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Summary Report

1. INTRODUCTION.

The project to develop algorithms to calculate the Casimir force (Contract 15615/01/NL/LvH)
ran from December 2001 to March 2003 and was carried out at the Space Science and
Technology Department of the Rutherford Appleton Laboratory. The final presentation was
made at Estec on 14™ March 2003

During that time all progress reports, minutes of meetings and other project deliverables were
sent to ESA and also made available on a password protected FTP server.

The contents of the server will be made available to ESA ona CD .

2. THE AIM

The aim of the contract was to perform a study summarising the current status of the
theoretical understanding and experimental work on vacuum fluctuations and Casimir force.
This study was then used as a knowledge base from which to develop a modelling and
simulation tool to calculate the Casimir force in general situations.

3. THE LITERATURE SURVEY

As part of the process of summarising current status, a thorough literature survey was
conducted. A document summarising this survey was prepared and reported in August 2002.
The document reviewed the history of the Casmir force and the various experimental
investigations and measurements. Theoretical approaches to calculating the force both in
particular analytic cases and in the generality of cases, for which analytic solutions are not
available, were also reviewed.

A further short document was prepared which addressed the effect of the Casimir force on
Micro-electromechanical systems (MEMS) and Nano-electromechanical systems NEMS,
giving the range and strength of the force in relation to other forces to which microstructures
are exposed.

Both documents and the contents of the literature survey were made available on a password
protected FTP server. Documents were filed under 18 primary headings to give a database of
160 documents (146Mbyte) on all aspects of the Casimir force ranging from theoretical, to
measurements and MEMS applications.

4. THE PFF DOCUMENT

A ~2000 word (3 page) semi popular account of the Casimir force and its relevance to MEMS
and space applications was prepared for the ESA journal Preparing For the Future. The article
outlined the origins of the Casimir force and described the calculation process and included a
description of the relevance to Micro electromechanical systems (MEMS) and also speculated
on the use of the Casimir force for future Star Drives.



5. THE WEB SITE

A 14-page web site was prepared which outlined the features of the Casimir force described
in the PFF and User Example documents, and included descriptions of the algorithm and user
interface. In addition to the technical contents the site also includes a biography of the Dutch
physicist H.B.G. Casimir.

The web site files, which are currently held on a server at RAL, will be made available to
ESA on a CD so that the web site may be based at ESTEC.

6. THE SOFTWARE

The software was written in IDL and uses IDL graphics to display the geometry, intermediate
calculation steps as well as the final result. The algorithm was discussed and described in the
User example report and a description is also included as section 9 of this report.

An initial version of the software was made available to ESA at the final presentation and an
updated version in which some minor bugs have been removed will be sent on CD.

7. THE USER EXAMPLE

An example geometry was supplied by ESA and calculated using the tool developed in this
programme. The results were presented at the final presentation and discussed in the Example
User Case Report. This 24 page report details the process of running the computational tool
and discusses the strengths and limitations of the algorithm selected.

8. THE FUTURE

In the process of carrying out this study it became clear that computational resources were
one of the limitations on the complexity of problem that could be addressed. In the
intervening year clusters of parallel computers have become available at a reasonable price
and the use of these devices would mean that the computational time limit would be greatly
relaxed.

Further developments in the algorithm, particularly through work on the Lifshitz formalism,
which makes use of the enhanced computing power of parallel processing, will enable other
limitations of the additive principle approach to be addressed.



9. DEVELOPMENT OF THE ALGORITHM.

9.1 General Aim and the Casimir Effect

The present numerical code has been developed to be a user-friendly tool for the calculation
and estimate of the retarded Casimir force in condensed matter structures with complex
geometries.

The Casimir force is evidence of the quantum character of the physical world which seldom
reveals itself at a macroscopic level. The simplest form of the Casimir effect was predicted in
1948 by H.B.G. Casimir and consists in the attraction between a pair of neutral, parallel,
conducting plates placed in the vacuum. Recently, the Casimir force has been verified
experimentally by Lamoreaux and Mohideen & Roy, thus adding it to the list of macroscopic
quantum effects, which includes Superconductivity, Bose-Einstein Condensation and the Hall
effect.

The strongest Casimir force results from the interaction of quantum electromagnetic fields
with macroscopic background objects occupying the same region of space. This interaction
changes the properties of the field given that it must satisfy some form of boundary conditions
or constraints, which arise from the presence of the background objects. The field and its
observables are then distorted away from spatial homogeneity that characterizes them in an
empty space. As a result the field fluctuations are altered causing a pressure restitution force
on the object. Within this scope the Casimir force can be understood as an unbalance of the
radiation pressure produced by the virtual photons on the classical objects. These forces are
called the Casimir forces and its strength depends on the electromagnetic and optical
properties of the objects, as well as on the geometry of the boundary conditions imposed.

The Casimir force and related Zero-Point Fluctuation effects play an important role in
different areas of both scientific research and technological and industrial development, thus
increasing the need for fast and easy to use methods of calculation of this effect. In particular,
one can distinguish the field of condensed matter physics where direct applications of this
quantum effect are currently under development. In areas such as thin film physics, the
Casimir effect should be taken into account in the determination of surface tension and latent
heat, MEMS and NEMS, where the Casimir force plays an important role in stiction control,
and surface physics, where the Casimir effect is a determinant in bulk and surface critical
phenomena.

9.2 Calculation Methods for the Casimir Force

Different models have been proposed throughout the past fifty years to calculate the Casimir
force for different configurations, geometries and considering different practical aspects such
as thermal and finite conductivity corrections. Unfortunately there is no general method to
calculate the Casimir force, instead for each specific configuration there exists a specific
method.

The analytical methods developed give the most complete and insightful description of the
Casimir effect, but they pose many difficulties as they result in infinite quantities such as the
total vacuum energy. Most of the research during the past fifty years was concerned with the
development of different techniques to deal with such infinite quantities, which have been
developed in a highly mathematical context, and which do not take into account the
practical framework associated with physical and technological implementation.



The calculation of the Casimir effect in situations with real practical use is limited by
the lack of an efficient and numerically fast method of determining the eigenmode
structure of the field for several configurations, geometries and boundary conditions.
Most of the configurations previously analyzed deal with simple and highly
symmetrical geometries, such as spheres, cylinders or plates, where the determination
of the complete set of eigenmodes of the field is trivial. For technological applications
of the Casimir force it is necessary to consider more complicated shapes where the
determination of the eigenmodes of the system is not possible exactly.

A practical solution for these problems is to use the approximated methods which are
easily modelled numerically and can be applied in a wide range of configurations.
Presently there exist two main numerical methods for the calculation of the Casimir
force in complex geometries: the lattice QED techniques and the phenomenological
methods, such as Proximity force method.

The lattice QED can mimic and reproduce, in a detailed way, both global and local
features of continuum Casimir systems with simple geometries, while failing to
produce meaningful results for most highly complex systems.

In terms of computational power, adequate choices of lattice geometry can increase
the efficiency of the method, reducing the number of grid points and enhancing the
precision of the calculations. Nevertheless such choices are still limited by the
complexity of the physical objects considered. Also some authors have noted that not
all lattice descriptions of the Casimir effect in a lattice lead automatically to the
correct continuum.

The Proximity force method considers the sum of the contributions of small surface
elements which compose two close objects, assuming that they behave as
infinitesimal parallel plates. This phenomenological approach is limited to objects
with surfaces that have a small degree of non-parallelism and requires careful
parameterisation of each system.

Finally, there is the method based on the Additive Principle. This is the most versatile
and easy to use method to calculate the Casimir force in complex geometries, and it
can take into account some of the physical properties (the atomic polarizability) of the
materials of the object. The numerical implementation of the method is fairly simple
and requires computational resources compatible with presently commercially
available workstations. Moreover, it is a fairly fast algorithm as each run takes less
than a day, which is considered numerically fast and it can provide numerically
accurate results (numerical errors have been estimated as being less than 107'%). For
these reasons the algorithm based on the Additive Principle was considered the best
choice for the method used in the present implementation.



Table 1: Comparisons of the basic Casimir force calculation algorithms.

Lattice QED Proximity Force Additive
Theorem
Range of Wide but with Quasi-parallel Complex
configurations limitations. geometries only. geometries.
Material No references Atomic Atomic
properties of found. polarizability. polarizability.
objects
Repulsive Force No references No No
found.
Numerical Large Works on PC Works on PC
resources
Numerical In some cases gives Good Good (numerical
accuracy wrong answer. error~10"?)
Speed of Slow, needs many Fast (less than a Fast (less than a
calculations runs to produce day) day)
final result.
Implementation Complex, lattice Fairly complex. Fairly simple.
and algorithm must be adapted to
configuration.

In summary we may characterise the various calculation methods as detailed in the
above table. The table lists the attributes of QED and two phenomenological
approaches to Casimir force calculations, and clearly shows that the Additive
Theorem is the first choice for calculations of reasonably complex configurations,
without resorting to parallel or other sophisticated computers.

9.3 The Algorithm

The numerical code developed at the Rutherford Appleton Laboratory uses an
algorithm based on the Additive Theorem, which considers the sum of the retarded
Casimir interactions of every two atoms or molecules composing the physical object.
This method is of course very versatile since in principle it can be applied to bodies of
arbitrary shape and also because the two atoms interaction is easy to calculate
numerically and they do not generate infinite quantities.

The interaction between two neutral atoms due to the dipolar fluctuations of the
electronic cloud is described by the following potential energy':
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The asymptotic limits of this potential energy for short and long distances results in
the London and the Casimir interactions, respectively:
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The present implementation of the code explores the formal similarities between the
calculation of the Casimir force and the calculation of the electric force produced by a
distribution of charges and it is based on the determination of the values of a Casimir
interaction energy between atoms or molecules A and B:
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where o is the polarizability of each atom or molecule and & =23%Ac/4x is the
interaction strength.

The code considers a cubic simulation box where the physical object is located. The
physical object is then divided into a lattice of small cubic cells. The choice of the
size of each matter cell depends on the degree of detail needed to describe the
physical object. It should be noticed that an excessively small cell size would result in
a large number of cells whose value may exceed the computational resources
available. Also very small matters cells do not necessarily produce more accurate
results due to the increase of accumulated numerical errors (such as those due to
truncation). Therefore to establish a good cell size it is advisable to repeat the same
simulation with different matter cell sizes and compare the results obtained.

Each matter cell j is assumed to be sufficiently small so that the Casimir potential
field produced by it can be calculated as if all the atoms or molecules in the interior
where placed at the geometrical centre of the cell and thus behaving as a point like
source. The Casimir potential ¢, () produced by each matter cell ; is given according

to:
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where 7 is the number of atoms or molecules present in the matter cell and 7, is the

geometrical centre of the matter cell. Notice that this Casimir potential field is here
introduced simply as a notation and has no physical meaning.

The total Casimir potential produced in each point of space by the physical object in

the interior of the simulation space is therefore the sum of the contributions of all
matter cells, i.e.:

o(F) =2 0,(7)



In practice, it is impossible to calculate the value of ¢ in all the points of space, instead ¢ is
evaluated in an irregularly distributed grid of points {f? ;+ in the interior of the simulation

box. This irregular grid is constructed in order to have a higher density of grid points
in regions of space where the Casimir force is stronger thus increasing the accuracy of
the results and reducing the time of calculation and computer memory use.

The energy of Casimir interaction between a cell i and the remaining cells of the
physical object is given according to:
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The Casimir force acting on that matter cell is simply calculated as:

f _ﬁEi = _aﬁwj (7).

1

In order to calculate numerically the value of the differential operator V in the
previous expression the total Casimir potential is interpolated using a cubic spline

over the grid {Rj} .

To determine the total force acting on the physical object it is then necessary to sum
over all its matter cells:

S

In the actual code the calculations are done using the natural units defined according
to £a® =1 and the matter cell size is renormalizes to 1, hence the value of the

Casimir force obtained from the code does not depend on the nature of the material
nor the actual dimensions of the physical object. To introduce these aspects in the

calculation and to obtain the real value of the force F it is necessary for the value of
the Casimir force obtained from the code ]7 to be multiplied by the scaling factor:

P27

where a is the actual size of each matter cell.



9.4 Limitations and Advantages

Within the scale of the contract a fully general calculation, in a reasonable time, on a
pc is not possible, for the reasons described above. However, as a calculation tool for
MEMS and NEMS type of structures the code developed is valuable albeit with some
limits and restrictions in its current implementation.

Currently, the calculation of the Casimir force is only possible for structures made of
a single material- the calculation is performed using renormalized units in which all
materials are alike and afterwards the results are reconverted back to S.I. units to give
an idea of the likely strength of the force.

For most materials electric polarizability is dominant over the magnetic polarizability
and the renormalization factor is positive, this implies that Casimir force predicted by
this method is always attractive independently of the geometry. This limitation is due
to the fact that this method does not consider high order corrections of the theory
which require more computational power to be calculated.

The calculation is time consuming and only performed in one Z plane for each single
run. To calculate the TOTAL force for a 100x100 parallel plate would require around
33 different runs to be summed together. This is because the code is performed in one
Z plane for the X and Y components of the force, but in THREE Z planes in order to
get the Z component of the force. However, if we call on the symmetry of the object
and assume that the top half of the plate is going to be identical with the bottom half —
or vice versa), this full calculation could be reduced to around 17 runs and would only
be performed from the edge of the plate to the centre plane (in Y). This could still be a
fairly time demanding procedure however, so prior optimisation would certainly be
recommended before embarking on the “final” full calculation.

The definition of structures is currently limited to a relatively small range of shapes
and these shapes cannot currently be “angled” to one another. Tests performed with
spheres suggests that this may not be an important issue, but there is always likely to
be some limitations when converting ‘“smooth” shapes into cubic volume elements —
in effect, an inclined shape is going to be modelled as a surface with a high degree of
“surface roughness” compared to the same shape aligned parallel to the normal cubic
grid structure. This limitation means that the code is actually applicable to exactly
those planar structures most likely to be encountered in MEMS fabrications.

A “feature” of the code is the built-in requirement for the “surfaces” of the working
volume to be vacuum. So, after creating the structure the code will automatically reset
all 6 faces of the working volume back to vacuum. This is related to needing a
vacuum point “outside” a matter point in order for the code to be sure it knows where
the matter ends.

It is important that this limitation be borne in mind as it could lead to some confusion
later on.

The code is also not temperature dependent. The code makes no allowance for finite
temperature effects — the calculation is essentially performed at absolute zero.



Finally, the code does not consider “shielding”. The code calculates the total effect of
each matter grid element on all other matter grid elements assuming that any
intervening matter grid element will have no effect on the interaction. This means that
intervening structures would also have no “dilution” effect on the force (they would,
of course, have an additive effect on the total force).

The advantages of the IDL implementation of the algorithm are that the interface is
very user friendly. It is relatively easy to build up quite complex structures and the
code instantly updates after each new shape component is added to the overall
structure. The code does give a relatively quick view of the overall “surface” of the
Casimir potential when it performs its “coarse grid” calculation (used in deriving the
full adaptive mesh used to calculate the final Casimir force components). The code
also displays the final Casimir force in its various components (X, Y and Z directions)
so the effects of changing component shapes or dimensions can be seen quite easily.
The algorithm is ideally suited to comparing “similar” geometries — i.e. parallel plates
of different dimensions and thickness (although the thickness of the plates is more
connected with how well the code can “resolve” the asymptotic nature of the Casimir
force). Also, the fact that the code is written in IDL should mean that it will run on a
variety of computer platforms without any significant modifications (the
modifications required would be to simple details like fonts and the initial definition
of the graphical window — nothing that would affect the details of the calculation
itself!).
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