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Summary Report 
 
 

1. INTRODUCTION.  
 
The project to develop algorithms to calculate the Casimir force (Contract 15615/01/NL/LvH) 
ran from December 2001 to March 2003 and was carried out at the Space Science and 
Technology Department of the Rutherford Appleton Laboratory. The final presentation was 
made at Estec  on 14th March 2003 
During that time all progress reports, minutes of meetings and other project deliverables were 
sent to ESA and also made available on a password protected FTP server.   
The contents of the server will be made available to ESA on a CD . 

 

2. THE AIM 
 
The aim of the contract was to perform a study summarising the current status of the 
theoretical understanding and experimental work on vacuum fluctuations and Casimir force. 
This study was then used as a knowledge base from which to develop a modelling and 
simulation tool to calculate the Casimir force in general situations.  
 

3. THE LITERATURE SURVEY 
 
As part of the process of summarising current status, a thorough literature survey was 
conducted. A document summarising this survey was prepared and reported in August 2002.  
The document reviewed the history of the Casmir force and the various experimental 
investigations and measurements. Theoretical approaches to calculating the force both in 
particular analytic cases and in the generality of cases, for which analytic solutions are not 
available, were also reviewed.  
 
A further short document was prepared which addressed the effect of the Casimir force on 
Micro-electromechanical systems (MEMS) and Nano-electromechanical systems NEMS, 
giving the range and strength of the force in relation to other forces to which microstructures 
are exposed. 
 
Both documents and the contents of the literature survey were made available on a password 
protected FTP server. Documents were filed under 18 primary headings to give a database of 
160 documents (146Mbyte) on all aspects of the Casimir force ranging from theoretical, to 
measurements and MEMS applications. 
 

4. THE PFF DOCUMENT 
 
A ~2000 word (3 page) semi popular account of the Casimir force and its relevance to MEMS 
and space applications was prepared for the ESA journal Preparing For the Future. The article 
outlined the origins of the Casimir force and described the calculation process and included a 
description of the relevance to Micro electromechanical systems (MEMS) and also speculated 
on the use of the Casimir force for future Star Drives.  
 
 



 
 

5. THE WEB SITE 
 
A 14-page web site was prepared which outlined the features of the Casimir force described 
in the PFF and User Example documents, and included descriptions of the algorithm and user 
interface.  In addition to the technical contents the site also includes a biography of the Dutch 
physicist H.B.G. Casimir. 
 
The web site files, which are currently held on a server at RAL, will be made available to 
ESA on a CD so that the web site may be based at ESTEC.   
 

6. THE SOFTWARE  
 
The software was written in IDL and uses IDL graphics to display the geometry, intermediate 
calculation steps as well as the final result. The algorithm was discussed and described in the 
User example report and a description is also included as section 9 of this report. 
 
An initial version of the software was made available to ESA   at the final presentation and an 
updated version in which some minor bugs have been removed will be sent on CD. 

7. THE USER EXAMPLE 
 
An example geometry was supplied by ESA and calculated using the tool developed in this 
programme. The results were presented at the final presentation and discussed in the Example 
User Case Report.  This 24 page report details the process of running the computational tool 
and discusses the strengths and limitations of the algorithm selected. 
 

8. THE FUTURE 
 
In the process of carrying out this study it became clear that computational resources were 
one of the limitations on the complexity of problem that could be addressed.  In the 
intervening year clusters of parallel computers have become available at a reasonable price 
and the use of these devices would mean that the computational time limit would be greatly 
relaxed. 
 
Further developments in the algorithm, particularly through work on the Lifshitz formalism, 
which makes use of the enhanced computing power of parallel processing, will enable other 
limitations of the additive principle approach to be addressed. 



 

9. DEVELOPMENT OF THE ALGORITHM. 
 
9.1 General Aim and the Casimir Effect 
 
The present numerical code has been developed to be a user-friendly tool for the calculation 
and estimate of the retarded Casimir force in condensed matter structures with complex 
geometries.  
 
The Casimir force is evidence of the quantum character of the physical world which seldom 
reveals itself at a macroscopic level. The simplest form of the Casimir effect was predicted in 
1948 by H.B.G. Casimir and consists in the attraction between a pair of neutral, parallel, 
conducting plates placed in the vacuum. Recently, the Casimir force has been verified 
experimentally by Lamoreaux and Mohideen & Roy, thus adding it to the list of macroscopic 
quantum effects, which includes Superconductivity, Bose-Einstein Condensation and the Hall 
effect. 
 
The strongest Casimir force results from the interaction of quantum electromagnetic fields 
with macroscopic background objects occupying the same region of space. This interaction 
changes the properties of the field given that it must satisfy some form of boundary conditions 
or constraints, which arise from the presence of the background objects. The field and its 
observables are then distorted away from spatial homogeneity that characterizes them in an 
empty space. As a result the field fluctuations are altered causing a pressure restitution force 
on the object. Within this scope the Casimir force can be understood as an unbalance of the 
radiation pressure produced by the virtual photons on the classical objects. These forces are 
called the Casimir forces and its strength depends on the electromagnetic and optical 
properties of the objects, as well as on the geometry of the boundary conditions imposed. 
The Casimir force and related Zero-Point Fluctuation effects play an important role in 
different areas of both scientific research and technological and industrial development, thus 
increasing the need for fast and easy to use methods of calculation of this effect. In particular, 
one can distinguish the field of condensed matter physics where direct applications of this 
quantum effect are currently under development. In areas such as thin film physics, the 
Casimir effect should be taken into account in the determination of surface tension and latent 
heat, MEMS and NEMS, where the Casimir force plays an important role in stiction control, 
and surface physics, where the Casimir effect is a determinant in bulk and surface critical 
phenomena.  

 

9.2 Calculation Methods for the Casimir Force 
 
Different models have been proposed throughout the past fifty years to calculate the Casimir 
force for different configurations, geometries and considering different practical aspects such 
as thermal and finite conductivity corrections. Unfortunately there is no general method to 
calculate the Casimir force, instead for each specific configuration there exists a specific 
method. 
 
The analytical methods developed give the most complete and insightful description of the 
Casimir effect, but they pose many difficulties as they result in infinite quantities such as the 
total vacuum energy. Most of the research during the past fifty years was concerned with the 
development of different techniques to deal with such infinite quantities, which have been 
developed in a highly mathematical context, and which do not take into account the 
practical framework associated with physical and technological implementation. 



 
The calculation of the Casimir effect in situations with real practical use is limited by 
the lack of an efficient and numerically fast method of determining the eigenmode 
structure of the field for several configurations, geometries and boundary conditions. 
Most of the configurations previously analyzed deal with simple and highly 
symmetrical geometries, such as spheres, cylinders or plates, where the determination 
of the complete set of eigenmodes of the field is trivial. For technological applications 
of the Casimir force it is necessary to consider more complicated shapes where the 
determination of the eigenmodes of the system is not possible exactly.  
 
A practical solution for these problems is to use the approximated methods which are 
easily modelled numerically and can be applied in a wide range of configurations. 
Presently there exist two main numerical methods for the calculation of the Casimir 
force in complex geometries: the lattice QED techniques and the phenomenological 
methods, such as Proximity force method. 

 
The lattice QED can mimic and reproduce, in a detailed way, both global and local 
features of continuum Casimir systems with simple geometries, while failing to 
produce meaningful results for most highly complex systems. 
 
In terms of computational power, adequate choices of lattice geometry can increase 
the efficiency of the method, reducing the number of grid points and enhancing the 
precision of the calculations. Nevertheless such choices are still limited by the 
complexity of the physical objects considered. Also some authors have noted that not 
all lattice descriptions of the Casimir effect in a lattice lead automatically to the 
correct continuum. 
 
The Proximity force method considers the sum of the contributions of small surface 
elements which compose two close objects, assuming that they behave as 
infinitesimal parallel plates. This phenomenological approach is limited to objects 
with surfaces that have a small degree of non-parallelism and requires careful 
parameterisation of each system. 
 
Finally, there is the method based on the Additive Principle. This is the most versatile 
and easy to use method to calculate the Casimir force in complex geometries, and it 
can take into account some of the physical properties (the atomic polarizability) of the 
materials of the object. The numerical implementation of the method is fairly simple 
and requires computational resources compatible with presently commercially 
available workstations. Moreover, it is a fairly fast algorithm as each run takes less 
than a day, which is considered numerically fast and it can provide numerically 
accurate results (numerical errors have been estimated as being less than 10-12). For 
these reasons the algorithm based on the Additive Principle was considered the best 
choice for the method used in the present implementation. 
 



 
 

Table 1: Comparisons of the basic Casimir force calculation algorithms. 

 Lattice QED Proximity Force Additive 
Theorem 

Range of 
configurations 

Wide but with 
limitations. 

Quasi-parallel 
geometries only. 

Complex 
geometries. 

Material 
properties of 

objects 

No references 
found. 

Atomic 
polarizability. 

Atomic 
polarizability. 

Repulsive Force No references 
found. 

No No 

Numerical 
resources 

Large Works on PC Works on PC 

Numerical 
accuracy 

In some cases gives 
wrong answer. 

Good Good (numerical 
error~10-12) 

Speed of 
calculations 

Slow, needs many 
runs to produce 

final result. 

Fast (less than a 
day) 

Fast (less than a 
day) 

Implementation 
and algorithm 

Complex, lattice 
must be adapted to 

configuration. 

Fairly complex. Fairly simple. 

 
In summary we may characterise the various calculation methods as detailed in the 
above table. The table lists the attributes of QED and two phenomenological 
approaches to Casimir force calculations, and clearly shows that the Additive 
Theorem is the first choice for calculations of reasonably complex configurations, 
without resorting to parallel or other sophisticated computers. 
 
9.3 The Algorithm 
 
The numerical code developed at the Rutherford Appleton Laboratory uses an 
algorithm based on the Additive Theorem, which considers the sum of the retarded 
Casimir interactions of every two atoms or molecules composing the physical object. 
This method is of course very versatile since in principle it can be applied to bodies of 
arbitrary shape and also because the two atoms interaction is easy to calculate 
numerically and they do not generate infinite quantities. 
 
The interaction between two neutral atoms due to the dipolar fluctuations of the 
electronic cloud is described by the following potential energy1: 
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The asymptotic limits of this potential energy for short and long distances results in 
the London and the Casimir interactions, respectively: 
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The present implementation of the code explores the formal similarities between the 
calculation of the Casimir force and the calculation of the electric force produced by a 
distribution of charges and it is based on the determination of the values of a Casimir 
interaction energy between atoms or molecules A and B: 
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where α  is the polarizability of each atom or molecule and πξ 4/23 ch=  is the 
interaction strength. 
 
The code considers a cubic simulation box where the physical object is located. The 
physical object is then divided into a lattice of small cubic cells. The choice of the 
size of each matter cell depends on the degree of detail needed to describe the 
physical object. It should be noticed that an excessively small cell size would result in 
a large number of cells whose value may exceed the computational resources 
available. Also very small matters cells do not necessarily produce more accurate 
results due to the increase of accumulated numerical errors (such as those due to 
truncation). Therefore to establish a good cell size it is advisable to repeat the same 
simulation with different matter cell sizes and compare the results obtained. 

 
Each matter cell j is assumed to be sufficiently small so that the Casimir potential 
field produced by it can be calculated as if all the atoms or molecules in the interior 
where placed at the geometrical centre of the cell and thus behaving as a point like 
source. The Casimir potential )(rj

rϕ  produced by each matter cell j is given according 
to: 
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where  is the number of atoms or molecules present in the matter cell and n jr
r  is the 

geometrical centre of the matter cell. Notice that this Casimir potential field is here 
introduced simply as a notation and has no physical meaning. 
 
The total Casimir potential produced in each point of space by the physical object in 
the interior of the simulation space is therefore the sum of the contributions of all 
matter cells, i.e.: 
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In practice, it is impossible to calculate the value of ϕ  in all the points of space, instead ϕ  is 

evaluated in an irregularly distributed grid of points { }jR
r

 in the interior of the simulation 
box. This irregular grid is constructed in order to have a higher density of grid points 
in regions of space where the Casimir force is stronger thus increasing the accuracy of 
the results and reducing the time of calculation and computer memory use. 
 
The energy of Casimir interaction between a cell i and the remaining cells of the 
physical object is given according to: 
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The Casimir force acting on that matter cell is simply calculated as: 
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In order to calculate numerically the value of the differential operator  in the 
previous expression the total Casimir potential is interpolated using a cubic spline 
over the grid {

r
. 

∇

}jR
 
To determine the total force acting on the physical object it is then necessary to sum 
over all its matter cells: 
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In the actual code the calculations are done using the natural units defined according 
to  and the matter cell size is renormalizes to 1, hence the value of the 
Casimir force obtained from the code does not depend on the nature of the material 
nor the actual dimensions of the physical object. To introduce these aspects in the 
calculation and to obtain the real value of the force 
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 it is necessary for the value of 
the Casimir force obtained from the code f

r
 to be multiplied by the scaling factor:  
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where a is the actual size of each matter cell. 



 
9.4 Limitations and Advantages 
 
Within the scale of the contract a fully general calculation, in a reasonable time, on a 
pc is not possible, for the reasons described above. However, as a calculation tool for 
MEMS and NEMS type of structures the code developed is valuable albeit with some 
limits and restrictions in its current implementation. 
 
Currently, the calculation of the Casimir force is only possible for structures made of 
a single material- the calculation is performed using renormalized units in which all 
materials are alike and afterwards the results are reconverted back to S.I. units to give 
an idea of the likely strength of the force.  
 
For most materials electric polarizability is dominant over the magnetic polarizability 
and the renormalization factor is positive, this implies that Casimir force predicted by 
this method is always attractive independently of the geometry. This limitation is due 
to the fact that this method does not consider high order corrections of the theory 
which require more computational power to be calculated. 
 
The calculation is time consuming and only performed in one Z plane for each single 
run. To calculate the TOTAL force for a 100x100 parallel plate would require around 
33 different runs to be summed together. This is because the code is performed in one 
Z plane for the X and Y components of the force, but in THREE Z planes in order to 
get the Z component of the force. However, if we call on the symmetry of the object 
and assume that the top half of the plate is going to be identical with the bottom half – 
or vice versa), this full calculation could be reduced to around 17 runs and would only 
be performed from the edge of the plate to the centre plane (in Y). This could still be a 
fairly time demanding procedure however, so prior optimisation would certainly be 
recommended before embarking on the “final” full calculation.  
 
The definition of structures is currently limited to a relatively small range of shapes 
and these shapes cannot currently be “angled” to one another. Tests performed with 
spheres suggests that this may not be an important issue, but there is always likely to 
be some limitations when converting  “smooth” shapes into cubic volume elements – 
in effect, an inclined shape is going to be modelled as a surface with a high degree of 
“surface roughness” compared to the same shape aligned parallel to the normal cubic 
grid structure. This limitation means that the code is actually applicable to exactly 
those planar structures most likely to be encountered in MEMS fabrications. 
 
A “feature” of the code is the built-in requirement for the “surfaces” of the working 
volume to be vacuum. So, after creating the structure the code will automatically reset 
all 6 faces of the working volume back to vacuum. This is related to needing a 
vacuum point “outside” a matter point in order for the code to be sure it knows where 
the matter ends. 
 
It is important that this limitation be borne in mind as it could lead to some confusion 
later on. 
The code is also not temperature dependent. The code makes no allowance for finite 
temperature effects – the calculation is essentially performed at absolute zero. 



Finally, the code does not consider “shielding”. The code calculates the total effect of 
each matter grid element on all other matter grid elements assuming that any 
intervening matter grid element will have no effect on the interaction. This means that 
intervening structures would also have no “dilution” effect on the force (they would, 
of course, have an additive effect on the total force). 
 
The advantages of the IDL implementation of the algorithm are that the interface is 
very user friendly. It is relatively easy to build up quite complex structures and the 
code instantly updates after each new shape component is added to the overall 
structure. The code does give a relatively quick view of the overall “surface” of the 
Casimir potential when it performs its “coarse grid” calculation (used in deriving the 
full adaptive mesh used to calculate the final Casimir force components). The code 
also displays the final Casimir force in its various components (X, Y and Z directions) 
so the effects of changing component shapes or dimensions can be seen quite easily. 
The algorithm is ideally suited to comparing “similar” geometries – i.e. parallel plates 
of different dimensions and thickness (although the thickness of the plates is more 
connected with how well the code can “resolve” the asymptotic nature of the Casimir 
force). Also, the fact that the code is written in IDL should mean that it will run on a 
variety of computer platforms without any significant modifications (the 
modifications required would be to simple details like fonts and the initial definition 
of the graphical window – nothing that would affect the details of the calculation 
itself!). 
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