
Encode *
Test
- Oracle
Client-server
Client Server
Request
Input . Encode Message
Output
Response
Message
Test
Oracle

- Mutation probe testable with DAMTEF and DAMTE

- Mutation probe testable with DAMTEF only
Fig. 9. DAMAT: mutation when encoding the request.

To generate the required inputs we rely on an extended data mutation probe. The extended
data mutation probe relies on DAMAT to track when the mutation probe has been successfully
appplied; combined with a fuzzer for test input generation, it enables mutation testing,.

3 CASE STUDIES

The FAQAS-2 toolset has been applied to six case study systems: ESAIL, LIBGCSP, LIBParam, LIBU-
TIL, MLFS, ASN1SCC, BepiColombo SIXS/MIXS onboard software, S5 L1bPP, ExoMars Recovery
Software Image, Z80 emulator, and Zyng-7000 SoC SW.

ESAIL is a microsatellite developed by LXS in a Public-Private-Partnership with ESA and Ex-
actEarth. For our empirical evaluation, we considered the onboard control software of ESAIL
(hereafter, simply ESAIL-CSW), which consists of 924 source files with a total size of 187,116 LOC.
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LIBGCSP, LIBParam, and LIBUTIL are utility libraries developed by GSL. LIBGCSP is a network
protocol library including low-level drivers (e.g., CAN, 12C). LIBParam is a light-weight parameter
system designed for GSL satellite subsystems. LIBUTIL is a utility library providing cross-platform
APIs for use in both embedded systems and Linux development environments.

The Mathematical Library for Flight Software' (MLFS) implements mathematical functions
ready for qualification. In FAQAS, we considered the unit test suite of MLFS (it achieves branch
and MC/DC coverage).

ASN1SCC? is an open source ASN.1 compiler that generates C/C++ and SPARK/Ada code suitable
for space systems. Also, it produces a test suite for the generated code achieving statement coverage
adequacy. For our experiments, we apply the FAQAS toolset to assess the automatically generated
test suite by mutating the generated code.

The BepiColombo SIXS/MIXS onboard software (hereafter, BepiColombo, for brevity) runs
in the combined Data Processing Unit (DPU) of the SIXS/MIXS instruments. The DPU is used to
control instrument power and operating states, to monitor instrument operations and to handle
telecommand and telemetry communications. Another responsibility of the SIXS/MIXS DPU is
to convert scientific data from a very high number of individual detections to more manageable
summary information, such as periodic summary counters, spectra, and histograms. Huld developed
and verified the onboard software in accordance with ECSS standard (category C, tailored to the
project). The flight code has been developed in C and corresponds to approximately 30k LOC.

The S5 UVNS L1bPP (S5 L1bPP) project has been developed by Huld, it consists of the L1b
prototype data processing software (a data processor), as part of the Sentinel-5 mission. S5 L1bPP
has been developed and verified in accordance with ECSS standard (category D). It is developed in
C++ and contains around 23k LOC.

The ExoMars Recovery Software Image (hereafter, ExoMars, for brevity) is the back up software
which provides basic functionality to the ground to investigate and maintain the ExoMars Rover
Vehicle Software (RVSW). RSI implements basic communication facilities with ground such as
housekeeping telemetry and memory management to allow investigation and maintenance to be
performed on the RVSW images. RSI has been developed and verified in accordance with ECSS
standard (category B). It is developed in C and contains around 11,5k LOC.

The Z80 emulator is an emulator of Zilog Z80, an 8-bit processor widely used in the 80s. The
Z80 Emulator replicates the behaviour of part of the Z80 microprocessor on the host machine. This
subject has been introduced by LuxSpace to conduct an independent validation of MASS, DAMTE,
and MOTTF.

The Zynq 7000 SoC SW is a simple program to be executed in the Cortex-A9 processor inside
Zynq 7000 SoC. The Zyng-7000 SoC (for SCSW) and SAMV71 microcontroller (for BOSS) are used
to test software for the Triton-X project. This subject has been introduced by LuxSpace to conduct
an independent validation of MASS with hardware-in-the-loop.

For the validation of each tool in the FAQAS toolset, we selected case study systems with
characteristics compatible with the requirements of the tool under test. Table 3 provides the list
of case studies along with an indication of the type of mutation analysis/testing (i.e., code-driven
or data-driven) and the tools they are targeted for. Column Owner provides the name of the
case study subject provider. Column Test suite provides an indication of the test suite type (unit,
integration, system). Column Fault records indicates if the case study was provided with a list of
fault descriptions. Column Assessed tools indicates what FAQAS tool has been validated with the
case study (we also include SEMUs because experiments had been re-executed for comparison

Ihttps://essr.esa.int/project/mlfs-mathematical-library-for-flight-software
Zhttps://github.com/ttsiodras/asn1scc
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Table 3. Overview of subject systems and tool assessment.

Owner Subject LOC Test suite| Fault Assessed tools
records
MASS| SEMUs | MOTIF | DAMAT DAMTEF
ESAIL- 74,155 System + Unit Yes| Yes™| - Yes Yes* -
LuxSpace | CSW
780 1999 Unit - Yes| - Yes Yes -
emulator
Zynq 7000 20 Unit - Yes| - - - -
SW+
LibGCSP 9,836 Integration Yes| Yes*| Yes Yes* - -
GomsSpace LibParam 3,179 Integration Yes| Yes*| - - Yes* Yes
LibUtil 10,576 Unit Yes| Yes*| Yes Yes Yes* -
HOOP 27,000 System Yes -l - - - -
ESA MLFS 5,402 Unit Yes| Yes*| Yes Yes - -
ASN1.CC 4,338 Unit Yes?|  Yes*| Yes Yes - -
BepiColombo System + Unit Yes|  Yes| - 2 Yes -
Huld SIXS/MIXS | 30000
S5 L1bPP 23,000| Unit + Integration Yes|  Yes| -¢ Yes Yes -
ExoMars Unit + System Yes Yes| - - - -
RSI 11,500

4SnT will rely on faults identified during FAQAS-1.

bNot feasible to apply MOTIF because BepiColombo relies on old environment not feasible to process with MOTIF.
“Not feasible because SEMUs does not support C++.

* Experiments performed in the context of FAQAS-1

+ Subject internal to LuxSpace, used to support the independent assessment of the tools.

with MOTIF). Notably, MASS, MOTIF, and DAMAT had been assessed by LuxSpace completely
independently, on subjects not delivered to SnT.

4 EMPIRICAL EVALUATION

The FAQAS activity has ben evaluated through an extended empirical evaluation; below we sum-
marize our findings.

4.1 MASS

MASS has been applied to the new case study subjects introduced in FAQAS-2, they are Bepi-
Colombo, S5 L1bPP, and ExoMars. In addition, MASS had been independently assessed by LuxSpace
on two internally developed subjects, Z80 emulator and Zynq 7000 SoC. Table 4 provides an overview
of the results; in general, it has been feasible to apply MASS to the selected case studies (some
additional features had been introduced for the purpose), and all the live mutants have shown to
provide useful information about the limitations of the test suites.

4.2 MOTIF

Our empirical evaluation demonstrated the scalability and effectiveness of MOTIF for space software.
Our results in Table 5 show that MOTIF kills between 40% and 89% of the live mutants, contributing
to increasing the mutation score by 7 to 37 percentage points. Our results also demonstrated the
practical usefulness of MOTIF. Indeed, MOTTF enabled the identification of four faults in one case
study. Also, the generated test cases concerned inputs that are relevant (according to specifications)
but not tested by the test suites. Further, we performed an extensive empirical assessment of
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Table 4. MASS results with FAQAS-2 subjects.

Mutants

: Sampling Eliminated by
P Generated compilation + | Useful Tested Killed Live MS Notes
fype TCE

To handle this subject, MASS has
been extended to deal with execu-
tion environments different than
the one running MASS. One of the
206 mutants was live (205 for MS
computation). All mutants led to the
identification of useful test suite im-

provements.
MASS has been extended to handle

coverage on C++. Out of 10 manu-
Huld - S5 | Uniform 42198 20072 22126 2236 1434 802 | 64.13% | ally inspected mutants, all led to the
L1bPP identification of useful test suite im-
provements.

MASS has been extended to enable
the manual selection of mutants
without code coverage information.
Out of 10 manually inspected mu-
tants, all led to the identification of
useful test suite improvements.

No extension of MASS was needed.
Out of 10 manually inspected mu-
tants, all led to the identification of
useful test suite improvements.

Huld - Bepi- Stratified 12318 11090 1228 206 196 10 95.61%
Colombo

Huld - Exo- Manual 14306 5702 8604 10 8 2 80.00%
Mars RSI

LuxSpace - FSCI 7582 3297 4285 502 389 113 77.49%
780 emula-
tor

The case study demonstrated feasi-
ble to collect coverage from target
hardware and provide it to MASS.
Out of 3 manually inspected mu-
tants, one was equivalent to the
original program, the others led to
the identification of useful test suite
improvements.

Legend for table columns: Sampling type, type of sampling applied by MASS. Generated: number of mutants created by MASS. Eliminated by compilation + TCE:
number of mutants eliminated either becaus ethey do not compiler or are equivalent/duplicate according to Trivial Compiler Equivalence detection. Useful: number
of remaining mutants. Tested: number of mutants tested by MASS with the test suite of the SUT. Killed: number of mutants killed by the test suite. Live: live mutants.

MS: mutation score. Notes: additional notes.

LuxSpace - | ALL 39 2 37 37 15 22 40.54%
Zynq 7000
SoC

MOTIF to determine its best configuration, which consists of relying on Clang, the LAF compiler
optimization, and the ASAN address sanitizer.

Table 5. MOTIF results.

Subject OPeM o #Test Statement I:lslt:::; Live Vilivl[l‘iﬁaﬁ;s Improved
source cases coverage mutants mutation score
score MOTIF
LIBUTIL No 10,576 201 83.20% 71.20% 443 49.84% | 85.55%  (+14.35)
ASNLib Yes 7,260 139 95.80% 58.31% 1,347 88.74% | 95.31%  (+36.99)
MLFS Yes 5,402 4,042 100.00% 81.80% 3,891 39.85% | 89.05% (+7.26)
ESAIL No 2,235 384 95.36% 65.36% 581 39.5% | 79.04% (+13.68)
S5 No 54,696 36 62.23% 64.13% 99 82.53% | 93.72%  (+29.60)
4.3 DAMAt

Table 6 shows the mutation analysis results of DAMAT. In general, our results confirm the gen-
eralizability of the approach, which can be applie dto very different case study subjects from
BepiColombo to Z80. In most of the cases, it was possible for partners to confirm the correctness of
the results, although the lack of coverage was often due to the selection of a test suite subset for
the experiments.
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Table 6. Data-driven mutation analysis results.

Subject # FMs FMC| #MOs-CFM| #CMOs MOC Killed Live MS
BepiColombo 1 10| 100.00% 93 89 95.70% 89 89| 100.00%
Mutation of Periodic
Telemetries
BepiColombo | 8 50.00% 41 40 97.60% 40 36 90.00%
Mutation of]
Telecommand
Headers
BepiColombo | 13| 100.00% 59 55 93.20% 55 29 52.70%
Mutation of]
Telecommand 198
LXS Z80 emulator 1| 100.00% 19 19 100% 19 19 100%
FM=Fault Model, FMC=Fault Model Coverage, MOs-CFM=Mutation Operations in covered FMs, CMO=Covered Mutation
Operation, MOC=Mutation Operation Coverage, Killed=Number of mutants killed by the test suite, Live=Number of
mutants not killed by the test suite, MS=Mutation Score. The mutation score for LIBGCSP is not available because of
nondeterminism observed while running the experiments.

4.4 DAMTEF

DAMTEF aims to address a task (i.e., test generation at the system and integration level) that is
particularly difficult to address with state-of-the-art technology (e.g., test generation toolsets based
on symbolic execution). For this reason, we assessed only the feasibility of DAMTE.

We relied on DAMTEF to generate inputs for the LIBParam client API functions. Such inputs
enable the exchange of messages between the LIBParam client and the LIBParam server. Our
results demonstrated that DAMTEF can successfully generate test inputs to enable the application
of two out of three live mutants, thus outperforming DAMTE, which generated results only for
one of them. The mutant not enabled by DAMTEF is intractable because would require a faulty
implementation in order to be able to perform data mutation. For the two mutants enabled by
DAMTEF, we performed an extensive assessment of the approach with 200 executions, and report
that it successfully generate results in 89% of the cases.

Overall, we conclude that the DAMTE approach may be feasible; however, it requires some
manual effort for the configuration and execution of test cases which may limit its usefulness. The
first step towards its large scale applicability is the improvement of the generation of fuzz drivers,
which are key for the generation of test inputs. In the future, large language models might address
this problem.

5 INDUSTRIAL VALIDATION SUMMARY

Below we report verbatim the positive and negative comments provided in the validation deliver-
ables of the project by our industry partners. In general, positive comments concern the effectiveness
of MASS and DAMAT in identifying test suite limitations, and the capability of MOTIF to generate
useful test cases. Negative comments, concern mainly the configuration of the tools, which require
some effort because they need to inherit all the information about the software under test.

5.1 Overall Comments

POSITIVE COMMENTS
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ALL The analysis of the results of the toolsets (MASS, MOTIF) shows a clear effectiveness in de-
tecting/generating cases for the test suites in different environments: different programming
languages, different testing frameworks.

MASS For evaluation purposes, the test suite of the Z80 emulator has been modified to remove some
relevant testcases. MASS tool has been able to detect all these cases, as seen in the results.
Furthermore, the useful list generated by the tool is showing the most representative cases of
these intentional errors.

MASS the application of MASS is perfectly possible to be used in hardware on the loop with a dummy
program. This opens the doors to the verification of more complex systems.

MASS limitations with the executed test suites were correctly identified by MASS.

MASS A promising approach based on selecting mutants based on high cyclomatic numbers of the
mutated methods was applied by SnT for ExoMars to reduce the time required by test execution.

DAMAT the use of DAMAT can be complementary to MASS and other tools.

DAMAT The configuration and use of the tool (DAMAT) has been easier and more straighforward than
the performed in MASS/MOTIF. The documentation, like that of these toolsets, is excellent, with
good and detailed use cases. Furthermore, the support from the SnT team has been very good
and efficient.

DAMAT The installation of DAMAT was relatively straightforward into old test environment.

MOTIF Regarding the evaluation of the MOTIF tool, the results are also very satisfactory. Both use
cases have been evaluated successfully, with 60% of testcases generated from the useful list of
280 emulator, and 44% from the subset provided by ESAIL OBSW. It can be also improved by
modifying the parameters of the tool, like the used templates.

MOTIF For simpler cases, where reaching the mutated code is independent of class state, the automatic
test generation was found to be easy and straight-forward.

NEGATIVE COMMENTS

o Integration of MASS with the test frameworks was found to be difficult due to large number of
dependencies of MASS.

e Action: MASS configuration depends on the need for acquiring information about test
cases (e.g., what are the program units that correspond to each test case, how to run them,
and how to collect code coverage. Programming assistants based on large language models
could be investigated in the future to reduce configuration time.

e Moreover, it was found that the applicability of MASS to particular test suites can be limited
by the large CPU time required by test execution.

e Action: MASS execution time often depends on the characteristics of the mutation analysis
(e.g., test cases need to be executed). A solution based on the selection of few mutants has
been positively evaluated.

o The application of SnT toolsets to real projects could be hard in some points.

— The complexity of embedded systems is very high, so it would be necessary to optimize
MASS to simplify the generation of mutants and detect mutants that are redundant or
equivalent.

Action: MASS already includes solution for redundant and equivalent mutants; how-

ever, they could be improved further with additional static analysis.

Some of the results of the tests could be nondeterministic or depending on different factors

like elapsed time or hardware status.

— Action: MASS now includes a solution to handle non-determinism.

DAMAT In practice the manual effort to make suitable mutations and execute tests limits its (DAMAT)

usability to selected critical functionalities.
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o Action: Further improvements of DAMAT will require research on the definition of fault
models, which might be ahcieved through large language models or model inference.
MOTIF Since S5 L1bPP SW is implemented with C++ and relies on classes with complex initialization
and state, it was found that reaching the mutated code tends to require implementation of
manual test drivers.
e Action: The generation of drivers may benefit from the adption of large language models,
which could be topic for future research activities.
MOTIF since the generated test cases rely on data in byte arrays, they can become dependent on the
execution platform and dependencies.
e Action: One possible solution is to automate the translation of exadecimal inputs into
human-readable ones, thus preventing such issues.

SUGGESTED IMPROVEMENTS

o MASS/MOTIF

Support for more programming languages.

A graphic/text user interface to execute all the steps in an interactive and easy way.
Integration between both tools in a unified framework.

Generation of charts and statistics as outputs for both tools.

e DAMAT

— A graphic interface to create the definitions of the mutation operators, with a description
and examples for each of them.

— Automatize the changes to be performed in the code to apply the defined mutations. It
can be a very complicated task, so another option would be to suggest to the user different
code templates to be used in the SUT.

— Generation of fault models in an automatic way, according to several inputs defined by
the user about the structure of the SUT.

— Generation of test cases from live mutants with mutation operations defined in the fault
model. It would be useful to generate these test cases by using an existing test framework
(e.g., Google Test, Check)

— Integration of the toolset with MASS and MOTIF. As seen in the use case for the Z80
emulator, both toolsets are complementary

— Support for more programming languages when generating code from fault models, like
Python or Rust.

6 INTEGRATION WITH ISVV AND ECSS PRACTICES
6.1 Overview

According to the ECSS standard ECSS-E-ST-40C, key validation campaigns are unit testing, integra-
tion testing, and validation with respect to requirements baselines, which we refer to as system-level
testing because it typically involves the execution of the whole software, either within a simulation
environment or with target hardware. Acceptance testing occurs later in the process and is not part
of the application context for this document. Figure 10 provides an overview of the different test
levels specified by the ECSS standards (unit, integration, and system) and the software interactions
stressed by them. Unit test cases focus on interactions within single units (e.g., functions belonging
to a same source files) or few units belonging to a same component. Integration test cases trigger
interactions between distinct units or multiple components. System test cases exercise interactions
between all the components of the system.

Table 7 provides an overview of the applicability of the FAQAS-2 methodology to different testing
levels. Unit testing is an ideal target for code-driven mutation analysis; indeed, test cases focus on
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Fig. 10. Mutation Testing Approaches for Different Testing Levels.

Table 7. Support of code-driven and data-driven mutation analysis (assessment of test cases) and testing
(generation of test cases), for different testing levels.

Code-driven Data-driven
Testing analysis testing analysis testing
level (MASS) (MOTIF) (DAMAT) (DAMTEF)
Unit Yes Yes No No
Integration Yes Yes Yes Yes
System Yes No Yes No

specific code portions and can be executed quickly, which speeds up mutation analysis. However,
MASS, the code-driven mutation analysis tool of FAQAS-2, integrates solutions to make mutation
analysis scale and renders it applicable in the context of integration testing and system testing.

Unit testing is also the target for code-driven mutation testing (i.e., test generation) in FAQAS-2;
indeed, the MOTIF tool automatically generates unit test cases. MOTIF can also generate integration
test cases that exercise multiple units when there is a function under test that acts as an entry
point for exercising multiple units. Instead, the code-driven generation of system test cases is not
supported by FAQAS-2, and, to the best of our knowledge, it’s not supported by any other mutation
testing approach in the literature.

Data-driven mutation techniques, instead, are unlikely useful in the context of unit testing
because single units executed in isolation do not exchange messages (the target of data-driven
mutation). Data-driven mutation analysis, implemented by DAMAT, targets integration and system
test cases because they both trigger the exchange of messages. Data-driven mutation testing, which
is implemented by DAMTEEF, is feasible only for integration test cases because the fuzzing-based
generation of system-level test cases implemented by DAMTEF is an open research problem not
addressed by FAQAS-2.

Depending on the development process, system-level test cases may focus only on specific
features of the system under test; while unit test cases might be used only to cover exceptional
cases. For this reason, each of these test suite may not reach 100% statement coverage. For the
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same reason, they may kill distinct subsets of the mutants generated for the system. We therefore
suggest computing the mutation score by considering all the available test suites (i.e., a mutant is
killed if at least one test case of any available test suite fails).

Since a key objective of test suite assessment is the determination of test suite adequacy,
FAQAS-2 led to the identification of guidelines enabling the assessment of test suite adequacy based
on the mutation score, which shall suggest if further test cases are needed, both within nominal
and ISVV context. Specifically, when performing code-driven mutation analysis to assess the
quality of test suites, we suggest using the following values as reference values for the mutation
score:

e (RQ3) 40%: A mutation score below 40% indicates a poor quality test suite that may not
detect any fault.

o (RQ1) 70%: Assuming that the test suite maximizes structural coverage, a 70% mutation
score enables improving fault detection significantly.

o (RQ2) 84%: Assuming that the test suite maximizes structural coverage, 84% mutation score
is highly desirable, to maximize fault detection rate (e.g., for category A and B software).

When performing data-driven mutation analysis to assess the quality of test suites, we suggest
using the following values as reference values for the mutation score:

e (RQ3) 20%: A mutation score below 20% indicates a poor quality test suite that may not
detect any fault.

e (RQ1) 65%: Assuming that the test suite maximizes structural coverage, a 65% mutation
score enables improving fault detection significantly.

o (RQ2) 90%: Assuming that the test suite maximises structural coverage, a 90% mutation
score is highly desirable to maximize fault detection rate.

6.2 Matching with ECSS standards
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Fig. 11. Relations between ECSS activities and activities of the mutation testing process.
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Figure 11 shows the relationships between ECSS software testing practices and the main activities
of the mutation analysis/testing process: code mutation, data mutation, code-driven test generation,
data-driven test generation, and inspection of mutation analysis metrics (to either evaluate test
suite or derive test cases manually). These relationships guide the definition of a mutation testing
process integrated with ECSS standards.

In Figure 11, black arrows show the specifications documents (i.e., Technical Specifications
and Requirement Baselines) used to support ECSS testing activities (i.e., Unit Testing, Integration
Testing, Validation activities with respect to the technical specification and Validation activities
with respect to the requirements baselines). Colored arrows are used to associate ECSS activities
to specific testing methods suggested in the ECSS standard (e.g., mission data is used for ECSS-E-
ST-40C-5.6.4). Triangles are used to indicate which type of mutation testing (i.e., code-driven or
data-driven) is likely applicable when a specific testing method is applied. White triangles are used
to indicate that code mutation can be applied with a certain testing method, black triangles are
used for data mutation.

Concerning the type of mutation activity associated to each testing method, we observe that
code-driven mutation might be used for all the testing methods in use; sampling strategies will
help code-driven mutation scale in the presence of long executions. Data-driven mutation, instead,
is unlikely to be used with coverage based testing which often targets unit tests.

Test case generation based on fuzzing can be used in the context of unit and integration testing
targeted by code-driven mutation (with MOTIF) and in the context of integration testing targeted
by data-driven mutation (with DAMTEF). System test suites can be improved only manually.

In Figure 11, dashed arrows show how the mutation testing procedures can contribute to ECSS
activities. Overall, mutation analysis can be used to verify UT/IT/TS-RB test suites and guide
engineers towards improving them (e.g., by selecting test inputs to kill mutants). Mutation testing
may support the generation of unit test cases. Such support might be provided in both software (SW)
and ISVV life cycles. The mutation analysis metrics (e.g., mutation score) might be used to support
SW verification activities; more precisely, they might be used as an additional coverage metric for the
activities described in ECSS-Q-ST-80C 6.3.5.2 and ECSS-E-ST-40C 5.8.3.5.b. Also, mutation testing
(i.e., automated test generation) supports the improvement of test sites. Independent Software
Verification and Validation [11] can benefit from the mutation analysis/testing process as well. The
mutation analysis metrics can support Unit Test Procedures and Test Data Verification IVE.CA.T3

n [11]) and Integration Test Specification and Test Data Verification (IVA.CA.T2 in [11]). Finally,
test generation and mutation score may support ISVV during the identification of test cases (IVA.T1
in [11]).

6.3 ISVV integration

The main limiting factor for the integration of mutation analysis in an ISVV context, more precisely,
what limits the possibility for an ISVV supplier to rely on mutation analysis/testing for test suite
assessment, is the need for executing validation test cases (unit or integration ones).

Indeed, the execution of the validation tests is possible only in a subset of ISVV projects. More
commonly, ISVV suppliers either execute tests at customer premises or witness the test execution
by the customer. Further, unit tests are not usually part of ISVV projects, which complicates the
applicability of mutation analysis to ISVV. Finally, flight software validation tests often require
simulation of the target platform, which makes the execution of tests significantly slower, and the
number of tests can be very large.

However, for code-driven mutation analysis, it is deemed feasible for developers to execute
mutation analysis on their premises and provide results (mutation score and source code of live
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mutants) to ISVV providers, who can give feedback based on the mutation score or live mutants.
The suggested procedure, experimented with ExoMars, consists of the following steps:

e The ISVV supplier compiles mutants and keeps the ones being neither equivalent nor
redundant based on trivial compiler optimizations

o The ISVV supplier assigns cyclomatic complexity (CC) to each mutant, following the proce-
dure in use by MASS.

e The ISVV supplier assigns to each mutant the number of bug reports mentioning either the
function or the module (identified as the file) from which the mutant was generated. We
will call this value MR.

e The ISVV supplier scores mutants according to a formula taking into account CC and MR,
and sorts mutants based on the computed score.

e The ISVV supplier selects the top N mutants by maximizing diversity.

The integration of data-driven mutation analysis into ISVV practices is considered more
difficult because of the necessity for the ISVV provider to acquire a complete understanding of the
data model to derive a fault model, and to identify what test cases should be expected to fail in case
of data-driven mutation. One possible solution is to expect the software supplier to draft a fault
model, fo each mutant, execute at least one test cases that is supposed to fail and provide results to
the ISVV supplier.

7 TOOLSET LIMITATIONS AND OPEN PROBLEMS

FAQAS-2 led to developing tools that enable the application of mutation analysis and testing to space
software. FAQAS-2 extended the developments done in FAQAS-1, ensuring the generalizability and
applicability of the tools that achieved the highest TRLs in FAQAS-1 (i.e., MASS and MOTIF), and
building on the experience gained with test generation tools (i.e., SEMuS and DAMTE) to develop
new tools (i.e., MOTIF and DAMTEF) that substantially overcome the limitations of previous ones
thanks to the adoption of a fuzzing approach. MOTIF enables dealing with programs with floating-
point variables, can generate test cases that trigger the execution of units communicating with
channels, and outperform the previous tools in term of percentage of killed mutants. DAMTEF
supports a broader set of architectures and improves the quality of results.

However, the FAQAS-2 toolset remain affected by a few litimitations; some concern the usability
of the mutation analysis tools, which reached the highest TRLs, others concern the generalizability
of the test generation approaches. We describe current limitations in the following paragraphs.

MASS and DAMAT reached TRL6; however, their usability remains affected by some pitfalls:

e MASS still requires the manual production of some configuration files, which might be
discouraging for software engineers.

e MASS requires the testing of the system multiple times, which may lead to a long mutation
analysis phase.

e DAMAT requires the manual definition of a fault model, which requires effort and might be
discouraging.

e Both MASS and DAMAT do not provide safety guarantees in case of application with
hardware in the loop (e.g., they do not ensure preventing hardware damages caused by code
mutation).

e MASS and DAMAT target C and C++ software, which are the main languages for flight and
ground software. However, other languages such as Java and Rust are becoming popular in
the space sector and might need to be supported for the application of mutation analysis
and testing. Code-driven mutation analysis and testing tools exist for Java, and FAQAS-2
demonstrated the feasibility of their adoption; however, the FAQAS-2 developments did not
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lead to high TRLs for Java mutation analysis and testing. Further, FAQAS-2 has shown the
feasibility of applying DAMAT to Java software, although only a low TRL demonstrator
has been developed.

MOTIF reached TRL4; however, its applicability remains affected by the following issues:

With C software, MOTIF cannot test functions that work with global variables.

e With C software, MOTIF cannot test functions that receive struct with pointers.
e With C++ software, MOTIF requires manual intervention to test private and protected

methods.

With C++ software, MOTIF requires manual intervention to instantiate classes whose
constructors require objects as input.

With C++ software, MOTIF requires manual intervention to test abstract and template
methods; for the former, the end-user selects which concrete subclass to instantiate, and for
the latter, the end-user selects which class to provide in the template.

With both C and C++, MOTIF relies on binary values to initialise input variables and test as-
sertions, which reduces readability and prevents cross-compilation (because of endianness).
MOTTF enables killing the live mutants created by MASS. Since MASS injects mutants into
statements covered by the test cases, MOTIF cannot generate test cases for statements not
exercised by test cases, although this might be a desirable feature because test suites often
do not reach adequate statement coverage.

DAMTEEF reached TRL 2, and is affected by the following limitations:

the identification of the interfaces to be exercised to drive the software under test towards
producing the data messages to be mutated by DAMAT requires a complex integration of
static and dynamic information and has been therefore left to manual intervention;

a wider set of case study subjects might be considered to ensure that the solution imple-
mented in DAMTEF generalises.

7.1 Future developments

To improve the limitations above, a follow-on activity shall target the following objectives:

(1)

To reduce the manual configuration effort required by MASS, MASS shall be integrated
with development environments commonly used in space contexts. However, this would
imply determining what is the common IDE choice for space projects development, which
so far has not been possible because subcontractors highlighted that it seems to change
from project to project. An alternative solution may consist of studying the feasibility of
relying on large language models to determine project configurations automatically, instead
of implementing parser specifics for different IDEs.

To reduce MASS execution time, since MASS is best executed with several parallel cores,
it would be useful to integrate it with Cloud provider APIs (e.g., Amazon AWS), to enable
parallel execution natively.

FAQAS-2 demonstrated that sorting MASS live mutants based on cyclomatic complexity
increases the chances of detecting faults, which may suggest that the prioritisation of
mutants based on cyclomatic complexity may help reducing mutation analysis effort (e.g.,
testing only mutants in functions with high cyclomatic complexity).

For both MASS and DAMAT, their application with hardware in the loop might require
the automated identification of variables impacted by the changes (e.g., through forward
impact analysis) to eliminate mutants that affect critical registries or variables.
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(5) Consolidate the Java mutation analysis and testing framework assessed in FAQAS-2 into a
TRL6 toolset. It shall support widely adopted Java frameworks such as Spring®.

(6) Consolidate the DAMAT support for Java ensuring integration with frameworks such as
Spring.

(7) To simplify the definition of DAMAT fault models, the development of a question/answer
system (e.g., chatbot), eventually supported by a large language model, might help.

(8) For MOTIF, an improved parser shall be implemented to deal with global variables. This
parser will identify global variables to be used as inputs and verified as oracles.

(9) For MOTIF, the automated initialisation of complex data structures with pointers and
complex objects can be achieved with improved static analysis or by leveraging solutions
that build on large language models for similar purposes (e.g., the generation of drivers for
fuzz testing).

(10) For MOTIF to test private and protected methods, it is necessary to improve the static
analysis component. Specifically, it shall automatically determine what public methods use
the private and protected functions under test. Those methods shall be used as entry points
for the fuzzing procedure.

(11) For MOTIF, binary values in test cases shall be replaced with appropriate “readable” values,
which might be obtained with an improved parser leveraging dynamic analysis or a large
language model.

(12) MOTTF might be extended to preserve all the test inputs that enable reaching statements
not exercised by the test suite, in addition to input that kills mutants. To achieve such
an objective, it might be sufficient to introduce the control logic to determine coverage
improvement and store all the inputs that achieve such coverage. Alternatively, MOTIF can
be applied to all the mutants, including the ones concerning lines of code not covered by
test cases. The current MOTIF components for test case generation shall be sufficient to
transform the inputs identified in either case into test cases.

(13) For DAMTEEF, application to a larger set of case study subjects is needed to determine if
results (i.e., the feasibility of automatically generating test cases) generalise or if additional
strategies are needed.

To achieve the improvements above, a follow-on activity would be needed. The activity shall
lead TRL 6 for MOTIF and TRL 7 for MASS and DAMAT; instead, DAMTEEF shall be improved to
achieve TRL 4. The resources required for such an endeavour shall be comparable to the resources
that were required for FAQAS-2.

Shttps://spring.io/
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8 CONCLUSION

This report summarized the results of FAQAS-2. The activies concerned the imrpovement of
the FAQAS-1 methodology to facilitate applicability to a larger range of case study subjects and
facilitate automated test generation. For code-driven mutation analysis, FAQAS-2 led to extension
of MASS to deal with the peculiarities of new case studies, the identification of a solution for the
prioritization of mutants, the identification of thresholds for mutation analysis that can be used
for test adequacy determination, and the definition of a mutation testing process for Java. For
code-driven mutation testing, FAQAS-2 led to the development of MOTIF, an effective solution
for the automatic generation of test cases that kill mutants, based on fuzzing. For data-driven
mutation analysis, FAQAS-2 led to the extension of DAMAT to be applied to additional subjects,
including Java systems. Finally, we investigated the feasibility of DAMTEF , which relies on fuzzing
to generate test cases to kill data-driven mutants. Our results confirm the feasibility of all the
proposed approaches.
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